GE MASTR II User manual

• -fi...MOB/LE
RADIO
®
MASTRO
MAINTENANCE
MANUAL
25·50
MHz,
50-WATT
STATION
TRANSMITTER
EXCITER
ASSEMBLY
PA
ASSEMBLY
SPECIFICATIONS *
FCC
Filing
Designation
Frequency
Range
Power
Output
Crystal
Multiplication
Factor
Frequency
Stability
5C-ICOM
with
EC
!COM
EC-ICOM
or
5C-ICOM
2C-ICOM
Spurious
and
Harmonic
Emission
Modulation
Audio
Frequency
Characteristics
Distortion
Deviation
Symmetry
Maximum
Frequency
Spread:
(2
to
4
channels)
25-30
MHz
30-36
MHz
36-42
MHz
42-50
MHz
Full
KT-56-A,
C
KT-57-A,
C
Extended
local
control;
Intermittent
Duty
Extended
local/DC
&
Tone
Remote
KT-58-A,
C
DC
Remote/Tone
Remote;
Intermittent
Duty
All
controls;
Continuous
Duty
25-50
MHz
50
Watts
(Adjustable
from
15
to
50
Watts)
3
±0.0005%
(-30°C
to
+60°C)
±0.0002%
(
0°C
to
+55°C)
±0.0002%
(-30°C
to
+u0°C)
At
least
85
dB
below
full
rated
power
output
Adjustable
from
0
to
±5
kHz
swing
with
instantaneous
modulation
limiting.
Within
+l
dB
to
-3
dB
of
a
6-dB/octave
pre-emphasis
from
300
to
3000Hz
per
EIA
standards.
Post
limiter
filter
per
FCC
and
EIA.
Less
than
2%
(1000
Hz)
Less
than
3%
(300
to
3000
Hz)
0.5
kHz maximum
Specifications
l dB
Degradation
0.16
MHz
0.32
MHz
0.20
MHz
0.40
MHz
0.24
MHz
0.47
MHz
0.28
MHZ
0.54
MHz
Duty
Cycle
EIA 20%
Intermittent
(KT-56-A,
C &
KT-57-A,
C)
Continuous
(KT-58-A,
C)
RF
Output
Impedance
5o
ohms
d'lese
specifications
ore
intended
primarily
for
the
use
of
the
serviceman.
Refer
to
the
appropriate
Specification
Sheet
for
the
complete
specifications.
§;§;
=-:
;;;;
~
-·
"':j"':j
=
HH
.......
t""'t""'
CD
t>lt>l
=
"':l"':l
~
00
=
bb
C"')
t>lt:>l
CD
:::0:::0
=-:
0 0
~
"%j "%j
=
I I
c:
w w
1-' 1-'
~
......
V1
-
N
V1
-
r-
H
~
~
u:l
~
-
-....
~
~
n

LBI-4732
TABLE
OF
CONTENTS
SPECIFICATIONS
...................................................................
.
DESCRIPTION
......................................................................
.
CIRCUIT
ANALYSIS
.................................................................
.
Exciter
.....................................................................
.
ICOMs
..................................................................
.
Audio
Preamplifier
.....................................................
.
Audio
IC
...............................................................
.
Frequency
Divider
IC
...................................................
.
Phase
Modulators,
Amplifiers
&
Multipliers
.............................
.
Power
Amplifier
.............................................................
.
RF
Amplifiers
..........................................................
.
Power
Control
Circuit
..................................................
.
MAINTENANCE
......................................................................
.
Disassembly
.................................................................
.
PA
Transistor
Replacement
...................................................
.
Alignment
Procedure
.........................................................
.
Test
Procedures
.............................................................
.
Power
Output
...........................................................
.
Tone
Deviation
.........................................................
.
Voice
Deviation
........................................................
.
Troubleshooting
OUTLINE
DIAGRAMS
Intermittent
and
Continuous
Duty
Exciter
&
PA
Boards;
Intermittent
Duty
PA
Assembly
............................................................
.
Continuous
Duty
PA
Assembly
.................................................
.
Frame
Assembly
..............................................................
.
SCHEMATIC
DIAGRAMS
(with
voltage
readings)
Exciter
.....................................................................
.
Power
Amplifier
(Intermittent
Duty)
.........................................
.
Power
Amplifier
(Continuous
Duty)
...........................................
.
PARTS
LIST
AND
PRODUCTION
CHANGES
Exciter
.....................................................................
.
Power
Amplifier
(Intermittent
Duty)
.........................................
.
Power
Amplifier
(Continuous
Duty)
...........................................
.
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
ILLUSTRATIONS
l -
Block
Diagram
........................................................
.
2-
Typical
Crystal
Characteristics
......................................
.
3 -
Equivalent
!COM
Circuit
..............................................
.
4 -
Simplified
Audio
IC
..................................................
.
5 -
Access
to
Exciter
(Front
View)
.......................................
.
6-
Access
to
Power
Amplifier
(Rear
View)
................................
.
7 -
PA
Board
Removal
.....................................................
.
8 -
PA
Transistor
Lead
Identification
...................................
..
9 -
PA
Transistor
Lead
Forming
...........................................
.
10-
Frequency
Characteristics
Vs.
Temperature
............................
.
WARNING
Although
the
highest
DC
voltage
in
the
MASTR
II
station
transmitter
is
the
12
VDC
supply
voltage,
high
currents
may
be
drawn
under
short
circuit
conditions.
These
currents
can
possibly
heat
metal
objects
such
as
tools,
rings,
watchbands,
etc.,
enough
to
cause
burns.
Be
careful
when
working
near
energized
circuits!
High-
level
RF
energy
in
the
transmitter
Power
Amplifier
assembly
can
cause
RF
burns
upon
contact.
KEEP
AWAY
FROM
THESE CIRCUITS
WHEN
THE
TRANSMITTER
IS
ENERGIZED!
ii
Cover
l
l
l
l
3
3
4
4
5
5
6
6
6
7
9
10
10
10
10
ll
12
13
14
16
17
19
15
18
20
l
2
3
4
6
6
7
8
8
9
•
•
•

•
•
•
DESCRIPTION
Transmitter
Types
KT-56-A,
C,
KT-57-A,
C &
KT-58-A,
C
are
crystal-controlled,
phase
modulated
transmitters
designed
for
one-
through
four-frequency
operation
in
the
25
to
50
megahertz
band.
The
solid
state
transmitter
utilizes
both
integrated
cir-
cuits
(ICs)
and
discrete
components,
and
consists
of
the
following
assemblies:
•
•
Exciter
Board;
with
audio,
modulator,
amplifier
and
multiplier
stages.
Power
Amplifier
Assembly;
with
ampli-
fier,
driver,
PA,
power
control,
filter
and
antenna
switch.
CIRCUIT
ANALYSIS
EXCITER
The
exciter
uses
nine
transistors
and
two
integrated
circuits
to
drive
the
PA
as-
sembly.
The
exciter
can
be
equipped
with
up
to
four
Integrated
Circuit
Oscillator
Mod-
ules
(ICOMs).
The
!COM
crystal
frequency
ranges
from
approximately
8,33
to
16.67
meg-
ahertz,
and
the
crystal
frequency
is
multi-
plied
three
times
(divided
by
four
and
multiplied
by
12
for
a
multiplication
of
three).
EXCITER
I
MOD
~ADJUST
I r
-1
~
H
MOD
I
AUDIO PHASE AMPL-1
r------1
LIMITER
MOD
0102
CRI02
Ul02
CVIOI CRI03
I
I
__
_j
~
FREO
MULT-I
Fl
t---r1
BUFF~R
~
DIVIDER BUFFER
r----
TRIPLER
YIOI
0101
(+4)
0105
0106
I UIOI
I
I I
---
---
LBI-4732
__
Audio,
supply
voltages
and
control
functions
are
connected
through
P902
.
Centralized
metering
jack
Jl03
is
pro-
vided
for
use
with
GE
Test
Set
Model
4EX3All
or
Test
Kit
4EX3Kl2.
The
test
set
meters
the
modulator,
multiplier
and
amplifier
stages.
ICOMS
Three
different
types
of
ICOMs
are
available
for
use
in
the
exciter.
Ea~h
of
the
ICOMs
contains
a
crystal-controlled
Colpitts
oscillator,
and
two
of
the
ICOMs
contain
compensator
ICs.
The
different
ICOMs
are:
• 5C-ICOM -
contains
an
oscillator
and
a
5
part-per-million
(±0.0005%)
compensa-
tor
IC.
Provides
compensation
for
EC-ICOMs.
• EC-ICOM -
contains
an
oscillator
only.
Requires
external
compensation
from
a
5C-ICOM.
• 2C-ICOM -
contains
an
oscillator
and
a 2
PPM
(±0.0002%)
compensator
IC.
Will
not
provide
compensation
for
an
EC-ICOM.
The
ICOMs
are
enclosed
in
an
RF
shield-
ed
can
with
the
type
!COM
(5C-ICOM,
EC-ICOM
or
2C-ICOM)
printed
on
the
top
of
the
can.
Access
to
the
oscillator
trimmer
is
obtained
l
MOD
PHASE
f-----.1
AMPL-2
f-----.1
MOD
0103
CVI02
CVI03
MULT-2 MULT-3
f----
DOUBLER
--
DOUBLER
0107
OIOB
---
---
1----i
r----
MOO
AMPL-3
0104
AMPL-1
0109
I I
I
HLIMITER
CRI05
CRI()6
I
I
---
---
~--
-~
I
I
F2
•
-1
I
POWER
POWER
AMP
~
I
I
Yl02
I ADJUST
0204-0210
~-
: I
I
I I
~---.
I PA
I
Fe
1-_j
AMPL-1
t-----
DRIVER
I--
FINAL
f----
I YIOB
0201
0202 0203
~--.J
Figure
1 -
Transmitter
Block
Diagram
LOW
ANT
PASS
I--
SWITCH
FILTER K201
RC-265B
I
I
I
_j
1

LBI-4732
CIRCUIT
ANALYSIS
by
prying
up
the
plastic
tab
on
the
top
of
the
can.
The
tabs
can
also
be
used
to
pull
the
ICOMs
out
of
the
radio.
Frequency
selection
is
accomplished
by
switching
the
!COM
keying
lead
(termianl
6)
to
A-.
The
oscillator
is
turned
on
by
applying
a
keyed
+10
Volts
to
the
external
oscillator
load
resistor.
CAUTION
All
ICOMs
are
individually
compen-
sated
at
the
factory
and
cannot
be
repaired
in
the
field.
Any
attempt
to
repair
or
change
an
!COM
fre-
quency
will
void
the
warranty.
In
transmitter
types
KT-56-A,
C
using
EC-ICOMs,
at
least
one
5C-ICOM
must
be
used.
The
5C-ICOM
is
normally
used
in
the
receiver
Fl
position,
but
('<Jn
be
used
in
any
transmit
or
receivr
rn~ition.
One
5C-
ICOM
can
provide
cnmpensatiqn
for
up
to
8
EC-ICOMs
in
the
transmit
and
receiver.
Should
the
5C-ICOM
compensator
fail
in
the
open
mode,
the
EC-ICOMs
will
still
maintain
2
PPM
frequency
stability
from
0°C
to
55°C
(+32°F
to
131°F)
due
to
the
regulated
com-
pensation
voltage
(5
Volts)
from
the
10-
Volt
regulator
IC.
In
transmitter
types
KT-57-A,
C
and
KT-58-A,
C
at
least
one
5C
!COM
is
required
for
the
transmitter
and
at
least
one
5C-ICOM
is
required
for
the
receiver.
If
desired,
up
to
8 5C-ICOMs
may
be
used
in
the
station.
RC-2443
-10
L.__L__-L~f-----+--+---+---f--.;..._-=-.....c:.....J
-15" +10° 26.5°
+42°
65°
DEGREES CENTIGRADE
Figure
2 -
Typical
Crystal
Characteristics
The
2C-IC0Ms
are
self-compensated
at
2
PPM
and
will
not
provide
compensation
for
EC-ICOMs.
2
Oscilla~or
Circuit
The
quartz
crystals
used
in
ICOMs
ex-
hibit
the
traditional
"S"
curve
character-
istics
of
output
frequency
versus
operating
temperature.
At
both
the
coldeot
and
hottest
temper-
atures,
the
frequency
increases-with
increas-
ing
temperature.
In
the
middle
temperature
range
(approximately
0°C
to
+55°C),
frequency
decreases
with
increasing
temperature.
Since
the
rate
of
change
is
nearly
lib-
ear
over
the
mid-temperature
range,
the
out-
put
frequency
change
can
be
compensated
by
choosing
a
parallel
compensation
capacitor
with
a
temperature
coefficient
approximately
equal
and
opposite
that
of
the
crystal.
Figure
2
shows
the
typical
performance
of
an
uncompensated
crystal
as
well
as
the
typical
performance
of
a
crystal
which
has
been
matched
with
a
properly
chosen
compen-
sation
capacitor.
At
temperatures
above
and
below
the
mid-
range,
additional
compensation
must
be
intro-
duced.
An
externally
generated
compensation
voltage
is
applied
to
a
varactor
(voltage-
variable
capacitor)
which
is
in
parallel
with
the
crystal.
In
transmitter
types
KT-56-A,
C a
con-
stant
bias
of
5
Volts
(provided
from
Regula-
tor
IC
U901
in
parallel
with
the
compensator)
establishes
the
varactor
capacity
at
a
con-
stant
value
over
the
entire
mid-temperature
range.
With
no
additional
compensation,
all
of
the
oscillators
will
provide
2
PPM
fre-
quency
stability
from
0°C
to
55°C
(+32°F
to
131°F).
Compensator
Circuits
Both
the
5C-IC0Ms
and
2C-ICOMs
are
tem-
perature
compensated
at
both
ends
of
the
tem-
perature
range
to
provide
instant
frequency
compensation.
An
equivalent
ICOM
circuit
is
shown
in
Figure
3.
The
cold
end
compensation
circuit
does
not
operate
at
temperatures
above
0°C.
When
the
temperature
drops
below
0°C,
the
circuit
is
activated.
As
the
temperature
decreases,
the
equivalent
resistance
decreases
and
the
compensation
voltage
increases.
The
increase
in
compensation
voltage
decreases
the
capacity
of
the
varactor
in
the
oscillator,
increasing
the
output
fre-
quency
of
the
ICOM.
The
hot
end
compensation
circuit
does
not
operate
at
temperatures
below
+55°C,
When
the
temperature
rises
above
+55°C,
the
circuit
is
activated.
As
the
temperature
•
•
•

•
•
•
CIRCUIT
ANALYSIS
LBI-4732
NOT
PRESENT
IN
EC-ICOM
REG
IOV COMPENSATION
~v
~--------------~2~------------------------------------,
COMPENSATION
I
IC
Ul
COLD END COMP
I
I
I
I HOT END COMP
I
I
I
-l
I
I
24K
I
I
COMPENSATOR~
OUTPUT
24K
I
I
I
I
OSCILLATOR
CIRCUIT
\
+IOV
..._
____
_.
________
.._.
____
._____,MID-RANGE
A-
RF
OUT
FREQ
SELECT
L
__
_
A-
_____J
L
__
TEMP.
COMPENSATION
__CAP_A_C_IT-OR
__
J
RC-2444
Figure
3 -
Equivalent
ICOM
Circuit
increases,
the
equivalent
resistance
de-
creases
and
the
compensation
voltage
de-
creases.
The
decrease
in
compensation
volt-
age
increases
the
capacity
of
the
varactor,
decreasing
the
output
frequency
of
the
ICOM.
SERVICE NOTE:
Proper
ICOM
operation
is
de-
pendent
on
the
closely-controlled
input
volt-
ages
from
the
10-Volt
regulator.
Should
all
of
the
ICOMs
shift
off
frequency,
check
the
10-Volt
regulator
module
or
check
output
of
5C-ICOM.
AUDIO PREAMPLIFIER
The
transmitter
Audio
Preamplifier
is
not
part
of
the
transmitter
and
is
covered
in
the
station
Maintenance
Manual.
AUDIO
IC
The
transmitter
audio
circuitry
is
con-
tained
in
audio
IC-Ul02.
A
simplified
draw-
ing
of
the
audio
IC
is
shown
in
Figure
4.
Audio
from
the
Station
Preamplifier
at
pin
12
is
coupled
through
capacitor
Cl
to
the
base
of
Ql
in
the
operational
amplifier-
limiter
circuit.
The
operational
amplifier-limiter
cir-
cuit
consists
of
Ql,
Q2
and
Q3.
Q3
provides
limiting
at
high
signal
levels.
The
gain
of
the
operational
amplifier
circuit
is
fixed
by
negative
feedback
through
Rl9,
R20
and
the
resistance
in
the
network
(pin
9).
The
output
of
Q3
is
coupled
through
a
de-emphasis
network
(RIO
and
C3)
to
an
act-
ive
post-limiter
filter
consisting
of
C4,
C5,
C6,
Rll,
Rl2,
Rl3,
Rl5,
Rl7
and
Q4.
Following
the
post-limiter
filter
is
class
A
amplifier
Q5.
The
output
of
Q5
is
coupled
through
MOD
ADJUST
potentiometer
Rl27
to
the
phase
modulators.
SERVICE NOTE:
If
the
DC
voltages
to
the
Audio
IC
are
correct
and
no
audio
output
can
be
obtained,
replace
Ul02.
For
radios
equipped
with
Channel
Guard,
tone
from
the
encoder
is
applied
to
the
phase
modulators
through
CHANNEL
GUARD
MOD
ADJUST
potentiometer
Rl28,
and
resistors
RllO,
Rl21
and
Rl24.
Instructions
for
set-
ting
Rl28
and
station
gain
Control
Rl4
on
the
Audio
Preamplifier
are
contained
in
the
modulation
adjustment
section
of
the
Trans-
mitter
Alignment
Procedure.
3

LBI-4732
CIRCUIT
ANALYSIS
OPERATIONAL
AMP-
LIMITER
--~~----.-----~~------------------+-------------~4
13r-----------+-~--~----+-_.
______
._
__
_.
TX
AUDIO
LO
R20
40K
10
9
Rl9
40K
DECOUPLER NETWORK
TO
Cl50
POST-LIMITER
FILTER
04
AMPLIFIER
Rl7
Rl5
REG
+IOV
A-
RC-2668
Figure
4 -
Simplified
Audio
IC
FREQUENCY
DIVIDER
IC
The
output
at
pin
3
of
the
selected
ICOM
is
coupled
through
buffer
amplifier
QlOl
to
frequency
divider
UlOl,
which
di-
vides
the
oscillator
frequency
by
4.
The
divider
consists
of
two
J-K
flip-flops
con-
nected
as
a
binary
counter.
When
the
transmitter
is
not
keyed
(no
ICOMs
on),
QlOl
is
saturated
(turned
on)
with
its
collector
voltage
near
zero.
Key-
ing
the
transmitter
starts
one
of
the
ICOMs,
and
its
output
cuts
QlOl
on
and
off
once
each
cycle.
As
QlOl
turns
off
during
each
cycle,
the
drop
in
collector
voltage
causes
the
left
flip-flop
to
change
state.
Assume
the
flip-flop
was
in
the
"O"
state
(the
out-
put
at
"Q"
near
A-).
The
first
cycle
of
the
oscillator
output
causes
it
to
switch
to
the
"1"
stage
(output
at
"Q"
approximate-
ly
5
Volts).
The
second
cycle
will
cause
the
flip-flop
to
switch
back
to
the
"O"
state.
Therefore,
it
requires
two
oscilla-
tor
cycles
to
switch
the
left
flip-flop
through
one
complete
cycle
from
"O"
to
"1"
and
back
to
"0".
When
the
left
flip-flop
switches
from
"1"
to
"0",
it
causes
the
right
flip-flop
to
change
state.
It
requires
two
cycles
of
the
left
flip-flop
to
switch
the
right
flip-
flop
from
"O"
to
"1"
and
back
to
"0".
There-
fore,
four
cycles
of
the
oscillator
output
are
required
for
each
cycle
of
output
from
pin
9
of
UlOl.
If
UlOl
was
operating
into
a
pure
re-
sistive
load,
its
output
would
be
a
square
wave.
However,
the
modulator
circuit
pre-
4
sents
a
tuned
load
to
the
IC,
so
that
harmon-
ics
are
filtered
out
and
the
waveform
at
the
junction
of
Cl02
and
Cl03
(modulator
input)
is
essentially
a
sine
wave
at
one-fourth
the
oscillator
frequency.
The
output
of
the
fre-
quency
divider
is
coupled
through
DC
blocking
capacitor
Cl02
to
the
first
modulator
stage.
PHASE
MODULATORS,
AMPLIFIER & MULTIPLIERS
The
first
phase
modulator
is
varactor
(voltage-variable
capacitor)
CVlOl
in
series
with
tunable
coil
LlOl.
This
network
appeHrs
as
a
series-resonant
circuit
the
RF
output
of
the
oscillator.
An
audio
signal
applied
to
the
modulator
circuit
through
blocking
capacitor
Cll5
varies
the
bias
of
CVlOl,
re-
sulting
in
a
phase
modulated
output.
A
volt-
age
divider
network
(Rl08
and
Rl09)
provides
the
proper
bias
for
varactors
CVlOl,
CV102
and
CV103.
The
output
of
the
first
modulator
is
coupled
through
blocking
capacitor
Cl06
to
the
base
of
Class
A
amplifier
Ql02.
The
first
modulator
stage
is
metered
through
a
metering
network
consisting
of
Rll5,
Rl50,
Cl07
and
CRlOl.
Diodes
CR102
and
CR103
re-
move
any
amplitude
modulation
in
the
modula-
tor
output.
Following
Ql02
is
another
Class
A
Ampli-
fier,
Ql03.
The
output
of
Ql03
is
applied
to
the
second
modulator
stage.
The
second
modulator
consists
of
two
cascaded
modulator
circuits
consisting
of
CV102,
Ll02,
Ll03
and
CV103.
Following
the
second
modulator
is
a
Class
A
amplifier
Ql04.
The
output
of
the
second
modulator
stage
is
metered
through
•
•
•

•
•
•
CIRCUIT
ANALYSIS
LBI-4732
Rl33, Rl45,
Cll7
and
CR104,
and
is
applied
to
the
base
of
buffer
Ql05.
Diodes
CR105
and
CR106
remove
any
amplitude
modulation
in
the
second
modulator
output.
Buffer
Ql05
is
saturated
when
no
RF
signal
is
present.
Applying
an
RF
signal
to
Ql05
provides
a
sawtooth
waveform
at
its
collector
to
drive
the
class
C
tripler,
Ql06.
The
tripler
stage
is
metered
through
Rl46.
The
output
of
Ql06
is
coupled
through
tuned
circuits
TlOl,
Tl02
and
Tl03
to
the
base
of
dobuler
Ql07,
TlOl,
Tl02
and
Tl03
are
tuned
to
one-fourth
of
the
operating
frequency.
The
doubler
stage
is
metered
through
Rl47.
The
output
of
Ql07
is
coupled
through
tuned
circuits
Tl04
and
Tl05
to
the
base
of
second
doubler
Ql08.
Tl04
and
Tl05
are
tuned
to
one-half
the
operating
frequency.
Ql08
is
metered
through
Rl48.
The
output
of
Ql08
is
coupled
through
three
tuned
circuits
(Tl06,
Tl07
and
Tl08)
to
the
base
of
amplifier
Ql09.
The
circuits
are
tuned
to
the
transmitter
operating
fre-
quency.
Ql09
is
a
class
C
amplifier
with
a
col-
lector
feed
network
consisting
of
Cl39,
Cl41,
Ll04,
Ll08
and
Rl43.
The
stage
is
metered
through
Rl49.
The
amplifier
collec-
tor
circuit
consists
of
Cl42,
Cl43,
Cl46
and
Ll05,
and
matches
the
amplifier
output
to
the
input
of
the
power
amplifier
assembly
.
POWER AMPLIFIER
The
PA
assembly
uses
three
RF
power
transistors
and
seven
transistors
in
the
Power
Control
circuitry
to
provide
a
power
output
of
50
Watts.
The
broadband
PA
has
no
adjustments
other
than
Power
Control
po-
tentiometer
R216.
Supply
voltage
for
the
PA
is
connected
through
power
leads
from
the
system
board
to
feedthrough
capacitors
C297
and
C298
on
the
bottom
of
the
PA
assembly.
C297,
C298
and
C299,
L296
and
L297
prevent
RF
fr.om
getting
on
the
Power
leads.
Diode
CR295
will
cause
the
main
fuse
in
the
fuse
assembly
to
blow
if
the
polarity
of
the
power
leads
is
re-
versed.
Centralized
metering
jack
J205
is
pro-
vided
for
use
with
GE
Test
Set
Model
4EX3All
or
Test
Kit
4EX8Kl2.
The
Test
Set
meters
the
Ampl-1
drive
(exciter
output),
Ampl-1
power
control,
Driver
and
PA
current.
RF
AMPLIFIERS
The
exciter
output
is
coupled
through
an
RF
cable
to
PA
input
jack
J203.
The
RF
is
coupled
through
DC
blocking
capacitor
C202
to
the
base
of
Class
C
amplifier
Q201
through
a
matching
network.
The
network
matches
the
50-ohm
input
to
the
base
of
Q20l,
and
consists
of
C205,
C206,
C235,
L201,
L202
and
L203.
Part
of
the
RF
input
is
rectified
by
CR201
and
used
to
activate
the
Power
Control
circuit.
Another
portion
of
the
rectified
RF
is
applied
to
~oltage
dividers
R223
and
R224
for
metering
the
Ampl-1
drive
at
J205.
Collector
voltage
to
Q201
(Ampl-1)
is
controlled
by
the
Power
Control
circuit,
and
is
applied
through
a
collector
stabiliz-
ing
network
consisting
of
L224
and
R225
and
collector
feed
network
L204
and
C207.
The
collector
voltage
of
Q201
is
metered
through
R235
at
J205.
The
output
of
Q201
is
applied
to
the
base
of
Class
C
driver
Q202
through
a
low-
pass
filter
matching
network
(C209,
C210,
L205
and
L206).
Resistors
R202,
R203
and
R204
lower
the
gain
of
Q202.
Collector
voltage
to
Q202
is
coupled
through
a
col-
lector
stabilizing
network
consisting
of
L225
and
R233
and
collector
feed
network
L208
and
C213.
Collector
current
for
Q202
is
metered
across
tapped
manganin
resistor
R230
at
J205
(Driver
Current).
The
reading
is
taken
on
the
one-Volt
scale
with
the
High
Sensi-
tivity
button
pressed,
and
read
as
10
am-
peres
full
scale.
Following
Q202
is
an
interstage
cou-
pling
network
(C214
through
C221,
L209
through
L211,
R206
and
R207.)
The
output
is
applied
to
the
base
of
the
class
C
PA
stage,
Q203.
Supply
voltage
is
coupled
through
a
collector
stabilizing
network
consisting
of
L226
and
R234
and
collector
feed
network
C222
and
L212.
Collector
current
for
Q203
is
metered
across
tapped
manganin
resistor
R231
at
J205.
The
reading
is
taken
on
the
one-Volt
scale
with
the
High
Sensitivity
buttom
pressed,
and
read
as
10
amperes
full
scale.
The
PA
output
is
coupled
through
an
output
matching
network
(C224,
C225,
C226,
L213
and
L214,)
to
an
M-derived,
constant
K
low-pass
filter.
C230
through
C233
pro-
vides
grtiund
isolation.
The
filter
output
is
applied
to
the
antenna
through
antenna
switch
K201.
r-----------------
WARNING
-----------------,
The
stud
mounted
RF
Power
Transis-
tors
used
in
the
transmitter
con-
tain
Beryllium
Oxide,
a TOXIC
sub-
stance.
If
the
ceramic,
or
other
encapsulation
is
opened,
crushed,
broken
or
abraded,
the
dust
may
be
hazardous
if
inhaled.
Use
care
in
replacing
transistors
of
this
type
.
5

LBI-4732
POWER
AMPLIFIER
POWER
CONTROL
CIRCUIT
When
the
transmitter
is
keyed,
recti-
fied
RF
from
CR201
is
applied
to
the
base
of
switch
Q204,
turning
it
on.
Turning
on
Q204
turns
on
voltage
regulator
Q206
which
supplies
a
constant
voltage
to
Power
Adjust
potentiometer
R216.
Q208,
Q209
and
Q210
operate
as
an
am-
plifier
chain
to
supply
voltage
to
the
col-
lector
of
Q201
(Ampl-1).
The
setting
of
R216
determines
the
voltage
applied
to
the
base
of
Q208.
The
higher
the
voltage
at
the
base
of
Q208,
the
harder
the
amplifiers
conduct,
supplying
more
collector
voltage
to
Q201.
The
lower
the
voltage
at
the
base
of
Q208,
the
less
collector
voltage
is
sup-
plied
to
Q201.
Reducing
the
supply
voltage
to
Q201
reduces
the
drive
to
Q202
and
Q203,
thereby
reducing
the
power
output
of
the
PA.
The
power
output
can
be
adjusted
by
R216
from
approximately
15
to
50
Watts.
Temperature
protection
is
provided
by
Q205,
Q207
and
thermistor
RT201
which
is
mounted
in
the
PA
heatsink.
Under
normal
operating
conditions,
the
circuit
is
inact-
ive
(Q205
is
on
and
Q207
is
off).
When
the
heatsink
temperature
reaches
approximately
100°C,
the
resistance
of
RT201
decreases.
This
increases
the
base
voltage
applied
to
Q205,
turning
it
off.
Turning
off
Q205
allows
Q207
to
turn
on,
decreasing
the
volt-
age
at
Power
Adjust
potentiometer
R216.
This
reduces
the
base
voltage
to
Q208
which
causes
Q209
and
Q210
to
conduct
less,
re-
ducing
the
collector
voltage
to
Q201
(Ampl-1).
This
reduces
the
transmitter
output
power,
keeping
the
heatsink
at
a
maximum
of
approximately
100°C.
When
the
heatsink
temperature
decreases
below
100°C,
the
temperature
control
circuit
turns
off,
allowing
the
normal
transmitter
power
out-
put.
MAINTENANCE
DISASSEMBLY
For
a
more
complete
mechanical
parts
break-
down
refer
to
the
station
manual.
To
service
the
transmitter
exciter
from
the
front:
1.
2.
3.
Turn
the
two
latching
knobs
~
coun-
terclockwise
to
unlatch
the
Radio
Panel
Front
Door.
Refer
to
Figure
5.
Swing
the
Radio
Panel
Front
Door
down
as
shown.
Remove
covers.
To
service
the
transmitter
Power
Amplifier
from
the
rear:
1.
Remove
the
top
two
screws
{8)
on
the
Intermittent
or
Continuous'nGty
Power
Amplifier.
Refer
to
Figure
6.
6
2.
Figure
5 -
Access
To
Exciter
-
Front
View
Figure
6 -
Access
To
Power
Amplifier
-
Rear
View
Swing
the
Power
Amplifier
down
as
shown.
Remove
the
top
cover
of
the
Power
Amplifier.
NOTE
If
the
heatsink
blower
option
is
present,
this
blower
must
be
re-
moved
before
the
Power
Amplifier
can
be
lowered.
•
•
•

•
•
•
MAINTENANCE
LBI-4732
To
remove
the
PA
board:
Refer
to
Figure
7.
1.
2.
3.
4.
5.
Remove
the
PA
top
cover
and
unplug
the
exciter/PA
cable
~
Unsolder
the
two
feedthro~
coils
~
and
the
thermistor
leads
~
.
For
Continuous
Duty
stations
only,
re-
move
all
heatsink
sections
from
the
heat
dissapator
plate.
Remove
the
PA
transistor
hold-down
nuts
and
spring
washer
on
the
bottom
of
the
PA
assembly.
Remove
the
four
PA
board
mounting
screws
fG)
,
th~ive
screws
in
the
filter
~ting
,
and
the
retaining
screw
in
Q210
,
and
lift
the
board
out.
PA
TRANSISTOR
REPLACEMENT
When
replacing
a
power
transistor
where
more
than
one
are
in
parallel,
make
sure
all
the
paralleled
transistors
are
from
the
same
manufacturer
for
proper
operation.
1.
2.
3.
WARNING
The
stud
mounted
RF
Power
Transis-
tors
used
in
the
transmitter
con-
tain
Beryllium
Oxide,
a TOXIC
sub-
stance.
If
the
ceramic
or
other
encapsulation
is
opened,
crushed,
broken
or
abraded,
the
dust
may
be
hazardous
if
inhaled.
Use
care
in
replacing
transistors
of
this
type.
To
replace
the
PA
RF
transistors:
Unsolder
one
lead
at
a
time
with
a
50-
Watt
soldering
iron.
Use
a
scribe
to
hold
the
lead
away
from
the
printed
circuit
board
until
the
solder
cools.
Turn
the
transmitter.
NOTE
If
the
transmitter
has
a
continuous
Duty
Power
Amplifier
a
section
of
Heat
Sink
may
have
to
be
removed
to
get
to
the
transistor
hold-down
nuts.
Apply
a
light
coat
of
silicon
grease
when
replacing
the
removed
section
of
Heat
Sink.
Hold
the
body
of
the
transistor
to
pre-
vent
it
from
turning.
Remove
the
tran-
sistor
hold-down
nut
and
spring
washer
through
the
hole
in
the
heatsink
with
an
11/32-inch
nut-driver.
Lift
out
the
old
solder
from
the
printed
cir-
cuit
board
with
a
de-soldering
tool
such
as
a
SOLDA
PULLT®.
Specjal
care
should
be
taken
to
prevent
damage
to
the
printed
circuit
board
runs.
4_._·
5.
Trim
the
new
transistor
leads
(if
re-
quired)
to
the
lead
length
of
the
re-
moved
transistor.
Cut
the
collector
lead
at
a
45°
angle
for
future
identi-
fication
(see
Figure
7).
The
letter
"C"
on
the
top
of
the
transistor
indi-
cates
the
collector.
Figure
7 -
PA
Board
Removal
Applying
a
coating
of
silicon
grease
around
the
transistor
mounting
surface,
and
place
the
transistor
in
the
mount-
ing
hole.
Align
the
leads
as
shown
in
the
Outline
Diagram.
Then
hold
the
body
of
the
transistor
and
replace
the
holding-down
nut
and
spring-washer,
us-
ing
moderate
torque
(8
inch-pounds).
A
torque
wrench
must
be
used
for
this
ad-
justment
since
transistor
damage
can
result
if
too
little
or
too
much
torque
is
used.
6.
Make
sure
that
the
transistor
leads
are
formed
as
shown
in
Figure
8
so
that
the
leads
can
be
soldered
to
the
printed
circuit
pattern,
starting
from
the
inner
edge
of
the
mounting
hole.
7.
Solder
the
leads
to
the
printed
circuit
pattern.
Start
at
the
inner
edge
of
mounting
hole
and
solder
the
remaining
length
of
transistor
lead
to
the
board.
Use
care
not
to
use
excessive
heat
that
causes
the
printed
wire
board
runs
to
lift
up
from
the
board.
Check
for
shorts
and
solder
bridges
before
applying
power.
CAUTION
----------------~
Failure
to
solder
the
transistor
leads
as
directed
may
result
in
the
generation
of
RF
loops
that
could
damage
the
transistor
or
may
cause
low
power
output.
7

LBI-4732
COLLECTOR
MAINTENANCE
SOLDER ENTIRE LEAD
FROM
EDGE
OF
MOUNTING HOLE
TO
END
OF
LEAD
HOLD-
DOWN
NUT S
SPRING
WASHER
RC-2309
Figure
8 -
Lead
Identification
Figure
9 -
Lead
Forming
Copyright
©
1975,
General
Electnc
Company
8
MOBILE
RADIO
DEPARTMENT
GENERAL
ELECTRIC
COMPANY
o
LYNCHBURG,
VIRGINIA
24502
GENERAL.
ELECTRIC
•
Tritdemark
of
General
Electric
Company
US
A
Prmted
in
U
S.A
•
•
•

MODULATION
LEVEL ADJUSTMENT
The
MOD
ADJUST
(Rl27)
wns
adjusted
to
the
proper
setting
before
shipment
and
should
not
normally
require
readjustment.
This
setting
permits
approximately
75%
modulation
for
the
sverage
voice
level.
The
aduio
peaks
which
would
cause
overmodulation
are
clipped
by
the
modulation
limiter.
The
.limiter,
in
con.)
unction
with
the
de-emphasis
network,
instan-
taneously
limits
the
slope
of
the
audio
wave
to
the
modulator,
thereby
preventing
overmod-
ulation
while
preserving
intelligibility,
TEST
EQUIPMENT
l.
An
audio
oscillator
(GE
Model
4EX6Al0).
2.
A
frequency
modulation
monitor.
3.
An
output
meter
or
a VTVM.
4,
GE
Test
Set
Model
4EX3All
or
4EX8Kl2.
PROCEDURE
l.
Set
the
station
g:ain
control
Rl4
to
it::;
fully
clockwise
position.
2.
Connect
the
audio
oscillntor
and
the
meter
through
a
0.5
11F
(or
larger)
DC
block-
ing
capacitor,
across
audio
input
terminals
JlO
(Green-Hi)
and
Jll
(Black-Lo)
on
GE
Test
Set,
and
connect
the
Red
Test
set
plug
to
the
system
Red
metering
plug.
3.
Set
the
audio
generator
frequency
to
l
kHz,
A.
In
all
station
combinations
except
Local
Control
Intermittent
Duty
combina-
tions,
set
the
audio
generator
output
to
30
millivolts
RMS,,
B.
In
Local
Control
Intermittent
Duty
station
combinations,
set
the
audio
generator
output
to
1,0
volt
RMS.
4.
For
transmitters
without
Channel
Guard,
set
MOD
ADJUST
Rl27
for
a
4.5
kHz
swing
with
the
deviation
polarity
which
gives
the
highest
reading
as
indicated
on
tbe
frequency
modulation
monitor.
5.
For
transmitters
with
Channel
Guard
set
Channel
Guard
MOD
ADJUST
Rl05
for
zero
tone
deviation.
Next,
with
the
30
millivolts
signal
at
1000Hz
applied,
set
MOD
ADJUST
Rl04
for
:l.
75
kHz
deviation.
Then
remove
the
signal
from
the
audio
oscil-
lator
and
set
Channel
Guard
i\IOD
ADJUST
Rl28
for
0.75
kHz
tone
deviation.
6.
For
multi-frequency
transmitters,
set
the
deviation
as
described
in
Steps
4
or
5
on
the
channel
producing
the
largest
amount
of
deviation.
7.
Remove
the
audio
oscillator
and
key
the
mike.
While
talking
in
a
normal
voice
at
a
distance
of
four
to
six
inches
from
the
station
microphone,
adjust
station
gain
control
Rl4
for
a
deviation
of
3
kHz
as
measured
on
the
deviation
monitor.
PA POWER
INPUT
For
FCC
purposes,
the
PA
power
input
can
be
determined
by
measuring
the
PA
supply
voltage
and
PA
current,
and
using
the
following
formula:
i'i
PA
vol
Lage
x
PA
current
where:
Pi
is
the
power
input
in
Watts,
PA
voltage
is
measured
with
Test
Set
Model
4EX3All
in
Position
G
on
the
15-Volt
range
(read
as
15
Volts
full
scale),
and
with
the
polarity
switch
in
the
(-)
position.
With
Test
Set
Model
4EX8Kl2,
use
the
B+
position
and
tbe
1-Volt
range
(read
as
15
Volts
full
scale),
with
the
HIGH
SENSITIVITY
button
pressed
and
the
polarity
switch
in
the
(-)
position.
PA
current
is
measured
with
the
Test
Set
in
Position
Gin
the
Test
l
position,
and
with
the
HIGH
SENSITIVITY
button
pressed
(10
amperes
full
scale).
Example:
Pi=
12.6
Volts
x
5.0
amperes
63
Watts.
ICOM FREQUENCY
ADJUSTMENT
First,
check
the
frequency
to
deternine
if
11ny
adjustment
is
required.
The
i're-
quency
should
be
set
with
a
frequency
meter
or
counter
with
an
absolute
accuracy
that
lS
5
to
10
times
better
thnn
tho
tolernnco
to
be
maintained,
nnd
with
the
entire
radio
as
near
as
possible
to
an
ambient
temperature
of
26.5°C
(79.8"F).
MASTR
II
ICOMs
should
be
reset
only
when
the
frequency
shows
devintions
in
excess
oi'
the
following
limits:
A.
±0.5
PPM,
when
the
radio
is
at
26.5"C
(79.8"F).
B.
±2
PPM
at
any
other
temperature
within
the
range
of
-5°C
to
+55"C
(+23"F
to
+l3l"F).
C.
The
!:>pecification
limit
(±2
PPM
or
±5
PPM)
at
any
temperature
within
the
rnng-cs
of
-40cC
to
-S"C
(-40°F
to
+23"F)
or
-t-55''C
to
+70'-'C
(-t-131
"F
to
+l58"F).
If
an
adjustment
is
required,
pry
up
the
cover
on
the
top
of
the
ICOM
to
expoc;e
the
trimmer,
and
use
one
of
the
following
procedures:
If
the
radio
is
at
an
amblent
temperature
of
26.5°C
(79.8°F')
set
the
o:;,cillalur
:for
the
correct
operating
frequency.
If
tbe
radio
is
not
at
an
ambient
tempex·alure
of
26.5"C
setting
errors
cnn
!Je
minimized
as
follows:
A.
To
hold
~etting,
error
to
±0.6
PPM
(which
is
considered
l'Caf>onable
for
5
PPM
ICOMS):
l.
Maintain
tile
:t'adio
at
26.5°C
(±S"C)
and
~el
I
he
osclllntor
to
desired
frequency,
or-
2.
Maint:;in
the
radio
<1l
26.5'C
(±l0°C)
and
offset
the
oscillator,
as
a
function
of
actual
tempe:t'ature,
hy
the
amo11nt "'!1nwu
in
Figure
9"
B.
To
hold
setting
error
to
±0.35
PPM
(which
is
considered
reasonable
for
2
P~!
ICOMs):
Maintain
unit
at
26.5"C
(-t5°C)
and
offset
the
os~illator.
as
a
function
of
actual
tempernture,
by
the
amount
slwwn
in
F'ig:ure
9.
For
flxamplP.:
A"'sume
thf'
amhient
tomp('ratnro
of
the
radio
is
l8.5°C
(65.4°F).
At
that
temperature,
the
curve
:.:haws a
correction
fa~tor
of
0.3
PPM.
(At
25
MHz, 1
PPM
lS
25Hz.
At
50
tlliz,
l
PPM
is
50
Hz).
With
an
opernting
frequency
of
50
MHz,
set
the
oscillator
for
a
reading
of
15Hz
(0.3
x
50
Hz)
higher
than
thP
licensed
operating
frequency.
If
a
negative
correction
factor
is
obtained
(at
temperaturos
above
26.5°C),
set
the
os~illator
for
the
indL~u
ted
PPM
lower
than
the
lict2nsed
operating
Jrequency.
DEGREES FAHRENHEIT
618
654
690
726
76.6
79.8
834
870
906
942
978
;:Et0.6r--~
a._
+05
a._
+04
0:::
+
0.3
~
+02
0:::+01,
w '
of-
>-
-0
I
~
-02
w
--03
::)
0
-0.4
w
-0
5
0:::
lL
-06
L_
16
5
18
5
-1 i
T--,--T-~
I , .
I . .
-1--i---
---
-
-+-
----+----
----<
------+--
1
! +
20
01
22 S
24
2
26
5
28
5
30
5
32
5
34
s
36
5
-5" LIMIT
C<EF
+5"
LiMIT
DEGREES CENTIGRADE
F(-2453
Figure
9
-Frequency
Characteristics
Vs.
Temperature
11\ifU-tPIII
HP
T
-''N~>
CIJNli•'JIJOIJS
DLJTY
;\LL
CXCEPT
I
OU,L
r:0~JTROL
SYSJCP.'
ROAI:
lJ
.\·IL
T~RING
JACI<
MOD
ADJUST
R127
CHANNEL
GUARD
MOD
ADJUST
R128
EXCITER
ASSEMBLY
CONTINUOUS DUTY
PA
ANTENNA
JACK
J243
INTERMITTENT DUTY
PA
ANTENNA
-
..
JACK
J201
PA
ASSEMBLY PA
METERING
JACK
J205
TRANSMITTER
ALIGNMENT
LBI-4732
EQUI
P~'IENT
REQUIRED
1.
GE
Tust
Set
\Iodel
4EX3All
or
Test
Kit
4EX8Kl2.
2.
A
50-ohm
wattmeter
cormectud
to
antenna
jack
J906.
3.
A
frequency
counter.
PRELBIINARY
CHECKS
AND
fiD.JUSniENTS
l.
Place
ICOM::;
on
Exciter
Board
(crystal
frequency
-
operating
frequency
7
3).
2.
For
a
large
change
in
frequency
or
a
badly
mis-aligned
transmitter,
pre-set
tho
slugs
to
TlOl
through
TlOS.
and
LlOl,
Ll02
and
LlO::l
to
the
boltom
of
the
coil
form.
NOTE
The
tuning
frequency
for
multi-frequency
trnnsmitters
is
determined
by
the
operating-
frequency
Dnd
the
:frequency
spread
between
l'reqllencies.
Reier
to
the
tnblo
below
for
maximum
frequency
spread.
3.
For
multi-frequency
transmitterf>
with
a
fruquer:cy
spread
less
than
that
specified
in
column
(1),
tune
the
tn1nsmitter?
to
the
lowest
.frequency.
For
frequency
spread
oxceodlng
t!1e
limits
specified
in
column
(1),
tuno
the
transmitter
11sing
a
cent~r
[J·eqtJency
t11ne
11p
ICOM.
Except
the
maximum
frequency
spread
can
be
extended
to
tht>
linits
specified
in
~olumn
(3)
with
1
dB
deg-radation.
For
tuning
LlOl,
LlO~,
L103,
alwnys
tune
LlOl,
Ll02,
LlO:~
on
the
lowest
fl"uquency.
Multi-frequency
Transmitter
Tuning
,----
.
Trunsm1ttcr
MAXIMUM
FREQUENCY SPREAD
Frequency
Range
(l)
without
center
Luning
I
wi
t11
center
tuning
'
wit
11
canter
tuning
(l
dB
degradation)
25-30
MIIZ
.080
:V!Hz
I
.160
Ill
Hz
.320
11Hz
I
:l0-36
MIIz
.100
MI!z
I
.200
MHZ
.400
MHz
36-42
}!Hz
.120
Mil.-;
.240
M!Iz
.470
MHz
42-50
MHZ
.140
MHz
.2RO
.MHz
.
510
li!Hz
4.
Connect
t!Je
red
plu~
on
the
GE
Test
Set
to
the
Systom
Boord
metering
.Jack,
and
the
black
plug
to
the
Exciter
motoring
jack.
Set
the
polarity
to-:-,
and
set
the
rang-e
to
the
Test
1
position
(1-Volt
position
for
4EX8Kl2)
for
all
ucl,justments.
NOTE:
Witl1
the
Test
Set
connec1
ed
J·o
lhe
PA
metering
,jack,
the
voltr.ge
reading
at
position
"}'"with
the
HIGH
SE~SITIYITY
button
pressed
may
!Je
couverted
to
driver
collector
current
[)y
reading
t!1e
current
as
10
amperes
full
scale.
The
voltage
readinp;
at
position
''G"
witll
the
HIGH
SENSI-
TIVITY
bulton
pressed
may
he
converted
to
PA
ccllector
current
by
reading
the:
current
as
10
ampere;:,
full
scale.
5.
All
adjustments
;u·u
madu
with
the
transmitter
keyed.
Unkey
tile
Lransmittor
between
steps
to
avoid
unnecessary
heating.
STBP
\!ETEH
POSITION
TUNING CONTROL ' METER READING ! PROCEDURE
'
I
l.
o~'
'-"
I
LlOl
I Max.imum
Tune
LlOl
for
maximum
muter
reading.
S\
MOD-l
2.
l~lv'-l
B
Ll02
&
Ll03
~laximum
Tunu
Ll02
and
then
Ll03
for
the
nwximum
meter
readinJ.
>-----
~·
0V~
cI
3.
TlOl
& T
102
See
Procedure
j \ • MULT-1
I
4.
r-s·
Ol,i
D ':S!<-}
.,.
TlOJ,
T
102.
See
Procodux'e
~
\
JULT-2
TlOl
&
Tl04
1 F
l'r
c
~-
Tl05, Tl04,
Soe
Procedure
~~{
\'!ULT-:J
Tl06
&
Tl07
~----
f-
'
--
.
6.
""\~
G
~-;~
lC;]·_,_
TlOtl.
Tl07
~Iaximum
~\)~J
AMPL-1
&
Tl06
c
1'56
--~---+-·-
~----~-
?\
;;
---·-
--·-·-·-.
'--
---
I
1.
Cl<l::l , .lilaximum
I
-11
AMPL-1
/7\
DRIVE
~
I
(on
PA)
R216
L__
Tune
TlOI
for
'
dip
in
meter
re:1ding.
and
then tune
Tl02
for
maximum
meter
reading:.
Tune
Tl03
for
maximum
motor
reading
and
•·o-<Jdju!Oi
Tl
02
ocd
T101
for
maximum
meter
reading.
Then
tunc
Tl04
I.'
or
'
dip
"'
meter
readinp;.
Tune
TlO::~
for
maximum
met
or
rending
and
ro-adj
ust
Tl01
for
maximum
meter
reading.
Then
tunu
Tl06
for
'
dip
in
met
or
reading
and
Tl07
for
maximum
meter
reading.
-·~-~~~---
'
--
T
"me
T108
for
maximum
meter
reading,
and
then
ro-adju::;t
T!07
and
Tl06
for
maximum
meier
reading.
Move
the
black
motering
plu~
tn
the
PO\\·Ur
Amplifier
metering
jack
and
tune
Cl4J
and
Cl56
for
maximum
motor
reading.
Set
Power
Adjust
potentiometer
R216
00
tlw
PA
board
['or
tllo
desired
po·wer
output
(from
15
to
50
Watts).
ALIGNMENT
PROCEDURE
25--50
MHz,
50-WATT
STATION
TRANSMITTER
INTERMITTENT
&
CONTINUOUS
DUTY
Issue
2 9

LBI-4732
TEST
PROCEDURES
These
Test
Procedures
are
designed
to
assist
you
in
servicing
a
transmitter
that
is
operating--but
not
properly.
Problems
encountered
could
be
low
power
output,
tone
and
voice
deviation,
defec-
tive
audio
sensitivity,
and
modulator
adJust
control
set
too
high.
Once
a
de-
feet
is
pin-pointed,
refer
to
the
"Service
Check"
and
the
additional
corrective
meas-
ures
included
in
the
Transmitter
Trouble-
shooting
Procedure.
Before
starting
with
the
Transmitter
Test
Procedures,
be
sure
the
transmitter
is
tuned
and
aligned
to
the
proper
operating
frequency.
1.
Wattmeter
similar
to:
Bird
#
43
Jones
#
711N
4.
Deviation
Meter
(with
a
,75kHz
scale)
similar
to:
Measurements
#
720
TEST
PROCEDURE
TEST
EQUIPMENT REQUIRED
for
test
hookup
as
shown:
2.
VTVM
similar
to:
3.
Audio
Generator
similar
to:
Triplett
#
850
Heath
#
IM-21
5.
Multimeter
similar
to:
GE
Model
4EX6Al0
GE
TEST SET
MODEL
4EX3All,
MODEL
4EX8Kl2
or
20,000
ohms-per-Volt
voltmeter
POWER
MEASUREMENT
1.
Connect
transmitter
output
from
the
antenna
jack
to
the
wattmeter
through
a
50-ohm
coaxial
cable.
Make
sure
the
wattmeter
is
terminated
into
a
50-ohm
load.
2.
Key
the
transmitter
and
check
the
wattmeter
for
the
desired
power
output.
SERVICE
CHECK
Check
the
setting
of
the
Power
Adjust
Control
(R216).
Refer
to
the
QUICK
CHECKS
on
the
Transmitter
Troubleshooting
Procedure.
10
--·-··----
VOICE
DEVIATION
AND
SYMMETRY
TEST
PROCEDURE
1.
Connect
the
test
equipmlent
to
the
transmitter
as
shown.
2.
In
radios
with
Channel
Guard,
set
Channel
Guard
Mod
Adjust
Rl28
for
zero
tone
deviation.
3.
Set
the
audio
generator
frequency
to
1kHz.
A.
In
all
station
combinations
except
Local
Control
Intermittent
Duty
combina-
tions,
set
the
audio
generator
output
to
30
millivolts
RMS.
B.
In
Local
Control
Intermittent
Duty
station
combinations,
set
the
audio
generator
output
to
.1.0
volt
RMS.
4.
Key
the
transmitter
and
adjust
Deviation
Meter
to
carrier
frequency.
5.
Deviation
reading
should
be
±4.5
kHz
in
radios
without
Channel
Guard,
and
±3.75
kHz
in
radios
with
Channel
Guard.
6,
If
necessary,
adjust
MOD
ADJUST
control
Rl27
for
the
proper
deviation
on
plus
(+)
or
minus
(-)
deviation,
whichever
is
greater.
NOTES:
MASTR
II
station
transmitters
are
adjusted
for
4.5
kHz
deviation
at
the
factory.
The
ifactory
adjustment
will
prevent
the
transmitter
from
de-
viating
more
than
5.0
kHz
under
the
worst
conditions
of
frequency,
volt-
age
and
temperature.
7.
If
the
deviation
reading
plus
(+)
or
minus
(-)
differs
by
more
than
0.5
kHz,
recheck
Steps
1
and
2
as
shown
in
the
Transmitter
Alignment
Chart.
TONE
DEVIATION
WITH
CHANNEL
GUARD
TEST
PROCEDURE
l.
Set
up
the
Deviation
Meter
and
monitor
the
output
of
the
transmitter.
2.
Remove
the
1000
Hz
signal
from
the
audio
generator.
3.
Key
the
transmitter
and
check
for
0,75
kHz
deviation.
If
the
reading
is
low
or
high,
adjust
Channel
Guard
MOD
ADJUST
Rl28
for
a
reading
of
0.75
kHz.
NOTES:--
l .
On
units
supplied
with
Channel
Guard,
the
Phase
justed
carefully
to
insure
proper
performance.
mitter
Alignment
Chart).
Modulator
Tuning
should
be
ad-
(Refer
to
Step
l
in
the
Trans-
2.
The
Tone
Deviation
Test
Procedures
should
be
repeated
every
time
the
Tone
Frequency
is
changed.
EXCITER
ASSEMBLY
AN'TENNA
DEVIATION METER
PAASSEMBLV
'''
'
'
AC
VTVM
CONTINUOUS
DUTY
PA
---·-----··
..
------·----------·
------------
................
-·-·-·-
AUDIO
LO
TO
J11
AUOIO OSCILLATOR AUDIO
HI
TO
J10
GE
TEST
SET
4EX3A
11
4EX6A
10
INTERMITTENT AND CONTINUOUS DUTY
ALL
EXCEPT LOCAL CONTROL
SYSTEM
BOARD
INTERMITTENT DUTY
LOCAL CONTROL
SYSTEM BOARD
I
I
I
I
I
I
I
I
I
I
I

STEP I • QUICK CHECKS
--
METER
PROBABLE
DEFECTIVE
STAGE
POSITION
HIGH
METER
LOW
METER
ZERO METER
GE
TEST SET
READING
READING
READING
EXCITER
A
Ql02,
10-
QI02,
CVlOl,
ICOM,
QlOl,
UlOl,
LlOl,
(MOD-I)
Volt
LlOl,
10-Volt
Ql02,
CRlOl,
10-Volt
regulator
regulator
regulator
or
Channel
Selector
switch
ground.
B
Ql04,
10-
Ql03,
Ll02,
Ql03,
Ll02,
CVI02,
Ll03,
(MOD-2)
Volt
Ll03,
CV102, CV103,
CR104,
Ql04
regulator
CV103,
Ql04
c
Ql05,
Ql06
Ql05,
Ql06
Ql05, Ql06,
TlOl
(MULT-I)
TlOl
D
Ql07,
Tl04
TlOl,
Tl02,
TlOl,
Tl02,
Tl03,
QI07,
(MULT-2)
T103,
Ql07
Tl04
F
QlOS,
Tl06
Tl04,
Tl05,
Tl04,
Tl05,
QIOB,
Tl06
(MULT-3)
QlOB
STEP
3
CHECK
AUDIO
AC
VOLTAGES
EQUIPMENT REOUIREC
G
Ql09,
Cl46,
Tl06,
Tl07,
Tl06,
Tl07,
TIOS,
Ql09,
(AMPL-l)
Rl44
TIOB,
Ql09,
Ll04,
Ll07
• AJDIO OSCILLATOR
•
AC
VTVM
LlOS
POWER
AMPLIFIER
"D''
Low
Output
No
output
from
Exciter,
(AMPL-1
DRIVE
from
Exciter
CR201
STEP 4
"C"
Q210
Q210
No
Exciter
output,
(AMPL-1
POWER
Q2IO,
Q204,
CR201
AUDIO
a
OSC
WAVEFORMS
EOJIPMON
I
REQJIRED
CONTROL VOLT- • t\UDIO
oJS:'LLATOR
AG~)
•
0551L~os:u~E
"F"
Q202
Q202,
Low
Q202,
Q201,
Check
(OOIVER
Output
from
Pos,D&C
CURRENT)
Q20l
"G"
Q203
Q20l,
Q202,
Q203,
Q202,
Q20l,
(PA
CURRENT)
Q203
Q210
1--8.33
16.67MHi
--+---------
--------
~:-]---''
l_
(~~~
_j----
--
~~T
lougl~z:m~~~~~oR
~----_c:~~-'-''-'-::.:_
___
_
OUTPUT
QC
1.0\'
R"'S
~CfE-
A~
RMS
OR
PEAK
READI~G
VOLT METER
WILL HOM-'
112
TC
II~
oJf
Pl;.A~-
TC'- PEAK
READINGS
SCOPE
SETTING
IOOMV
P-P
46
MV
RMS
1.1
V
P-P
0.36V
RMS
FREOUEN~>
D
VIOUl
1-41
BUFFER
0101
MOD
AMPL-1
0102
MOD
AMPL-2
0103
STEP 2
CHECK
TE~~!~~~
R~~~~~~LTAGES
•--~)>~~~~
~---'---''-"---
• G
~
TEST
MOOEL
4EX3~'1
"
•
2·~',000
01-llot-PER-VOLT
METER
Nl)-[
A~c
DC
RF:AOINGt. TAKEN WITH
~HE
TRAI>:SMITTER
KEYED
~-~·8-417MHZ
MOD
AMPL-3
0104
BUFFER
0105
---
6-Z~~I('
';MHZ
--------4---
MULT-I
TRIPLER
0106
TYPIC,\L
MULT 2 'lE-"'DING AT ,
POS
D
ShC·~LD
BE
0.56V
~-~
I
~'
___
____j
MULT-2
DOUBLER
0107
V-DC
T
fPIC4L
M"JLT
3 READING
AT
p
)$.
F SHGULD
BE
0.45V
l_
______
_j
-~~~-25MKZ------o~------
MULT-3
DOUBLER
OIOB
TYPICAL
MIPl-1
READIN~
AT
POS.
G SHOULD
BE
0.3V
(3E-50MHZ)
I 0.5V
(25-36
Mill)
r~
AMPL-1
0109
qr~
V-DC
IYPICAL
Ar~PL-1
RE~'JINGS
AT
POS.
0
~HGUI
D "
~~
_'\OMHZ
I0.5VI25MHZ)TO
C.45V
{30
MHl)
3C-~6MHZ
0.6V
130MHZITO
'0.5V
136MHL}:::-
36-42
M~Z
0.5V
136MHZITO
~QMHZ
0.4V
142MHZI
,
0.65V142MIIZITO
[
0.5V
ISO
MHZI
25-50
~HZ
------------
AMPL-1
0201
'\ICLTAGf
~VCLTACE
READI~3
X
15
AMP--I
J205-3
DRIVER
0202
{PelS
HJN
C:
-------
PA
0203
l
rA
:uRRENT
J205~£
(+i
J205-5(-)
(P::JSIT
0~
G)
V-DC
LBI-4732
J201
'"
TROUBLESHOOTING PROCEDURE
25-50
MHz, 50-WATT STATION TRANSMITTER
INTERMITTENT & CONTINUOUS
DUTY
Issue
l
ll

LBI-4732
EXCITER
BOARD
ti-
.
ft'&OZ
~,=m=~~ti:r6~!i-i.-¥it¥t.¥8
OUTLINE
DIAGRAM
(l9D42:HG7,
St,,
2,
Rev,
:'li
\..UoO
ID£NTIFICATIOJII
FOR
QIOI-QI09
·~~d
IN-
UN(
TRIANGULAR
~LEW,...,..
lf.AO
ENO
NOTE:
L.EAO AIIIAAMGEMIE:NT,
...
ND
NOT
CASE SHAPE.
1$
O£TERI!oii~ING
f"ACTOft
FOR
L£A0
IDfNTI
FICATIOH,
25-50
MHz, 50-WATT STATION TRANSMITTER
12
Issue
4
I
II'
E 1
(;l-IT
-FAEIJ.ENCY
EXC
I
TEAS
(GROUPS
5-8)
.
CAPA.C
I
TCflS
CI57-Ci63
ARE
CLIPPED
OUT
AS
RE~.J1RED
TO
~ET
H!E
CUSTOIEA
REQu
1/l.EioENTS
~Cfl
FRE~ENf,
IES.
EXA/oPLE;
IF
~y~~~~~~~~g~
~
~~ip~Q
~f_F\i~r.
g7~~~~~7~~-
CI63
ARE
L.EFT
lN.
(
UllJ42:1234,
nev.
3)
(19D42:'lJ67,
:3h,
2,
ftev.
::li
(i~J[•.t23l07,
Sl1.
3,
itev.
3)
IN
TI\'C-FREQUt:NCY
EXC!n:RS
(\i.ROOPS
1-4)
Cl57
!S
CUPFt:iJ
GUT
FQH
C()EINATICJi$
jjiTii
2 TRANSMIT
IGtMS.
OA
,JJMPHiS
ARf PRt.SENT
~FREQUENCY
SI'IITCI-HNG
\.IN£$
OF
0H£R
SIX
iCCJ<I'
li(_;IT$
AS
SI-IG'NN
~
L-
PA
ASSEMBLY
TOP VIEW
--r n
I
~
~~
I
0~
0
~~0
0
B C
~
[ Q201
9.
~~
~
c
0
"'
"'
202
203
~
1a
~
H3~
RT'ZOI
H4
L296 0 0
~2~
W0210~
0
~:~~0
II
r-..
BOTTOM VIEW
4-~---
RUNS
ON
SOLDER
SlOE
;~
4----
RUNS
ON
BOTH
SIDES
--RUNS
ON
COMPONENT
SIDE
l[AD
tOIENTIFICATtOH
rofll'
QZ04-0209
·~·:.Oc
c ll!!
llrf--LINE TltiAJifGULA.R
VIEW
""'*
U:AD
UW
NOTE:
LEAD MRANGEMEH'T,
AND
NOT
CASE
,..AP£,
IS
DETEfUU~ING
FJ\C"f041i!
FOft
LU.U
IDEHTIFJC.A.TJON
•
C2~.0
•
r.'
r--•1
I
IL22o
II
• I
I
IJ
L-
..
,~J
•
I
r~
I
•
•
• ( •
H2
•
SOLDER
SIDE
(l91l4l7:<7l,
Sh.
2,
Hev.
3)
(l9D4l7~J7J,
Sh,
::J,
Rev.
2)
•
•
(1.9J;•tl7Wi"1,
Sh.
2,
liev.
:;

•
•
•
SEE
NOTE I
PER
TRANSISTOR
r
.,±.02
"'
"'"
A201
19D416712P3
INSULATOR
54921:78
P2
SPRING TENSION
WASHER
19AI16023PI
MICA
INSULATOR
A201
19D417513G
I
COVER
NARROW
#4
FL
WASHERS
7140624P6
SPACER
19D416712P3
INSULATOR
BEFORE
SOLDER
#8
(Q201 6
0202
ONLY) 0
#
10
(0203
ONLY)
SECTION
A-A
TYP
MTG
FOR
0201
THRU
0203
4-40
X .312 6
L'WASH
6
NUT
SEE
NOTE I
0
SECTION B-B 0
VIEW
AT"c"
#4
SCREW
#4
L'
WASH
SECTION
0-0
0
0
0 0
0
0
J241
0
6-32
X
.250
A201
#6
WITH
NARROW
FL
WASH
4 PLACES
26
PLACES
A203
TO
PLATE
0 0 0
+~
B c
~
E 0201 c
02
RT201
4
~
P201
J201 @
0 0 0 0 0
RT201~~
SEE
NOTE
I
LEAD
ORIENTATION
NOT IMPORTANT
TIGHTENING
TORQUE
TO
BE
WITHIN
35
TO
45
IN.
LBS
19C301208P7
SLEEVI
NG
SEE NOTE I
B
19B219391PI
SEE
DETAIL"E"
FILTER
CASTING
0
.,
0
o;
"'
"'
..
"'
.,
r
C!
RED
Hell
A203
@Gil
0
119C320904G2
PLATE
0
0
WIRING
ROUTED
THRU
CLAMPS
AS
SHOWN
~--------------------------------------------------~
II
•
#6
NARROW
FL.
WASHER
BOTH SIDES
OF
LOOP
CLIP
('
" " " " n
0 0
ro-.,
r---
-.,
I I c
I I
lo
o I
I I
L
__
-:_
__
_j c
0 0
\J
v v u v v
B

LBI-4732
W241
5491689P104
6 ( 4 PLACES @
"B"
# 4 X
1/4
THO FROM
198201074P204
OUTLINE
DIAGRAM
FRAME
ASSEMBLY
FOR
INTERMITTENT
AND
CONTINUOUS
DUTY
TRANSMITTERS
14
Issue
2
-,
I
__
,
r-+
t
I
t-
I
+
19B226203GI
FRAME
19B226203G2
FRAME
FOR
UHF
At-
·t-
A
r-
---,
+
~I
A+
---
A203
19B226207P2 PLATE
FOR
LOW
BAND
8
HIGH
BAND
+--
I
+
I
+
+-,
+
I
+
I
+
-----,
+
I
I
L+
-----
---~
6-32
X
.250
( 6
PLAC.ES
@ A l
(
l9D423098,
Rev,
1)
r-.,.1
I I
L-._j
I
W244
5491689PI04
~
•
+
•
•

SYMBOL
C\Ol
Cl02
ClO:l
Cl04
Cl07
thru
C\0~
CllO
'"'
Clll
Cll2LL
C112L
C112\!
C112R
Cl13
..
,
Cll4
C1l.'i
Cll6
Cll7
lh
""
Cll~
Cl20
Cl21
'"'
Cl2~
Cl23LL
Cl23L
Cl23M
Ct24LL
C124L
Cl24M
Cl~1H
Cl2~LL
Cl~5L
GE
PART
NO.
19A110C55.013
5494-181Pl05
\9A1\~080PlOS
19A:16655P19
4029ll(J:JPI04
402900JP104
54933R7P1000K
b-1J3367l-'IOOOK
HIA~l6655P21
1~AllCO~Ol'IU.'i
54962671'9
19All6~l!Ol'l0t>
549oooer1::m
19Al16080P1
54962191'262
54952191'258
.>496219P2C>7
19A700013Pl5
19A700013P1.9
l9A700013Pl3
l~A700fJUI'1~
5496219P262
M9621!JP25~
PARTS
LIST
LBI1110P
~'\-;\~
MF7
''"'l~n
!f*•I<>M>~<71-<7R
DESCRIPTION
2:"i-30
M'l~
(LL)
:lG-:JO
MH7
i
L)
19D41Ari,->'lG l
P~EQ
l~JJ11H~5~(;:l
L ¥1!0\j
1~D41~R."\%:l
~
rHI~Q
\9D4l665~G4
2
fREQ
%-'1~
M~z
<'~)
-
PSi
K
~2-SO
Mllz
(Ill
19D4166.'i9GC,
FREq
2:,-30
WI~
(U)
190-11665906
FREI)
:JU-36
Mllz
(L_l
HJJ11~~b%7
FHI:Q
:l6-1~
MHz
(
-~)
J(:O'i
K
1nD41AROm>A
F"-FQ
4?-.'\0
\1117
(HJ
CAFACl:ORS
- -
t:~Tamin
olio~
lllOO
rF
:20'f,
ll!lll!
\'lJCW,
f,im
to
~MC
T:fJ><'
.TF
l'i
"''"!'.
c~,.ami~
di"c
170
pf
~2·W,
10<1D
v~r·~:
"'"'to
~MC
Typ~
.rr
l»s~ap.
Cc·?~rnin
~lo~
1000
pF
•20%,
1000
'iJJCW;
c.im
to
~MC
Ty~•e>
Jf
lli"''"l'·
Ce,-amlc
diSc;
330
pF
~20~,
1000
V.lO';
~1m
to
T;'pe
)P
P•sca~.
C<·rarnie
~isc
2700
pi'
:20%,
1000
v~r.w
,(m
I••
~Mr.
'T'ype>
.TR
1!
ocap.
Po1y<>st<>r·
0.047
uF
:_lO'l;,
50
vncw.
Ceramic
disc
1000
uP
:20~.
1000
VDC'III;
sim
to
RMC
Type
.rF 'JI
scop.
3ilver
~~0
pf
!10'%,
.'100 \"DCW,
l!otlve
hpe
nl!-20.
S1lver
m1ca
GBO
pF
!10%,
500
VDC\1',
J!c•t1v~
'fY]Je
DM-20.
~o
Electro
Mica:
1000
p~
±10'1',
~irn
to
Rl~~tro
l!oT've
Tyrc•
0~-20.
Mica:
1000
pF
~10%,
Mw
to
F.lPetro
~ocn·e
Type
OM-20,
Cer~mi•
~;,..
~7011
pP
~~0'},
1000
V~fW:
~~'"
In
RMr
Type
J't
Dhcap
.
Tantalillll:
3.3
uF
±~01,
t5
VDCW;
oi~.
\o
Spra~ue
Typ<?
150Tl.
Polye~ter:
U.IJl"i
~!-'
:':101,
00
1'1JCW.
Silver
rrnca:
330
pF
~10~,
500
i'!JCW.
s1m
to
Electrc
lr!ottv€'
'J'ype
!J.~.-\5.
G.Ol
~rF
:<:20'},
50
'.'JCW.
Ceramic
disc:
91
pF
~51,
5GO
\'~CW,
temp
coef
-HO
PP\1.
Ceramic
di~o·
62
pF
:!;51,
500
VCICW,
temp
coel
~80
PP\1,
Ceramic
d1sc:
56
pF
!5'1.,
500
I'DCli,
tem?
~aef
-f\0
POll!.
C<>l'"-m1r.
dtsc·
4~
pF
:':~'!.
..
'iOO
Vlll'li,
TPml'
O<>Pf
-SO
PPM.
Phenolic:
1.50
pF
~51,
500
".'DCW.
Ph<'Oolio•
],00
pl'
~ii%,
fiOO
I'DCW.
Ph<>nolic·
1.00
pl'
~51,
500
I'DCli.
l'henol~c:
0.82
pF
:<:t>%,
t>OO
I'!JCW.
Ceramic
disc:
91
pF
~5~,
500
VDCW,
tern~
coef
-BO
PPM.
Ceramic
diec:
62
p~
:5%,
t>OO
V!JCW,
t<?mp
coef
-tli
FPIA.-
*COMPONENTS ADDED,
DELETED
OR
CHANGED
BY
PRODUCTION CHANGES
SYMBOL
Ct2DM
Ci2B1L
C'
2f!J.
261'
~1271.L
<'271
C:27M
r.•
27R
~~!.!.•
C
29L•
C:2011•
C13DT.L
Cl3DL
C:
~OM>
c1o
.n
Cl~.~
"'
.
~133
Cl341
CJ:l4M
C13~11
C135L
Cl35ll
Cl35H
Cl3<)L1
Cl361
CJ36M
C13<)H
C137LL
CH7L
GE
PART
NO.
<>491601?134
'•49l5l!li'l24
'9A'IOOO!lP14
J1%2!9:>257
5496219?251
51%21~?244-
\OA70001:1P9
~491C01PIJO
\
9.\7000\
~~7
5491<WP107
1~A'IU001~~~
519G219P251
~4962\f'IP244
l9Al160SilP'
.";4962191'240
"4Hfi2l
~P242
5196219P238
19A7000BPll
5401601P114
19A'/0001JP1~
19A700813J'9
54962191'243
51962191'210
5496219P242
b19G2191'238
549160\Pl
H
51!!1BU.:CP111
DESCRIPTION
CeraTI".lC
d>Sc:
>G
p¥
±5%,
t>OO
l'llC~,
temp
(Oet
~Hu
rn•.
<"'<·r><ml
·
d_h,
-RO
DP\1.
-J:J
pf
~51,
,wu
1-r>cr t,.,,,
,_.,,.r
Phenolic
•
Pt.eno1io
~
....
,,.,]
;,.
r~r"-m1c
0•
-~[)
;>D~.
pF
~5t,
580
VDC'~.
. 8
pf
~5%,
500
'!DCW.
.20
pf
l5~.
'SOO
'.'DCW.
!
('~~'m1'
O>sn·
H:J
pf
!01,
~00
i'~~w.
-'1"P
cnr'f
-80
~'~\!.
Ce~amic
dHc
-RP
PP\1.
r'-""mlc
01sr
-BO
PPI!.
l'ul)'e&ter
56
pF
±51,
500
i'JCW, •,etnp
cue!
r,.,,_,ni
·
11
L7
pP
+01,
:>on
i'~CW,
"""I'
end
-~0
Pl'l!.
n~le>t<o"<l
by
HeV
P.
Ceramic
dHc
33
?F
+51,
500
\'.)(~,
umr
ro~f
-80
PP\l.
Or·l~•ed
by
1\FV
P.
~''''"'"!'·
~•~•'
n
,p
.-,1,
fiOO
·,•;JrW,
tc
..
p
coef
-80
PPI!.
Dole
ed
by
iiEV
f.
r~ralll;''-
dJsc
-8()
L'l'l!,
r>hcnol
ic
·
l~
pf
:_.01,
500
i'DCW,
t<\mp
coef
17
pF
~:,~,
500
\'DCW,
3G
pf
~;;~,
C,OO
\'DCW,
.:1:1
pi'
!l%.
sou
VJJCW.
1P
R~';
ear
I
Phe>nolE
G.27
pf
!5%,
500
v:lCW.
~t-~IWlic
0.27
pF
!5%,
"00
\'Dell.
Phenolio
0.
22
pf
!51.
5CQ \'JCW.
C<•rarnl"
Ot~r·
,17
p<
!ilh,
hOU
\'lJC~.
t~mp
~u~f
-~0
PP\t.
C<>r•rnlc
d1sr,·
3:J
pF
•51
500
i'DCW,
t~mp
coef
-80
P?l!!.
C~r"-'"'"
dcsn
~g
pt
:U'l;,
.'>OU
VlJC~,
t<jmp
noet
-80
P?~.
('('ramlc
d1sc:
15
pF
:S%,
500
\'DCW,
l~mp
coet
-Kl'
??M.
C~nmic
Cisc:
13
pP
~51,
500
VDC~,
t~mp
cod
-80
PPM.
CcroJ:Ji.c
dL~c
9.0
p~
!51,
~nn
VllCW,
~'"!'
co~r
-80
HI>!.
C:"raoh'
d1sc
12
p¥
!~%,
JOO \'Ot'W,
t•,mp
coef
-~0
PPM.
C~U~ic
dJ,g~·
7.0
pP
~5%,
500
VOCW,
1~mp
'OCf
-30
FPM.
Phenolic
0.0~
~I
:b%,
t>UU
\'JLW-
Phenolic
O.Jl
~F
~51,
500
Vlll'~.
P~enoCic·
(1.56
pF
!5%,
500
I'DCW.
Ceramic
di~c·
1~
rl'
:<:C>%,
.'\~~
VOCW,
t~mp
C.'H'f
-BO
PPM.
c~ra:n1c
d1~c:
B.O
vF
~~%,
500
VDCW.
temp
coet
-~0
PPM.
Ceramic
di~•·
-80
PPM.
t2
pF
±5X.
500
vncw.
t•-rrm
"'"'
r
Ceramte
d1se:
7.0
pr
~5%,
500
VDC'!',
temp
coQf
-Rn
PPM.
Ph~nolic·
0
~1
pF
.!;5%, .'500 \'DCW.
l'herrolic:
O.o1
p!
±~'t,
oUO
Vf!CYI.
SYMBOL
('':'7H
{'U~I.I
r'138L
G138M
C'l~8H
C14il
Cl11L1
C141L
C\4\M*
Cl41U
Ci4~LL
C14?J.
Cl12M
Cl42ll
('144
C14~
C'14'3*
Cl1\iLL"
C146L•
Cl15.P
C146H•
C147
Cl4B
Cl50
Clb1
Cl52
thru
Clb~
C\56*
Cl57"
t~ru
c1o:>•
ca:o:
thru
CR:06
CVlOl
t~ru
CV10,0
GE
PART
NO.
3-1~~21!11'240
,'\·196213P238
WJ\L60~01'1U7
1~A11G655n9
>1!JOOO~I'lJ7
54~0008PIJS
-,4HOOORP127
5490008_>12:!
5490QObPJ27
S4~000EP24
~4944S1P105
19AllG080Pl
54962:9P238
1%116656?12J8
19A116606?12.TR
I~A1'!i0ROP\117
549448:Pl05
549G207Pl4
19Al:5080Pl
19A116867Pl
i9All6030Pl
19A11b2b0Pl
5495759.?12
DESCRIPTION
Ph~nol
\c:
39
pF
t51,
500
\'DC~.
Ce>t'"'"
lc
d'
>oc·
-~0
J'-:>M.
1:1
yf'
~~%,
500
VDCW,
temp
coef
Ceramic
dcsc·
9.0
~P :5~.
500
VDCW,
cPrnp
ooe!
-80
P~ll.
Ct!'ami~
diS('
-PO
]>-:>)>!.
12
rF
!~%.
liOO
vncw.
T~mp
"''~f
l'<-rarnic
d1sc·
7.0
~r
-5% .';00
VDCW,
temp
coef
-SO
PPM.
Polyester
0.1
>F
~10'<,
~0
VlCW.
Ceramic
disc·
1000
pF
<20\,
:ooo
vncw;
siC"
to
P.MC
Ty~<?
Jf'
DiScap.
-
8il<'cr
::JiM
\!Hl
pP
•10'1',
,-,oo
V!JCW,
~im
to
~ko·lt'"
M"liv
.. Ty;<>'
niii-l!i.
Sll<•er
'[]lea
82
;'F
01,
500
vnc~·;
stm
to
eet~.--,
\!otlYe
<p~
D\!-15.
Slh-Pr
'''"
1<10
p\'
Ol,
500
Vl'CW,
"-int
(o
t
Pclcn
Mutin•
:ypc
DM-15.
ln
Rl:'.' G &
~arl1er
3ilver
G8
p!'
:':llJ%,
500
VDC~
sim
to
Elf"ctro
Motive'
'!'ypc_'
DM-15.
~ilv<"r
100
p"
~lOt,
500
VDC11,
Bim
to
Electro
~!otil·e
Type
!JM-1.0.
~IJ>·
..
r
.,;,.~
100
p"F
±5'~,
~00
'.'DC11,
~\m
to
~l~clrr;
Motil·c-
Type
OM-l.'i.
8iJ"Je"
011ce·
82
p7
~51,
~00
VDCW
~1m
to
~1ectro
M0tivf"
Typ<"
DM-I!i.
Sil..-f'r
"'''a
82
pF
+C,%,
!"tOr
I'TlC11,
,;,"
t"
~:l~c\m
Motive
Type
lJM-1~.
-
nuver
:ntca·
75
pF
~5%,
500
I'DCW,
sim
to
Electro
Moth"<>
Typ~
OM-15.
Variable
~pprux.
0-bU
pf,
~hO
VDC~;
to
Mc-pco
Rl,.o·lc"
,.???-RWI-OROO~.
CPtam1c
ii,c·
~>30
pl'
~20l,
1000
I'DC~·;
stm
to
Type
JF
IH&cap.
Polyester
0.01
u.t'
!2C%,
.00
YlJC~.
Ceramic
:\!.sc·
7.0
pF
10.25
pF,
500
VDCW,
temp
coef
-80
PPM.
,\dded
b;:
REV
B.
CNarnl<'
'2
pP
,,,'f,
r-,no
vorw;
,,,~,
,,,.,.r
--~D
PPM.
Tlel~tt•d
b)·
REV
B7
Ceramic
:2
pF
t51·,
500
VDCW;
t~:np
coef
dO
PPM.
D~l~C<?d
by
HEV
B7
Ceramic;
C:l
pP
~5~,
Ulll) \·JJCW,
tc:np
coct
-dcl
PPM.
n
..
1,.,,.., "l'
q~v
R.
C'eramtc·
'2
pF
+57.,
BOO
VDCW;
te.~p
coef
-S•)
PPM.
D<
Jete~
by
nnv
n7
Pol;PHIPr
1
""
:':'0%,
!",O
I'~CW.
Ceram1c
1ioc:
330
pF
~20~,
1000
YDC~;
sim
to
~ypc
JP
Discap.
T"'
'"I'""
~~
"" ±:>o%,
15
vncw;
Type
1500.
T,•otal·l:n;
~5
1!?
l20%,
20
VDCW:
Mr.1
to
Sprd.j>Ue
Type
1~00.
('eramc
dH<':
~~0
p¥
:~L'~,
1000
VDCW;
sim
t<r
·:•ypc
IF
Di
Rn~p.
PoJ;,·ester:
01
uF
:20%,
50
VDCl.
l'ariab\•-':
~-5-6
pF,
t60
I'OCW;
Added
~y
REV
ll.
tu
?S-TRIK0-02.
:>olyester:
0.01
uF
~20%,
.~0
VDC11.
Added
by
P.Jll'
C.
DIODES
AliD
P.3CT!FrERS
- -
Silicon,
~ast
recovery,
225
mA,
50
P1V.
Diode,
Sliieon.
SYMBOL
JlOt
Jl
OJ
1101LL
!.I
Oll.
1,1011!
IJOJTT
L102LL
L102L
LHI2.~
L1021T
LlOJL(,
T
'0~!,
Ll03M
1.:~41.1
L1041
Ll04M'
LC04H
Ll05L1
1C05L
llO~M
1105~
1.\06
and
I
'07
L:OB
P902
Q101•
<,(0"1*
!1101
GE
PART
NO.
tn70004DP2
19n2t9374G1
\9A
ll<i~"JP:
19D~lti~35G9
19041
r;r;:;~c;~
7
19D416635G~
l9D416H35Gl
7
:9D416635G!8
19D4tGGJ5G'
l904166.)SG13
\
9A
700000Pl0
19A700000P15
i9A'IQ0000Pl4
7488079P7
,9Ai00000~14
t9,\7ooooor12
C9~700000PJ0
19.~700000P8
19A700000P6
191\1
1533DP1
19A11!"o910Pl
19Al15330P1
1~A11h:l28Pl
19A115JJOP1
19AI15328Pl
UlAllo3B6AP1
19All5329P2
19A700113P57
DESCRIPTION
-
-.JACKS
,",Nn
Ft~cn~~CT.PS
- - - - - -
roonector,
receptacle:
500
VDC
maximum;
sim
-r:o
NT1'F-J058.
Connector,
lnclud~s
Contact,
<"1f'ctnnal;
sim
t.o
l!!~lno
:m-2Afi4.
- - - - - - TRANSFORMERS - -
Cail.
Coi
\.
Coil
Cai
1.
Coil.
Coil.
Coil.
Coil.
Coil.
r.ol
!.
Cot
I.
Coil.
Coil,
RF:
2.7
1H
2:o~:
~11n
t
...
r ..
rr~,-~
4411-l~K.
Coli,
RF
Co>!,
RF
'lll
:101;
slm
to
J~H<?rs
4411-12K.
'lll
!10~:
S1m
to
.Teff<?tS
4411-lOK.
Coil
llF
1.~
•o!l
10%,
.00
ohms
]}C
res.
max;
to
Jef±ers
4Hl-t0.
COil,
RF:
(.')
u~
+10%;
Slm
to
JeUers
4411-lOK.
Coil,
RP:
1.0
·1H
!10%;
stm
to
.Jrffers
4411-HK.
Coil,
RF·
680
nH
:10%;
·sim
to
Jeffers
4411-6K.
Cot\,
RF
470
nil
:':12%:
~1m
tu
Je!f<?r&
441l-4K.
Cuil,
RF
330
nH
!20%;
~im
to
J~ffHs411-3.
con,
Rf
10
ull
':10%;
sl'"
to
-Jeff<>rs
4~21-7K.
Coil
HF
39
u!l
10%,
J~ffe•s
4422-11.
C
ohms
DC
res.
max;
sim.
t
-----.-
PLU(,~-----------
lncJ10des:
Contact,
<>leetncal
Contact,
c-lcctcical:
pins.
-
~
-'fRANSIS"rORS - - -
~ ~
- - - -
Silicon,
NPN.
In
!lEV C &
earher;
311
I <'On, NPN; ,_; m
to
T)"j1f•
2N.l904.
Sillcoo,
Nl'N.
SiU.con,
NPN.
Slllcun,
NP!I.
~ili'-''-'"•
!'lPN;
~;,
l<>
Typ"
2'<4427.
In
G1, G2,
G5,
G6
of
REV
F &
earlier:
ln
G3,
07
of
REV
H &
eariier:
ln
G1,
GH
!lEV G &
f'nrlier:
Silicon,
NP'I.
-
RESISTORS
-
Composition·
560
ohms
~5't,
1/2
SYMBOL
R103
Rl04
R1Q.~
H107LL
Rt07f,
R107\!
Rl07B
Rl
OR
Rl09
J\110
Rill
J\112
Rll3
Rll4
Rll5
Rll6
Rll7
Rl18
R'1~
Rno
H12:
Rl22L1
Rl22L
Hl22l!!
R122H
H123LL
Hl231,
R123H
Rl24
R127
Rl28
Rl29
Rt30
R131
R1J2
Rl:J3
R1~4
R135
H136
R137
!U3S
Rl39
R140
RJ.41
GE
PART
NO.
19A700106P83
JnA70G\1~1'55
19A700113P35
19A7!l01131'1.7
19A
70011.~P6~
3R77P303J
1~-~7001101'~1
19H00113P91
19.~700113P~l
~R77P474J
3H771'1D4K
19A700113P95
l9A7~01Di':JU
19A
7001131'59
19A700\l31'75
3R77P511,.J
3R77P473J{
19A700!13P57
19A70Cll3P61
3R77P222K
19A700113P59
3R77P51IJ
19A700113P9C>
:lR77P303J
19A700113P91
19A7001J3r~1
19A700113P9~
3R77P~O~.J
!9A700113P91
l~A70011~P9\
19A7001131'91
l9A7001:3P95
19A70lllt:lP63
3R77P431J
:JR77l':J9H
I\IB?.00~5HPI06
19E209358Pl08
19~7Q011~P~fi
1%7001131'59
19A700ll~Z'7t>
:JR77P511J
3R77P473K
l9A700113P57
19A700113P95
19A700ll3P63
19A
700
l13P27
3R77Pl81K
19A700ll3P41
19A700\1~P2:l
1!147_00)J3P3~
DESCRIPTION
Corr.position
6.~!:
ohrnCJ
:~%,
1/·1
w.
Composition
390C
ohms
!_Ill~.
1,12
.,,
Campositlon
1·10
oLms
~"1,
1,12
w.
Col!Lpositlon·
68
ot·rn~
±5%,
:;2
,.
Cu~.posltloo
22Q
ohms
!5~,
"i/2
"·
Cn~_po~ition
lK
ohms
:<:5%.
1/2
"·
Composition·
30K
ohms
!5r,
'I~
CO~-POSitlo~·
l5K
ohms
~5%,
112
Composition:
l.'iK
ohm~
~5%,
l/~
Composition:
\5R
oMm3
±5~,
112
Composition:
470K
ohms
5%
113
w.
~"'"l'"slt.ln>l
0.10
rnegobo
~101,
112
Composition·
22K
ohms
!5~,
1/?
Composition
75
ohms
~5~.
If?-..
Composition
(:omposition
~.3K o~mq
:.'\%,
1/2
"''
510
ohms
~5%,
l/2
~-
Composltlon
1n
"''"''
;:10~.
1/2
~.
Compos1tioo·
560
o~ms
±-~'!:.
1/2
Composttton·
820
o3rr.s
!5'1:,
1/2
Composlllon:
2200
-,hrr.s
!10%,
1/2
Composition·
680
ohm~
:!:S't,
1/2
CuOlpu~lt!ofl:
e>lO
ohms
;1:5%,
1/2
w.
Cnmnosit1on
22ll.
oh:ns
±~'>,
1/2
C=position·
301::
ohcns
~5%,
1/~
Compositlon:
15K
ohms
~5'!,
1/2
w.
CmoposHion:
l5K
ohl!S
~bt,
l/2
Composit\or.·
lSK
ohl!Ls
~5't,
1/2
r.ompGsiClOn:
30K
oh~s
!-5'l;,
l/2
Composition:
1.5K nhm>;
:+:C>'l.,
1/2
w.
Compon
non:
15K
obrns
~~%.
i
/2
C'ornpooitwn:
lt>K
otma
~~t,
1/2
"·
ComDosltton·
2~:'
ohms~~$,
1/2
Compositloo:
lK
ohms
~5~.
1/2
w.
Coonpns1
tion
39G
obms
~tO%,
1,12
"'
Vnri~ble,
~arten
f1lm:
~pprox
300
to
JCK
ohms
:+:10%,
1/4
w;
lu
c·rs
T~pe
X-20\.
Variable,
carhun
fl1m
~,,,
.
.,,
2K
tD
fillK
ohms
!10\,
1/~
w;
s\m
to
CTS
Type
X-20\.
Cornpu~lllon:
75
ol1ms
!:~%.
1/2
w.
Compositl.on
680
ohm~
~!".'!'.
1/2
w.
ComposH~on
3.3K
obrns
~5%,
1(2
w.
C011tpo~ttion
510
ohms
±b't,
l/2
w.
Compositioo·
47K
ohm~
::1()%,
l/2
w.
Composition:
560
ohms
!5%,
1/2
w.
ComposiC1on:
22K
ohms
!5$,
1/2
Composition·
1K
ohm~
~5%,
1/2
Composition:
~~
otlms
!5%,
1/2
Composition:
\RO ohm>:
~to%,
1/2
Composition-:
120
ohms
~5%,
I/~
w.
Composition:
22
ohms
!5'l;,
1/2
CompositioJJ:
68
nl'""'
t5'l;,
~/2
w.
SYMBOL
R:
12
R14~l.l.
!11
l~l
R 13M
13H
-1·11!.
~J441
~144M
H1-Jo!H
R\H
tbr<l
R150
Rl
01
R1
52
H153
and
H151
TI011L
Hl01L
TIIJJM
T10111
T102Ll
Tl02L
Tl02M
T102H
TI03J,I
'l'lOOL
T103M
Tl03H
no~·.;.•
')'1041•
Tl04l!!*
GE
PART
NO.
19A700\l:JP23
:JR771'101K
19A7001Hl'~'l
''lA"/00l1~Pl9
l9~70il11
:w1
~
19~'/00!lJJ--2;
1'J~'I00t13Yl5
10A700ll:ll'~Y
\9A7~0113PJ07
1~A?00113P99
1~A'i00
l t
1P63
10A7notJ:lrJ~,
1Ciil700113P83
\9!)416635GlG
lf!D416635G10
54~3185P13
19D4
t
6635G2
5493185Pl3
1~0416H35Gl1
191)1166~5G3
b19J:doi'1J
19DH6635G3
l904!6635G12
S'1!J:llH5Pl.l
19D416635<14
.'5493185Pl3
l9U41~63~U\9
19D418G35G13
:->4-9~1
B~PJ
3
19D41rm~~G20
19D1l663~tG13
549:JlH5Pl:J
19!l4C6635G21
l9D416635G5
54931851'13
DESCRIPTION
.
Compo>ltlon;
22
or.m~
~5~,
1/~
w.
l'<>mr()sitiono
100
ohm~
!:o~.
1/2
~nmpCJs\Hon:
'l2
ohms
~0~,
1/2
w.
Cornon~iti.an~
d~
ohm~±~~.
1;2
Cornpo5Ltloo;
1~
ohms
!51.
1/2
Corn~OSllLUJ+
\5
uhffi,;
":J~,
iZ
Composct~oo:·
18
onrn~
±0i,
i?.
Com~osltlo"\:
10
ohm~
~51,
1/2
C'ompo~i
tl
""I'
Compositio{
Ce>rnfC51,lO~:
10
0hms
~5%,
1/2
(''-""""~
r;o•(
lK
ohms
!b~.
112
l
C'ni\.
h<·
['"!~~
Tuning
s1u)j,'
C'>ll.
lr.c.'.~uaes:
Tuning
~luj).
Co1l.
runing
Tuning
t:oil.
Coil.
Inc
iud<>s·
slu~.
l
lnejutle&:
:::i~Qps:
;,j~des
Co\
I.
lrH'
udo·~
('oll.
Incudes·
Coil.
!no
udes:
'
T"ning
>lu~
•
Coil.
'l'unl
ng
Coil.
Tunint'-"
Cnll.
Tu~irr~
.
stu~.
Tn.J
ud~s
sl+
TTlAiiS¥01lMllRS ---------
In
REV
:::r,.
E
&j
earl\er:
l
!unl
ng
:r,,
Cull.
I
Ia
~~v
" ,
••
~l
1
I
::r·
Coil.
~un\ng
Coil.
!n
REV
~oll.
Tunlng
SYMBOL
1'105LL
Tl~OL
T'
O~T.l.
'L06M
r-mL1
••
,~7\!
Tl07H
'll08LL
T1081
r1o8t.1
TWRll
111
n1
U\02
VJ1
Jl
XYlOl
thru
XYIOH
GE
PART
NO.
:9D416635GJ3
191l1:66~-'lG5
C>49:l18~P13
:90416635G5
51n18~Pl~
c)(J.j
166J~G:
~9D416U35G'
t9Tl416Gl--,Gl
:i
\HTl4JOHr,u?
'i493185Pl3
1~Nl661.'\G7
54031
SSPll
J9D416l\35t.l~
5493185P13
l~ll416G35Gl<
\9All<J8·l2P1
19A702268G-~
1038887P56
19A73:7HOtPl
19A701BS7?l
lBA7015-1-1!'10
t9A701:l.12P1
~SA70l990P2
DESCRIPTION
l'o11.
rot!.
lnoludGs'
Tuning
~1
ug.
Coil.
lnclucteo:
Tuning
~lu•·
Coil.
lncludee:
Coil.
ho'ud~s·
T.,n,ng
~lllg.
Cm
l.
lne~udcs
Tnr.iny,
du~.
Co\1.
1nc:ude~·
r:m
l.
lnnludNJ
Coil.
Inc:udes
T11ning
sLOJg.
Col\.
!nc:~de~
Coli.
Incl•Ades·
T
•ning
~lug.
Tuning
slurr.
Cell.
lnCl'JdP~
- -
!KTEGit,'d'm
C!H(;UiTcl
------
])jg\tal,
T!igh
Sp~E'G
1'TL
Dual
J-K
M~~l<'"-.~lllV(·
F:::.~
FlC>p;
~im
lO
SMS4f17JK.
'iOLTAG~
RE~ULATORS
- - - - - • - -
~''"""'
·>OO
~w.
r,.o v.
nornnal.
-
SOCK\~T3
-
NOTE.
W'len
reorderto~,
specifY
quant1ty.
Con~act,
~'eccric~<l;
<;im
lo
Mol~x
OH-50-0101.
M13C~LLANEOVS
Heat
sink.
(U9~d
~-i~h
Ql09).
Can.
(Used
wlth
T!Ol-TIOB
S.
Ll01-J,IO~).
Insulato•,
wa~he~
nylnn.
(Userl
witll
\,]109).
Clip,
compr~sa\on;
sim
to
Tinn~rffian
Producco
l't>126-0:~-24.
(IIs~d
with
Q109i.
SYMBOL
Y!Ol
thn
YI08
GE
PART
NO.
19Al29~93'-i13
DESCRIPTION
- - - - - - - - -
OSCTJ.J.ATOR~
~OT[
When
reord<?rin~.
specHy
!COM
Frequency.
lLOM
!req
~
(Operating
Freq)
CompPn~"-ted:
Exteroally
Corn~ensated·
."5
PPI!,
25-50
lilT>
..
LBI-4732
PRODUCTION
CHANGES
Chang<>s
•~
the OOU1p1P9flllo 'mprov>l
perlor11anc&
or
tos•rt•pl~y
circuits
ar>l •den11hed
by
a R,;>,,S!Oil
letler.
WhiCh
IS
Stamped after
1he
model
nucnberof the
umt
The
'ev1s1on
stamped onthe
u~1t
Includes
ali
prev1ous
re>'<s•ons_
Refer
10
lhe
Parts
L1s1
for
descr~pt,ons
of
pa'IS
:;~ffruo~OO
by
lhese
reviSJons
P':\'.
4-
n-
hoHcr
Roard
19D41HG~9Gl-~
In~o~P''""-'"'~
in
''1-rt"!
~~•tvo~nt
Ril'.
Ef:v.
ll
RF'.'.
C
REV.
R8V.
'l'o
1ncce>St
udu
ser.siti
V1
ty.
Changed
G
126.
1'<.>
c:1:o.rr.ate
pos>ll:lc
short1ng
~t
shielo1
tc,
••1r<>
,1rintf-ol
wi•~
b'•c•r·J.
l'l·
...
~~d
T104T.J.
r;~4T.,
TlO"M
·ocl
nc~H.
"clctccl
~t.idd
<:~b3l~Ol!J:'1j,
Cl~!JL1,
C~bL,
Cl~!lll
Rll<i
Cl~9ll.
Excll~r
R•Ja~d
DllL<365GG1
& e
--------------
--"
---
-·
T0
1rrrrov:·
multi-tr,'~"~"''}'
"prc,1Cl
p~~f.orman"e
1r
CCJI<i
t~mp,or,rnr~~.
T"
;,.,,.,._.v~
P~"f'-'""'"'"-'~
o'"''' \W'-'
·,~'!""''"''
'!"~""·
rl'""!C"'I
fi~GM
•nd
('130~
''-'
54~1f>Ol'•hlcl.
Wa·,
M01G81i1~;·
Pto•r,ollc
0.27
D~
~5~
C'OO
I'Jrli.
Tn
'tt~nuato
:1/2
8~.rrDl.S
IJy
cha~~~n~
;•A
10n.lt,
c·rcmt
l'J,
higll
""~~
T)"P<'•
Cl1lM
o~f-
,,~!J()~fJHFJ~:J,
•iH
pl
~10~
:-tiJO
VDC~.
EJ-;:{M wnc,
:IH77~~~llf",
~2
+10~,
\i~
W•
hdter
%ard
1>Jll41665%~,
2.
5,
1,-,
increas~
pow<"r
o,\tout
·
c,tanF,ej
Q1o;•
f:·om
HM:lE<:~fJP~
tv
19A11ii%Rl-'C
'IPX
tfOn~l~t•,'r.
Exd
tPr
Board
Sar~r
~~
ab~v~
1g!J4166:>9G4,
fi
------
Exci-r~r
Boord
1f!U·11h6~:JGC,
<:.'/
Sa~~
"~
ahov~.
hc>ttr
lloard
l9fJ.J!bti~9r,l,
G~
''"
.unpro,,e
Cllonncl
GuHd
at
l8w
~~d
0±
25-:lO
M~z
spot,
chon~,--,;
f0llc,.1ng
cCSlst0"''
1<1~/LL,
nlO?I.,
R107M,
IHOill.
ArloJ,.d
li!ID,
R'H•,
RJ21
~l22L1
P.l221,
Rl~2l!,
P.I22Cl,
1<12~11,
Rl~~T.,
I<IJ:<M,
Hl?~>l·.
I)~I~(Pd
Hl??,
~)?:•.
hclter
Roard
1Jn4J605%_l_,
G5
"m<r
S)'rnmc'lr;·
~J·<·e1fic.,I.;CJn,;
l'~R'/7P3Q3.T,
8~.occ
o\Jm".
E,ctc~r
B'-'"-rd
18L41GG59GJ,
G7
lt1J71,l.,
!l121
To lrr.prCJ'.'<'
.<t?.'l:licy
of
:16
42
Mllz
split
~har,g<'C,
c:41,
\rl4J,
li:H,
Ll04,
11·JB.
15

LBI-4732
UIUZ
TRANSMITTER
AUDIO 1 C
I
,------
E~S<S
>---<~_:1>--HO,,
DE-
P0S~-LJN
~"~
....
(
aOA
..;P.
rt.IIIPttASIS
~
FILTER
~~
z~o
;<"'
~1----------{~
P902
6 r
r-1
!J.
..
~
Cl49
I
! 1
Rl!51
;rt~
"'26
6.~
...
SPARE
f-
I K
~
430
i62:
~~MOO:;;;;;--+-'
f.~
~
CHAN. GUARD AOJUST
CG
HI
ziC-~---r--r-----r---ri~,U~FI!~~~r------------"M~O~O~A~01J<J~S:T
__
+------+------~
~~CII6
RI2B
·a;
!50K
CG LO 3 <:---+--+--f---+--+-+-+--"4-------_::.:::_.
BUFFER
QIOI
RI04
Rt53
68
IK
A-
•(~--+-+---t-~~~~----~----~--~---+--~
r'""'"'•+--t-r•
.---,
;~;·;g
I
~•~v
I
7f-i---r-t---~--------~~----+-~--~~----------------~
CIOI
.00!11
I
I
~~
TXOSC
CONTROL
12(--4---f---t-----------~.---~~----~--+--1------~-----------,
RIOZ
6.81(
~
C153
L-----f-)
f---.,"~·~Wfvj_jO/I''([_
'
MIC
LO/TX
AUDIO
LOj
5 Cl5
2.
Cl:54 .o!UF •
.J$V
.,
~
,
.OII.F
'
.OIUf
"
_g:u::~
~
MIC
HI/TX
AUDIO
HI
I 6
<--+-_j
V~l~l
COMPENSATI':>NI 13 (--j----------------------+--1--+-•
I
~----
--r
-,
F I 1
:'1
f---+-----------;--o
1
YIOI
L
.!_
_
!5
4 3 2 I
_IXYIOI
r----t----l
f2
c
2
FREQ
DIVIDER
(+
4)
IC
' I
u1o:
12
13
:;
i7
I
L.r
10
oJ
..
I.
II
Rl5<4
IK
""'
"''
CI02
470
CI03
.OOIUF
9
<:----+-------~""--<>
1
YI02
;f:_·~!:::_s
__
~
-
~
~
_I
_JXYI02
,--r-
----l
* COMPONENT VALUES AS FOLLOWS:
10
<:----+--------,-.,.,.,-<> 1
Yl03
DA-t··;t:~L
~
5 _ 4 3 2 I _JXYI03
I ·--
-r=--c:c-:r-
---
r-
I
II
f(-f-~-------c>"~""""'s§o'-~~
5 3 2 I
1
x~::
tLEEVED
OAL:_~-~--_:_-::
__
r--
_J
'
,---
-r-
I
I<
(-·~~------.,>!l;...,liid'lt---0
I
Y"'
!
OA"""L_t_:~-~--~--~
!S
~
~
5
-2_
I
_JXYI05
,---
--
-l
'
"f(-f-~~---------,~
......
,;--o
1
YI06
QA
....
(
...
-..IfL_
6 5
<4
3 2 I
tXYI06
••
"
F6
L-'-------.=-.-
c-
- -
c-
,----
-,
-l
F<
IS
((-t-i
------o.-
...
-,~-~~~.:~~~-~,_----~-~
C-
=t-
2_
l_:x~:~;
' j
-----+-
l
F8
i I 7 (
~~-!!;lsi
~
I
YI08
L____
OA
:_~~~-~-~
:;_~
2
_!_I
_ _JXYIOS
OSCILLATOR
MODULE
SCHEMATIC DIAGRAM
25--50
MHz, EXCITER
BOARD
l9D416659Gl-G8
16
Issue
3
•
NJTD:
I .
IN
TliD-REQ..VICT
[XC
IlERS (
GR0..PS
I-4:)
Cl!iT IS CLif'PED
OOT
rCR CQIBI*TI(JICS;
lllni
2 TRIHSMIT
IC!Hi.
OA
..IM'£RS
All£
F'RESEHT
0o1
rREJ:A.EJ«:Y
SIIIT041PG
Lli'ES
CF
OTl£R
SIX
ICCJ4
CIRCliiTS.
2.
IN
Ellff'T-f'RE[J.EHCY
EXCITERS(~
S·U,
CAPAC
IT~
CI57·CI63
#I£
CLIP'PEO
QJT
AS
REQUIRiD
TO
I£ET TK: CUSltMJ!
FlEW IR9ENTS F'(Jf
FJIEQ...U«:
I
ES
EXNFI.£;
IF
nJST1JoER WN(TS ICOCS
Fat
Fl.
F2,
1"5,
N£
LLF"T
IH.
COMPON£NT
LL
ID£NTIFICATION
25-30MHZ
Cll2
Cl23
Cl24
Cl25
Cl26
Cl27
Cl29
Cl
Cl31
Cl34
Cl35
Cl36
Cl37
CJ41
Ll04
Rl43
Rl44
RI07
Rl22
Rl23
680
91
,.,
91
I 8
91
47
47
47
I
0_68
r3
100
2.7
100
"
2
20K
20K
L
680
62
1.0
62
62
33
B2
2.2
100
I
15K
"'
A
MS[
cM>o:w:ns
lilT
1~[!-[U
~
;,.~
HLITU
M
1000
56
1.0
,.
,.
22
0.56
12
0.39
__[Q_O
1.!5"
.47
15K
"'
:~
io!Ol
Sf'A((
UITJ:
ClM!U.TIC.~.
H
1000
43
a.az
43
43
I
"
0.47
7
0.39
100
I K
RI06
IK
MOO
RI09
lOOK
LIO~
RI07
*
~.
RI08
4701<
;
RHO
22K
CI06
OOZT\1
Rill
15
MOO
AMPL-1
QI02
RH<4
010
Rll3
3.31<
•••
'~
..
~'tl.J
E
CIOI
-~7\.IF
Rll1
820
Rll2
680
CRI02
CRJ03
CI04
330
;f.~
Rl50
33K
VOLTAGE
READINGS
I"
~
110'-TAG£
READINGS
ARE
TYPICAL
READINGS
MADE
WITH THE
TIUNSMITTER
KEY£0,
AND
MEASURED
WITH A
20,000
OHMS-Pt:R·VOLT
METER
WITH
REfERENCE
TO
A-
AND
NOT
CHAl"'liS
GROUNil.
AN
RF CHOKE
125-50
MlCROHENRYSI
I~
USED
IN
THE
HOT
METER
LEAD
TO
AVOID
OETUNING
Rr-
CIRCUITS.
"'""
010
f----"\.J
..
IV
CliO
Rill
I .OOILF
Z.2.K
.lc
'I
··~Q
Rl21
ZZK
MOO
Rl25
IK
~
L~
Ll~
(f.)
[\JIJ1;}·~
~
A12Z
Rl23
~
Clll
.0101\Jf
* *
*
~r
CIIZ
Rl24
ZZK
Cll4
0021U"'1'
MOO
AMPL-3
0104
Rl32
010
Rl31
3.31(
Rl30
680
"1.2V
Rl33
.471<
-
RIM
560
cno--f,
;f,
.047,...
Cll9
Cll7
.047
UF
Uf'
.047
UF
11145
33K
BUFFER
0105
CIOO
10
R!35
Rl3&
22K
IK
MULT-I
(TRIPLER)
Q
106
Cl47
·.1UF TIOI
Rl37
33
*
C1Z4
9.6V
_1:
C~23
f
,
F---1!_~+-J
CIZ!;
*
Rl31
:;:~CIZI
180
.01
UF
-;:~CIZZ
01
UF
JIW
A I
METERINGL_~zc_
__
~l
__
_c'c_
__
~8~_c9~-3:_
__
<~-7c__:6~
ll9fl.621327,
Rev.
21)
c
c
•
•
•
c
•
~
~-
N
~
0
~
~
~
2 I
:::1:
2 2
• • u 0
...
~
~
~
~
•
Cl27
;~
*
pi03L
H
6 +
+I
7+
+2
8+
+3
9+
...,4
TOP
VIEW
TIC!
MULT-
2
(DOUBLER)
0107
8
ltl39
120
1.6~V
TI04
Rl40
2Z
Cl45
' .01
Rl47
33K
·
UF
*
Cl30
MULT-3
(DOUBLER)
0108
TI05
8
fU41
68
E
I.I~V
Tl06
Cl32
.01
UF
Rl48
33K
AMPL-1
Ql09
*
Cl30
Ll07
10
TIOB
LIOI
39
~"?;f,
00.1
UF
IN
OAO("
TO
A[UIIt
AAT[O
EQUif>M[NT
PEJ"OAMAitC[,
ft[PLAC[M[NT
0#
Al'f'f
SUIVIC(
PAlO' SHOULO M MADE
ONlY
WITH
A
COIIIPO!It(NT
1-U.VING
THE
SPECIFICATIONS
S~
ON
THE PA.IITS LIST
FQIIII
TMolof
PA.IIT.
*
LI04
*
Rl44
RI4SI
33K
*
TCI41

---~~~-·-
FROM
EXCITEFt
SEE
NOTE 2
J201
C202
1000
C234
z.zu~
L201
CR201
C230
czos
..
*
L202
C206
210
L203
8.2
AMPL-1
Q201
R20f
..
I
I
I
L
CZ50
"
R224
510
U4W
R223
3.9K
J/4W
R208
15K
!/4W
VR2Df
2.3V
C2C8
•
L2C5
E:
L204
~"
R209
6.8K
I/4W
C207
*
R210
100
I/.4W
VR202
5.4V
C209
•
t210
"
C21l
.JUF
SEE
_
---,
NOTE
1-....,i RT201 1
L_
~o
_ _j
c~
c~
1000
1000
( It )
H3
H
CR202
CR203
240
.OIUF
R211
2.151(
C241
680
r-
I
R202
"
R2C3
•
R2C4
•
+
R222
6.81<
1!4W
R218
560
V4W
R219
1.8K
I/4W
R212
!.47K
R213
422K
L207
8.2
C212
6.8UF
R214
5..11K
POWER
CONTROL
R2C<I
20
IW
----~
~~--------~~
DRIVER
Q202
C259
*
L209
L208
RZ33
10
IW
L225
C217
C215
C216
.IUF
•
•
Ll8
t,9
• •
R230
P.A
0203
1=
1C221
•
T.
R206
ff1J11
2.7
10
IW
J
1000
i u H
·-----------------------~~--~--~~+-~~~~vw~~._.
I
RZI5
4.22K
H50
IO~:;
5-o-PO-W-ERJ
ADJUST
CRZ04
CR2~
RZZO
410
-~-~-l
~G-,-t
f
iUF
CII.~V
2.15V
Q2ae
B
~
£1.6V
-
1-+-_.____.
R217
C2:57
R2211
600
1000 120
li4W
I
I
_j
....,....,
C272
3900
+
C248
500F
ens
1000
C25!1
1000
J205
J205
METERING
~
0 0 0 0
0 0 0 0
I
TOP
VIEW
C237
•
·=
240
I/4W
L213
L212
{l9R622106,
Rev.
16)
=4
*
C222
•
e··
,~
C'223
.PuF
RZ;31
HI
I
I
r~
:I
..
L2.'9!5
(SEE
NOTE
II
:I
I
CR29~
Rl
~21~88
"'
--
TO
J910-39
H2
C230
3900
C231
.022\JF
C233
.022UF
•
*
C280
C:!tll
*
L214
-,
L296
CSEE
NOTE
II
I
____
I
I
CHASSIS GND I
IBK
--.,
TO
J910--40
I
I
I
_j
---~--
~----·
~---·-
LZZO
L221
L2Z3
-l
I- SE£
NOT'[
2
I
C2T262
C265
• • • I
C261
C263 C264 I
• •
..
I
I
I I
I
LOW
PASS
FILTER I
L_
--
--
----
----
_j
WCOMPONENT
VAL
UES
AS
R1..LOWS
LL
L M H
COIIP.
lOOfT. Z5-30
MHZ
~Q-36
MHZ
36-42MHZ
42-50MHZ
C20!5
120
IZO
120
220
C207
390
330
210
220
C208
330
210 210
220
C209
390
210 270
270
C210
330
Z20
220
180
C213 1000 1000
680
680
C214
••
..
47
39
C21S
••
5.
47
39
C217
330
330
220
180
C211
390
330
270
270
C2"
390
330
270 270
C220
330
270
270
180
C221
330
270
270
180
C222
1000 1000
680
680
r---~224
500
500
430
360
C225
500
500
430
360
C226
200
240
22C
180
C235
210 210 220 180
C236
22C 150 100 150
C237
220
150
100 100
C250
100
100
150 100
C258 100
C259
100
C260
91
68
56
5I
C261
110
91
68
56
C262
15
13
12.
10
C263
140
110
91
82
C264
120
100
82
75
C265
91
68
56
5I
R201
10
10
20
20
R202
5.6 5.6 2 1
1.2
R203
56
5.6
2.7
1.2
R204
5.6 5.6
2.1
1.2
R207
C280
6.8U
C281
6.8U
XIOIT
r.;;-
---
--
--,
0
LBI-4732
I
I
TO
J910
OH
SYSTEIIIS
BOIUtD
IW904)
; :
J200}
>---+J207
ANT
~--------------1.J----}J203
TO
AHT
SEE
NOTE
2
J202
TO
fiCVIt
r-----------------~sE=E~~==~.--~
c
VOLTAGE
READINGS
VOLTAGE READINGS
ARE
TYPICAL
READINGS
MADE
WITH
THE
TRANSMITTER
KEYED,
AND
MEASURED
WITH
A
20,000
OHMS-PER-VOLT
METER
WITH
REFERENCE
TO
A-
AND
NOT
CHASSIS
GROuND.
AN
RF
CHOKE
125-50
MICROHENRYSI
IS
USED
IN
THE
HOT
METER
LEAD
TO
AVOID
OETUNING
RF
CIRCUITS.
NOTE: READINGS
AT
Q20t
COLLECTOR
AND
IN THE POWER
CC:WTROL
CIRCUIT
WERE
TAKEN
WITH
TH£ TRANSNITTER ADJUSTED
FOR
50
WATTS OUTPUT. THESE READINGS
WILL
VARY
DEF'EJIIOIHG
CJif
THE
SETTING
OF
POWER
ADJUST
CONTROL
R216.
PA
ASSEMBLY
REV
HEAT
SINK
ASM
REV
l
TR
l
TR
t9C321395GI
A
"'"'
t9C32129:5G2 A
....
C<(
19821968861
Z><
19C321295
63
A
..
u
.....
~
..
19C321295G4
•
19C321295
69
•
19C321295GIO
•
198219688613
19C32129!5811 •
19C32129!5612 I
J208
SHIELD
OF
W904
NOTE: CHANGES TO
THIS
DIAG
.
MAY
AFFECT 19R622108.
IN ORDEII
TO
IIETAIN RATED EQUIPMENT
P'EIIIFOIIMANCI£.
tfii[P'LACEMENT
OF
ANY
SERVICE
PA.IfT
SHOULD
5E
WADE
ONLY
WlTH
A
COMPONEHT
HAVIIiiG
THE
SPECIFICATIONS
SHOWff
C.
THE
PAIIHS
L~T
FQIII
THAT
PART
NOTES:
L
CAL.LEO
FOJt
ON
~LI9C3ZI29S.
Z..SOQ
MICRO
STRIP,
PART
OF
PWil
l.
.JJ.-INOICATES
A-
*
-INDICATES
VEHICLE
GROUND
CPNT.
80.
ASM
REV
FREQ.
RANGIE
LTR
19041796861
0
25-30
IlHZ
:19D4179H62
c
3Q
...
IlHZ
19D41~63
E
36-42
IlHZ
19041796184
,
42-50
IlHZ
190417968
cu
D
25-30
IlHZ
190417968
G2 c
30-38
MHZ
190417H8
G3 F
36-42
MHZ
19D4179UCi4
F
42-50
MHZ
SCHEMATIC
DIAGRAM
25--50
MHz, 50-WATT STATION
POWER
AMPLIFIER
19C321295Gl-G4
Issue
4
17
•

LBI-4732
SYMBOL
C2AO
""'
C281
1.295
..
,
L296
Q201
Q202
Q203
Q210
RT201
C201
C202
C203
C204
C205LL
C205L.
C2051d
C205H
C206
C207LL
C207J,
C207M
C207H
C208LL
C208L
..
,
C208M
C208H
C209LL
C209L
C209M
C209H
GE
PART
NO.
19A134202Pl5
1911.
12935flP1
19A116965Pl
19A1168:J9P2
19-~116839P3
19All6375Pl
19A129379G1
19A116080P101
1%116655P19
19A116080P101
19A116655P23
19A700105P36
19A700105P36
19A700105P36
19A700105P44
19A700105P46
7489162P41
741'\AHl2P~9
19A700105P46
19A700105P44
7489162P39
19A700105P46
HIA700105PH
7489162P41
19A700105P46
:9A71J0105P46
19A700105P46
PARTS
LIST
'-'BI4897B
25-50
IlHz,
50
li'A'::r
POW:;:R
AMPLIFIER
19C321295Gl
G4
19C321295G9
G12
DESCRIPTION
19C321295G1,
G9
25-30
l!Hz
19Cl21295G2
010
~0-36
MHz
19C321295G3,
Gll
36-12
l!Hz
!9C321295G4,
Gl1
42-50
M!Iz
(Li..)
(C)
,,,
(ll)
-
REV
B
-CAPACITORS - - - - - - - -
Tantalum:
6.B
uF
,!:20't,
35
VDCW.
- - - - - - - INDUCTORS - - - - - - - - - -
Cot
1.
---
TRANS!STO~S
---------
S1\1cor_,
NPN.
S1J1cor,
NP~.
Sillc<>n,
NPN.
Silicon,
PNP.
----------THERMISTO:\S - - - - - - -
Thermistor:
40:{
ohms
+-20':1;,
color
code
white;
~im
to
Ca,-borundurn
Type
M0806J-5.
POWER
AMPLIFIER
BOARD
:9041796801
25-SO
MO!z
:IJD117968G~
~0-~6
M:l.z
:90417968G3
36-42
M'!z
~9041796804
42-50
MHZ-
REV
F
CA!'ACITOR01 - -
Poly
..
stpr·
0.01
uF
,!:Hl'i,
50
von;,
Ceramic
d~sc:
1000
pF
~20%,
1000
VDCW;
sim
to
RMC
Type
JF
'liscap.
Polyest
..
r
0.01
uF
~10'>,
50
VOCW.
Ceramlc
disc:
3900
pF
~20'1',
1000
VDCW;
sim
to
RMC
Type
JF
Jts~ap.
Miea:
120
pF
!5%,
GOO
I'DC'IL
Mica:
120
pF
-!;5%,
500
YDCW.
Mica:
120
pJ<'
;!:5%,
500
VDCII.
Miea
·
220
pF
:!:5$,
5CO
VDCW.
Mica·
~70
pF
!!'i%,
C>C•O
VDC'Ii'.
Silver
mica:
390
pF
:!:5$,
500
VDC\l';
slm
to
Sprag,,.,.
Type
118.
Silv"r
mi""
330
pF
,!:51,
.~00
YOCW;
~lm
"'
Sp:r-a(Pe
Type
118.
Mica·
270
pF
,!::5%,
500
VDCW.
I!
lea;
220
pF
!5%,
500
VDCII.
Silver
mica:
330
pF
,!::5%,
500
VDC'II;
sim
7.o
Sprague
Type
118.
lr!ica
270
pF
,!:5%,
.~00
VDCW.
Mica:
220
pF
:!:5$,
500
VDCII'.
S1lver
mica·
390
pF
!5't,
500
VDCII;
"'lm
to
Sprague
Type
118.
Mica:
270
pF
,!::5%,
500
VDCJI.
Mica
:
270
pP
!5%,
c.oo
vnr.w.
Mtca:
~nn
pP
!5't,
c;oo I'DCW.
*COMPONENTS ADDED,
DELETED
OR
CHANGED
BY
PRODUCTION CHANGES
18
SYMBOL
C21JL
ond
C21
J>.l
("21
0!!
C211
l":J12
C21.l!.
C:ll3M
and
C211H
C214J,J,
o
nd
C214!.
(:214M
C214H
C215I.L
'"'
C2J
5L
C21
~M
C21 5H
C216
C217LL
""'
C2171~
C217M
C217E
c:HH!.L
C218L
C218M
"''
C218E
C2HH.L
C219L
C219!i
"""
c~u;u
C:J~I)J,
""'
(;2?.0W
C220H
C221
LL
C22tL
e.n.d
C221M
C221H
r:nnl.
i?.:ld
C2221
C222.~
'"'
C~:l~H
C223
("?~41
I
'"'
C224!
C2241!
C221H
GE
PART
NO.
7-18Jl6?P:J9
19
A
700
1ot'•l'41
10.!1116GilOP107
519626
11'13
19AJ166.5~!'19
l9All665~PJ
7
19A11665SP56JO
19A1166t>Cil'4'/,J
r,
l9A
11665SP3GJO
19A
116656P56.10
19A1161i.'iHP47.!0
19All6655I•39JO
J9A11608JP107
74B9162P39
19A700105P44
19.47001051'41
748GI62P38
19A700105r46
741\9162P41
74K916~~39
13A700105P46
7189t6:<P39
1~A70010~~46
19A70010~1'41
74891621'39
19A70010JP46
19 A
'/UO
1().~1'41
1'1~11fifi5~PI9
19A
116655P1
7
l[!All6080Pl07
19A
116f\7~P~il(),1
19A700015P41
19!1
700015P12
DESCRIPTION
Silver
.'llica·
330
pF
!5%,
500
VDCW;
slr•
~"
Sprague
'ryp1•
!Ill.
M:c•:
:no
pi'
~5'1;,
500
vvcw.
M1ca:
180
pF
~5%,
500
VDCJI.
Polyceter:
.1
uF
2:10%,
5·1
VDCW.
l'antaluT.:
6.~
u,,.
±~n%,
:05
VOCW;
aim
to
Sprague
Type
1500.
Ceramic
disc:
1000
pF
:':20%.
1000
I'DCW;
s1m
:o
RI!C
Type
,JF
D~scap.
Ceramic
disc:
680
pF
,!:2C%,
1000
VDCW;
slm
to
RMC
Type
JF
Di.soap.
Ceramic
cti.,;c:
.~6
pF
-!;5'1:,
500
VCCW;
temp
coef
0
PPM.
(:Pramic
di~c:
47
pF
"!;-~'t,
.~00
VIJCW;
temp
coe!
0 PPM.
Ceramic
d1sc:
39
pF
:!:5%,
500
I'CCW,
temp
~oef
0 PPM.
C<eramic
difw:
56
pF -!;51,
500
VCCW;
temp
coef
0 PPM.
CPr>tm~r-
ctisc
47
pF
:~;.~'t,
-~00
I'IICW;
temp
coef
0 PPM.
Ceramic
<:lise·
39
pF
;!:5%,
500
I'DCW, tE'mp
co~f
0 PPM.
Polyest8r:
0.1
uF :t:10%,
50
VDCW.
Silver
mica'
330
pf
~5%,
500
VCCii;
s~m
to
Sprague-
Type
118,
\Ilea
220
pF
!;5~,
500
VDCIV,
Mica
180
pF
!B't,
500
YIJCW.
~ilver
~90
pf
!5%,
~00
VDCW;
to
Spragu"
Type
118.
SUver
mica·
330
pf
,!::5%,
500
V!lCW;
sim
to
~pr,_g,,.
Tyr"'
118.
llica·
270
pF
_1_5%,
500
I'DCW.
Sliver
mira
390
pF
:!:~%.
5()0 I'DC'II';
to
Sprague
Type
118,
Sliver
mica
CJ:>O
p~·
!;5%, 5()0
VDCII';
sim
to
Sprague
Type
118.
llica
270
pF
,!:5't,
500
V!.:CW.
Silver
mica·
330
pF
0
,!:5i,
500
VDCII";
sim
to
Sprague
Type
118.
Mica
~70
pf'
,!::5%,
500
\'L~C\1.
Mica
lSO
pP
:!:G%,
GOO
\'DCW.
Silver
mica:
3~0
pP
_!:5%,
.500 \'DCW;
sim
w
~prague
Type
118.
Mi ''"-
270
pF
.!::-~'>,
~00
VDCW.
~jca
180
pf'
~5%,
5CO
VDCW.
Ceramic
disc·
1000
pF
~20%,
1000
vncw;
sim
to
RMC
Type
JF
Discup.
Ceramic
disc:
680
t>F
~20%,
1-JOO
I'DCW:
si.m
to
RMC
Type
JF
lliscap.
?olyester
0.1
uF
!10%,
50
VDCI'I.
Silver
Mica:
500
pF
_!:5%,
25C·
VDCW.
Metalli7.ed
teflon:
130
pF 2:5%,
250
·mew.
ll<'tal1i?.cd
tdlnn;
360
pF
!5%,
250
".'DCll'.
SYMBOL
C225LL
""'
C225J,
C22~fi
C2~6LL
C226!,
C226M
C226H
C230
C231
C232
C23J
C234
C235:_.L
'"'
C235L
C236LL
C236L
C2.1fllt
C236H
C~:J'/LL
C237L
C237M
'"'
C2~7H
C238
""'
C239
C240
C241
'"'
C2~2
C211
thru
C246
C248
C250
C250ll
""'
C250H
C251
thru
C253
C255
thru
C257
C358LL
C259LL
C260LL'"
GE
PART
NO.
lYAll6b7Y?51JO,
19A700015P44
19A700015;'42
19A7()()01:>,•36
J9n00015?38
19.~700015?~7
19A700015P35
19.~
116655~23
19H160807103
19A116655P23
19.~
116080P103
5496267H3
19A700105P16
19A700_05P/.4
19.~700105P41
19A1161356P220J
4
19All6656PJ50H
19~
11116Fi6P100.Tl
19Al16656Pl
5Q,J
1
l~M116606
~220J
4
19Al16656P150Jl
19A1113656P1
OOJ1
19.UII3655P19
19A
1lf\080Pl01
19.~
11661'5['17
19A
116080P
101
19A116080PlO:J
19A115680P1
19A
116656PlOOJ
1
19All66~6P150J
1
19A116655Pl9
191Lll66Jti'?19
19.~
1
166S!i?1
OOK4
19.~1166561'1
OOK·l
19A1166G61'91J2
19A
l166~6P82.J:
DESCRIPTION
st
1
v<:>r
Mlca
·
500
pF
,!:5'1-,
?50
vr;cw.
M8talli7.<ed
teflon:
430
pf
,!:5't,
2.50 VDCll.
Mdalli,;ed
teflon:
360
pF
!5't,
250
VDCW.
Teflon/Mica:
200
pF
:;5%,
250
VD2W.
':'eflon/Mica:
?40
pF
!:~'!..
250
VDCW.
T~f
!on/Mica:
220
pF
~5%.
250
\'D:C\1.
T~flon/Mlca:
180
pF
~~~.
250
VDCW.
Ceram1c
disc·
~900
pF
+21~,
JOOJ
VDCW;
sim
to
RMC
Type
~F
Oiscap.
-
h>lyester·
0.022
uF
!10%,
50
1-'DCW.
Ceram1c
disc:
l900
pF
+20%,
!COO
VDCW;
sim
to
Rl!C
'type
,'F
Iliscap.
-
Polyester:
0.022
uF
:!;18%,
50
VDCW.
l'~ntalum:
2.2
'IF
!20%,
20
VDCI'i;
Type
150J.
Mica:
270
pF
!5%,
500
VDCW.
Mi
CR
·
220
pF
:5'l,
500
VDCll',
Mica:
lBO
pl'
.'.5%,
500
VDCW.
to
Sp:r-agu"
Ceramic
jisc:
220
pF
!5%,
500
VDCW;
te:np
cocof
-470
PPM.
C<eramlc
jisc:
150
pF
,!::5%,
500
VDCW,
te:np
cod
-150
PPM.
c.,ramic
:lise:
100
pF
,!::5%,
500
VDCW,
te:np
coet
-150
PI-'M.
Ceramic
jisc·
150
pf
!5%,
FiOO
VflCill,
lF·np
<·o..-r
-150
PPM.
Ceramic
disc:
220
pF
,!::5%,
500
VDCI'I;
te'llp
co!"f
-170
PPM.
Ceramic
disc:
150
pl- :':5%,
500
V!JCW,
te11p
CO<Jf
-150
PPM.
Ceramic
::lise:
100
pF
±5%,
500
YOCW,
t<"mp
co,,r
-1.~0
PPM.
Ceramic
disc·
1000
J'F 2:20'l.,
1000
VDCW;
»1m
to
RMC
Type
JF
Disc:ap.
Polyester
0.01
·~F
~lJ't,
50
VDCW.
Ceramic
d
sc:
380
pF
:t:20't,
1000
VDCI;;
sim
UJ
HMC
Type
JF
[)iscap.
Poly.-,;t"r
0.01
uf
!lD't,
50
VDCW.
Polyester:
0.022
uF
:;10%,
50
VDCW.
Electrolytic:
.~0
w?
+150%
-10%,
25
·mew;
si~.
1:0
Mallon
Type
TTX.
Ceramic
disc:
100
pF
:!:5%,
51JIJ
VIJCW,
temp
''""f
-150
?PM.
Ceramic
disc:
150
pP
!5%,
500
VDCW,
temp
co<•f
-1
BO
:>PI!.
Ce:-am>t
rllsc·
1000
pF
!~O'f,
1000
VDCW;
~lm
fo
rutC
Type
.)F
Ji.~('ap.
Ce,-amic
disc:
1000
pF
~20%,
1000
VOCW;
sim
to
RMC
Type
:F
Dlscap.
Ceramic
disc:
100
pF
-!;101, 5()0 I'DCW, t"?mp
coef
-470
PPM.
Ceramic
disc:
100
pF
!10%,
500
VOCW,
temp
C'"''
-470
PPl!.
C<>ramic
jisc:
91
pP
!5%,
500
VDCW;
temp
cocf
-220
PPM.
111
19D417968G1
of
REV.~
and
earlier:
Ceramic
::!lsc:
82
pF.
2:~%,
500
VOCW,
temp
coet
-150
PPM.
SYMBOL
C260L
C260M
C260H
C261LL
C261L
C261M
C26JIJ
C262LI..
C~62L
C262M
C2621!
C263k,
C262L
C263M
C26311
C284LL
C264L
C264M
C264H
C265L!,*
C265L
C265M
C265H
C270
•"'
C271
C272
C273
C274
CR201*
CR202
thru
CR205
,J201
I
bru
.J203
J205
J206
"n,J
J207
,1208
GE
PART
NO.
19All665~1-'i:i~Jl
19All6656P56Jl
19A
116656P51J
1
19A7000l[;P30
19A700015P28
18A700015P25
19A'IOUU151'23
19A
1166~6!>13Jl
19A
1166.36Pl2.Jl
19A116656P10J1
19A116679Pl40J
19A700015P30
111A700Ut5P~~
19A700015P27
19A700015P3:
19A700015P29
19A700015P27
19A700015P36
HlA
1166.%P9'
.12
19A
ll665!iP82.11
l9Al
tli656P68,Jl
19A116656P56Jl
19A11EI356P51Jl
19A116080P101
19Al16655P23
19.~11
E080Pl
03
19All6655P19
19A116052P~
19A115350Pl
19Al15250P1
19A700049P2
J
9B219371GJ
19C317957P1
19A116651P1
1
9Al34263P2
4033513P4
DESCRIPTION
Ceram1c
d1sc:
68
pF
~~%,
500
VDCW,
temp
coef
-150
PPM.
Cerami~
disc:
56
pP
~5%,
500
VDCW;
temp
coef
-150
PPM.
Ceramic
di
~c:
51
pF
~5~,
500
VDCW;
temp
coer
-lC•fl
PPM.
silver
mica·
110
pP
!5%,
25C
vncw.
Teflon/Mica:
91
pF
.!_5%.
250
VDCW.
SUvcr
mica:
68
pF
.!::5~,
~50
VllCI/.
TE'flon/Mica·
56
pP
,!::5~,
250
VDCW.
CenrFi"
rlisr·
1.~
pF
!5%,
500
VOCW,
temp
"oef
-150
pp],j,
c
..
ran:lc
disc
12
rF
~5%,
500
vrncw,
t~mp
~-C'"f
·150
PPM.
Cerall'_ic
disc
1~
~F
~5%,
51JO
VDCW;
temp
coef
-150
PPM.
Cerarr.ic
di~C'
10
~F
~5%,
500
VDCW;
tomp
cocf
-1.~0
"PPM.
Si.lv~r
Mk·.a·
140
pP
,!::5%,
250
VDCIV.
Silver
mica:
110
pF
!:5%,
250
VDCll.
Tetlon/lllica:
91
pP
-!;5%,
250
VDCW.
Sii>"er
mica:
82
pF
,!::5$,
250
VDCW.
Teflon/Mica:
120
pf
!5%,
250
VDCW.
Teflon/Mica:
100
pF
~5%,
250
I'OCW.
Silv<•r
mica'
83
pP
±5%,
~50
VDCII'.
'::eflon/Mica:
75
pf
~5%,
2~0
VDCW.
C>'ram1~.
d1~c·
91
pF
,!::5%,
500
VDCW;
tecp
coef
-220
PPM.
Cn
19D417968Gl
of
REV
A
and
earlter:
f:<>climi"
rlisf"
-150
PPI!.
fl2
pF
.!:-'i%,
500
VDCW,
temp
coef
Ceramic
disc·
68
pF
,!::5$,
500
VDCW,
tPr>p
roPf
-150
PPI!.
Ceramic
disc:
56
pt'
::.<t,
500
\'DCW;
tecp
coef
-150
PPII.
Ceramic
disc:
51
pF
!5%,
500
VDCW;
temp
coef
-150
PP!d.
Polyester:
0.01
uP
~10%,
SO
VDCW.
Ceramic
disc·
3900
pr
+70%,
1fl00
VDCW;
slm
lo
RMC
Type
JF
Discap.
-
Polyester:
0.022
uF
~10'!:,
50
VDC'II.
Ceramic
disc:
100~
pr
!;?.1''1'-,
1000
VDCW;
~im
l.o
RMC
Type
JF
Discap.
DIODES
AND
RECTIFIERS
- - - - - -
Si:icon,
fast
rPccn•ery;
slm
to
Hewlett
l'ackard
~082-28:1.
Earlier
than
REV
A:
Sillcou,
fa~t
rer.1wery,
225
mA,
50
PIV.
St:l~on,
fast
reco<•ery,
225
mA,
50
PTV.
- - - - - JACKS
AND
RECEPTACLES ---
Connector,
receptacle;
500
VDC'II'
m~xlrnum;
sirn
to
NTU-10!'>8.
Ccnnf'~.tor,
lnr:Oldf'S'
Shell.
Contact,
electrical.
Cont~ct,
clcctrlNr.l•
sim
to
Selectro
:<<!9-1071.
Conhct,
ele~t:r-ical·
~im
t.r>
RP><l
ChJLJn
1.9~-3.
SYMBOL
K201
L201LL
L20lL
L~OI_~
L201H
L202!,L
L202L
L202~
1.2021!
!.204
L305LL
and
L205L
!.205M
L205H
L206J.L
L206L
L?.06M
!,20~H
L207
L208LL
and
L208L
L208!-'
~·'
L208H
L209LL
L209L
""'
L209!1
L209H
L210LL
l-2101.
[,?.101-'
L2ll
L212LL
..
,
L212L
L212M
.,,
L2!2H
L213LJ.
L211L
L213M
L21
3H
L214LL
L214L
L211J,I
L2HH
L22JLL
L220L
J,22·JM
L~~Oli
GE
PART
NO.
"9P.7000i)l?l
1~~-129317P2
J GA12934-'/P1
1'JA129347P3
1~~-l29~~2P9
19~.129351P1
19P.l29352l-'8
19P.l29352P7
19~_700000P122
1J.'.700000I'6
13A129:151P2
19Al29352Pl
1
J,\
1293521'1
19~
129~.'i2P3
13P.l29318P2
l!JA700000f'122
1GA129349P1
JM.129349P2
:9A12935SP1
;8A129352P4
19Al29352P2
19A
129J58Pl
l9/,129359P1
19Al29357P1
1BA
139357n
l9A700000P122
19/,12931gP1
J9AJ29349P2
19Al2~351P1
19Al3\l~5~1'~
l9Al29~5Fil'3
1RA129.'J.~lP•1
19A12935~PJ
19A12D255P5
19A129~~2P10
19A129~1)0P9
19Al29360P6
10A129360P4
19A129360Pl
19Al29J60Pl0
DESCRIPTION
RELAYS - - - - - - - -
Hermetic
sealed:
180
to
341
ohm~
Goil
res,
8-16.3
-,,DC;
~im
to
GE
3SAV1760A2,
CP
Clan•
f!fW-1201558.
Pott<'r-Bnm!leld
HCMbJQ(j.
INCDCTORS - - - - - - - - - -
Coil.
:'nil.
Coil.
Coil.
Coil.
C<nl.
Col
l.
Coil.
Co;J,
RF;
8.2
t:ll
_1_10%;
to
Jeffers
4422-:W.
Coil,
RF: .)3[) r.H -f:20'>;
~im
to
Jeffers
111-3.
Coil.
Coil.
Coi
I.
Coi.l.
Coil.
Coil.
Coil,
Rf:
8.2
ul!
,!:10'>;
sim
:a
Jeffers
4422-31:.
Coil,
Col
1.
Coil.
Co11.
Coil.
Coil,
Coil.
Coi
1.
Coil.
Coil,
RF
8.2
ul!
2:10%;
sim
to
Jeffers
4422-3K,
Coi
1.
Coi
1.
Co:ll.
Coil.
Coil.
Coil.
Coil.
Coil.
Coil.
Coil.
Coil.
Coil.
Coi
1.
Coi
\.
Coi
1.
SYMBOL
L221L
L221M
1.221H
'L222LL
L222L
L222M
L2~2H
L223LL
L223L
L223M
L223H
L224
L225
""'
L226
Q204
Q205
thru
Q207
Q208
Q209
R201LL
..
,
R201L
R201M
'""
R201H
R202LL
""'
R202L
R202M
R302H
R203LL
..,
R20~1.
R203M
R203H
R204LL
""'
R204L
R204M
R204H
R205
R206
R207
R208
R209
R~lO
R21l
R212
R213
R2J4
R215
R216
R217
R218
R2:9
R220
GE
PART
NO.
19Al29360P7
19Al29~601'3
19Al29360P2
19A129360Pll
19A129360P8
19A1293601'5
19A I
29.160P~
19A129360P9
19A
129360P6
19A129360P4
19Al29360Pl
19A71lOOOOP17
19A129346G~
19Al15910Pl
19Al1~768Pl
i9Al15910Pl
19Al29187Pl
19A700113P:5
3R77P.:.l00J
19A700li2P9
t
9A
700112P1
7147161P22
19A'700112P9
19A700112Pi
7147161P22
19A700112P9
l9A700112P1
7147161P22
3H78P200J
19A700113Pl
:9A700112Pl5
19A700106P91
l9A700106P83
l9A'/00106P39
19Al1627fiP~~i3
19At16278P217
19A116278P261
l9Al16278P269
19Al16278P26i
19All6559Pl02
19A
7001
061'59
19A70010AP57
19A700106P69
19A7001
!3P55
DESCRIPTION
Coil.
Coil.
Coil.
Coli.
Coi
1.
Coli.
Coi
1.
Coil.
Coil.
Col
I.
Coil.
Coli,
RF:
~.3
ufl
!10%;
s\m
tu
Jeffers
4121-1K.
Coil.
-TRANSISTORS ---------
Silicon,
NPN;
stm
to
TypP
21>:'1904.
Silicon,
PNP;
sim
to
Type
21'3702.
S1!1con,
NPN;
~1m
to
Type
21<3904.
S1licon,
PNP.
- - - - - - - - -
EES!STORS
- - - - - - - - - -
Composition:
tO
ohms
!5%,
1/2
w.
Composition:
20
ohms
!5%,
1/2
w.
Compos:t:tiou·
~-~ohm~:~%.
1
w.
Composition·
2.7
ohms
,!::5%,
1
w.
Composition·
t.2
ohms
~5%,
1/2
w.
Composition
5.6
ohms
::5%, t
w.
Composition:
2.7
ohms
,!:51·, 1
w.
Composition:
1.2
ot>ms
!5%,
1/2
Composition:
5.6
ohms
!0%,
1 w.
Co11posltion:
2.7
ohms
~5%,
1
w.
Composition:
1.2
o~ms
!5%,
1/2
w.
Compositior.:
20
otuns
2:5%,
500
VOC\1',
1
w.
Composl.tlor.:
2.7
o!lms
-!;5%,
1/2
Compostttor.·
10
ohms
:!:5%, 1
w.
Composition:
15K
ohms
:':5'l,
1/4
Composition·
6.8K
ohms
~5'1;,
l/1
w.
Composltior,
100
ohms
.';:5%,
1/4
1/"Pial
f!lm
2150
ollm~
~2%,
1/2
l!etal
:"ilm:
1470
ohms
,!::2%,
1/2
l!etal
!ilm:
4220
ohms
!2%,
1/2
Metal
f11m:
5110
ohms
!2%,
1/2
Metal
film:
4220
r>hns
-!;2'1-,
1/2
Var~able
cermet
5000
ol-.ms ,!:20%,
1/2
w;
sim
to
C'rs
SeriPS
360.
Cnmpmdti<>n:
560
ohm5
:!:G%,
1/4
Composlhon:
l.RK
ohm~
:st.
1/4
w.
Composition:
470
ohms
:!:5'!,
1/2
w.
SYMBOL
R~21
R222
R223
R224
R225
R233
a~d
R234
R235
R236
YR201
VR202
11'201
C297
.
""
C298
C299
CR295
GE
I
\RT
NO.
-sA·too
1~1'41
:
9A
700
•061'8.1
l9A700l06P77
3Rl52P511J
;gA7GOJ13Pl5
_9C850~05P2
:
9A
700_,_12P
15
:91'.700iCo6P75
3R152P241J
403688iP5
:
9A
l29571P:
19Al16'108PC
C9All53~0Pl0
l9A116783P1
:9D416275P2
:90416112Pl
51Y~I7~!-'2
:9A7027S2P5
N207P13C6
:
C!A
70CJ68P1
:IJAIJ6J23P:
'9A
1
~8:161
Pl
•
9Al29361P2
DESCRIPTION
COOlpOSltion·
120
OllmS
!5%,
1/2
w.
Composition
6.8K
ohms
~5%,
1}4
Cumpu~L~ion
3-9K
ubmo-;
,!:51,
1/4
Composition
510
ohms
,!:5\[.,
1/4
w.
Composition
10
ohms
:!:5'I,
l/~
w.
Shunt
res1stor.
Compo5i.tion
10
ohms
:s%,
1 w.
Comt:o~:ltion.
3.3K
ohms
~5%,
1}4
w.
Composition·
?:40
ollms
~~'1,
1/4
w.
VOLTAGE
REGDLATORS -------
7,Pn~r:
.~00
1nll',
2.~
noEninal.
Z<>ner:
500
mW,
5.4
nominal
.
-CABLES----------
~·i,-e
Strap.
HEAT
SINK
ASSEMBLY
19B2l9688Gl
M
llOD~L
&
INTERMJTTAC\"T
J)IITY
S'I'A'I'TO'I
19B219688C13
E
MOD3L
- - CAPACI'tCJtS
ce,-amtc:
0.01
uF
-0
+100't,
500
VOCW,
rat~d
~0
amps;
sim
to
Erie
327050X5W0103P
•
Electrolytic·
200
uP
+-150-lO:t,
18
V:JCII';
~1m
to
Mallory
Type
TTX.
- -
DIOm:S
AND
RECTTF!ERS
- - - - -
Rectifier,
silicon:
100
VDC
block1ng,
b
amp;
to
MR751,
-MISCELLANEOUS - - - - - - - - -
Filter
casting.
Insuhtor.
(Loc
...
tod
1>nder
printed
wiring
boardj.
Wash<>r,
sprin~
tenslon
·
375-20.
to
WallacE'
Barnes
Nut,
t>ex,
brass:
No.
8-32.
(Us<ld
with
Q201
and
Q202).
Hex
nut:
No.
10-33.
{Used
with
Q~O:J;.
Insulator,
hushing.
(Used
with
Q210).
Insulator,
plate.
(Used
with
Q?lO).
:lh
i
<•1
Ei,
(Lo::a
tHd
hetween
L221-L222
and
L22~-L2~:J).
Shield.
(Lo~a
ted
betwe<>n
r
~?.0-!.221)
.
PRODUCTION
CHANGES
Chang.es m
IIHJ
PCJUipmerEt
to improve pertorll"ance or
'O
Simplify circuits are identifieC
by
a
ReVISIOn
Lener_
wh1ch
:S
stamped afterthe
nodcl
number
of the
un•t
The revisionstamped
on
theunit i'lcludes all
previOUS
revESIOns
Re'er to the Par:s List for descnpt10ns nf
P"Ei~
il'IPcled
by
the8e revlSions
RF\'.
A
REV. B
~!l_~a.r~
19D?l7968G1-1
To
lmprov"
np,.r"tion
in
~<lld
temperJ.ture
en;ironmc-nt~
witC
~id<e
fr<•quency
spacing.
Changnd
8R20!.
PA
Boarr!
19n'1l7968G1
1',-,
impr·~YC
sto~band
attcnuatLon
LD
11..-,
2.~-:{C
llll/
nwge.
Ch"nE<'cl
1'260
an(:'
C~65.
l'A
B<1ard
19D4179i)8G2-04
RI-'V.
B - 'l'o
att.,nuate
3,12
c•oEtductGd
spur1<nm
by
chanJ;iug
PA
in)
lEI;
swa!Jped
posit1o"s
,,r
1.~01
ar_d
C20.~.
PA
llnard
1GD117£'63G:J G4
RF:V. C -
'!'cJ
stab1ll7.<'
Q?C3
h)'
r('d,!ccog
base
rc•si~tanoo;
R207
cba,g:ed
l'rom
:JH7R200.J
to
:JR7~10(),J,
REV. D
l'A
Boar~
__
l9D117968G3
To
increa~c
!JO~~r
ouLJlLEt
at
low
end
of
36
t•>
4~
Mf:z
'Jplit.
f'huEtged
C3l7M
fr<Jm
7·18916~P37
(270
pF)
V>
7489162P35
(22C
pl).
and
C250M
from
18All-3656Pl00Jl
1100
PF)
to
1AA1\6E5e)Pl50Jl
(1.~0
pF).
PA
Board
19D417968G1
REV. D - To
1~crease
power
uutput
ar.d
stablllty
at
l•JW
end
of
b~nd.
RFV,
A -
Chan~cd
C205
from
7189162P29
(120
pF)
to
7489162P35
(220
u.'),
Changf'li
C?:711
1re>rn
74~RI621'35
(2~0
rF)
to
7189162Jl:J3
(180
pF).
Ch~ngyd
C2381!
ani
C23'/ll
fr'lm
l9A1l66G6P~6JO
~56
pF)
t.-,
l9A:l66~6P68JO
(68
pf).
PA
fl~~~n-hly
l9C321295G2
&
G:o
~~Gi~~reas~
power
'>Utput;
deleted
Q201
(l0A116839PI).
Added
£_!1-_!ssembl)-
19C:J21395Gl-G4,
G8
GI2
RJo:V.
TC!
in<:r.-,"s''
p0wer
outpu-:.
Changed
Q201
trom
l9A116838I'1
to
19A11696t.~l.
P.EV. B
PA
As6Hmhly
19C32129_5~~--~
'l'o
improve
ope,-ation
of
rx>wer
control
""
42-50
I<!Hz.
50-~'JLtt
PA.
Add.-,d
C280
anc
C2f\1.
Other manuals for MASTR II
7
Table of contents
Other GE Two-way Radio manuals