Cipher Data Products FloppyTape 525 Series Technical specifications

Series
525
FloppyTapeTM
Cartridge
Tape
Drive
Product
Description

Section
1
1.1
1.2
1.3
1.4
2
2.1
2.1.1
2.1.2
2.2
2.2.1
2.2.2
2.2.3
2.3
2.3.1
2.3.2
2.3.3
2.3.4
3
3.1
3.2
3.3
3.4
4
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
5
5.1
5.2
5.3
5.4
5.5
5.5.1
5.5.2
TABLE
OF
CONTENTS
Page
INTRODUCTION
•••••••••••••••••••••••••••••••••••••••••••.•••••••
1-1
Scope
•••••••••••••••••••••••••••••••••••••••••••••••••••••••••
1-1
Terminology
•••••••••••••••••••••••••••••••••••••••••••••••••••
1-1
General
Description
••••••••••••••••••••••••••••••••••••••••••••
1-3
Features
••••••.•••••••••••••••••••••••••••••••••••••••••••••••
1-3
SPECIFICATIONS & RELIABILITY
•••••••••••••••••••••••••••••••••••
2-1
Tape
Specifications
•••••••••••••••••••••••••••••••••••••••••••••
2-1
Record
ing
Times
•••.••••••••••..•••••••••••••••••••••••••••
2-1
Positioning
••••••••••••••••••••••••••••••••••••••••••••••••
2-1
Reliability
•••.••••••••••••••••••••••••••••••••••••••••••••••••
2-2
Mean
Time
Between
Failures
••.•••••••••••••••••••••••••••••
2-2
Mean
Time
To
Repair
•••••••.•••••••••••••••••••••••••••••••
2-2
Preventive
Maintenance
•••••••••••••••••••••••••••••••••••••
2-2
Data
Integrity
•••••••••••••••••••••••••••••••••••••••••••••••••
2-3
Med
ia
•••••••••••••••••••••••••••.••••••••••••••••••••••••
2-3
Recoverable
Read
Errors
••••••••••••••••••••••••••••••••••••
2-3
Non-Recoverable
Read
Errors
••••••••••••••••••••••••••••••••
2-3
Power
Loss
••••••••••••••••••••••••••••••••••••••••••••••••
2-3
FUNCTIONAL CHARACTERISTICS
••••••••••••••••••••••••••••••••••
3-1
General
Description
••••••••••••••••••••••••••••••••••••••••••••
3-1
Read/Write
&
Control
Electronics
••••••••••••••••••••••••••••••••
3-1
Tape
Drive
Mechanism
••••••••••••••••••••••••••••••••••••••••••
3-3
Read/Write
Head
Positioning
Mechanism
••••••••••••••••••••••••••
3-3
FUNCTIONAL DESCRIPTION
••••••••••••••••••••••••••••••••••••••••
4-1
Power
Sequencing
••••••••••••••••••••••••••••••••••••••••••••••
4-1
Stream
Selection
•••••••••••••••••••••••••••••••••••••••••••••••
4-1
Head
Load/Motor
On
•.•••••••••••••••••••••••••••••••••••••••••
4-2
Seg
ment
Accessing
•••••••••••••••••••••••••••••••••••••••••••••
4-2
Step
Out/Step
In
•••••••••••••••••••••••••••••••••••••••••••••••
4-4
Read
Operation
••••••••••••••••••••••••••••••••••••••••••••••••
4-4
Write
Operation
••••••••••••••••••••••••••••••••••••••••••••••••
4-5
Recording
Format
••••••••••••••••••••••••••••••••••••••••••••••
4-6
INTERF
ACE
SIGNALS
•••••••••
Drive
Interface
•••••••••••
Interface
Signal
Levels
••••••••••••••••••••••••••••••••••••••••••
Input
Control
Signals
•••••••••••••••••••••••••••••••••••••••••••
Output
Control
Signals
••••••••••••••••••••••••••••••••••••••••••
Da
ta
Line Signa
Is
••••••••••••••••••••••••••••••••••••••••••••••
Read
Data
Signa1
••••••••••••••••••••••••.•••••••••••••••••••
Write
Data
Signa1
••••••••••••••••••••••••••••••••••••••••••
5-1
5-1
5-4
5-4
5-5
5-6
5-6
5-7
Cipher
Data
Products,
Inc.
reserves
the
right
to
change
specifications
without
notice.
Copyright
1984
i

Section
6
6.1
6.2
6.3
6.4
6.5
7
7.1
7.2
7.3
8
8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
9
9.1
9.2
9.3
9.3.1
9.3.2
9.4
9.4.1
9.4.2
9.4.3
9.4.4
9.4.5
9.4.6
9.5
9.5.1
9.5.2
9.5.3
9.6
9.6.1
9.6.2
9.6.3
TABLE
OF
CONTENTS
(Continued)
Page
PHYSICAL
INTERFACE
CONNECTION
•••••••••••••••••••••••••••••••
6-1
Interface
Connector
Locations
.••••••••••••••••••••••••••••••••••
6-1
Signal
Connector
Dimensions
••••••••••••••••••••••••••••••••••••
6-1
Recommended
Cables
and
Connectors
•••••••••••••••••••••••••••••
6-2
T
ermina
tion
•••••••••••••••••••••••••••••••••••••••••••••••••••
6-
2
Fra
me Ground
•••••••••••••••••••••••••••••••••••••••••••••••••
6-2
PHYSICAL CHARACTERISTICS
••
Mechanical
Dimensions
••••••
Weight
••••••..••.••••.•...•....•...••...••..•....•••.....•.•••
Mounting
.....................................................
.
7-1
7..:1
7-1
7-1
ENVIRONMENTAL CHARACTERISTICS/POWER REQUIREMENTS
•••••••
8-1
Temperature
••••••••••••••••••••••••••••••••••••••••••••••••••
8-1
Humidity
••••••••••••••••••••••••••••••••••••••••••••••••••••••
8-1
Altitude
••••••••••••••••••••••••••••••••••••••••••••••••••••••
8-1
Vib
ration
......................................................
8-1
Shock
•••••.•••••••••••••••••.•••••••••••••••.••.••...••.••••..
8-1
Air
Quality
....................................................
8-1
Acoustical
Noise
•••••••••••••••••••••••••••••••••••••••••••••••
8-2
DC Power
.....................................................
8-2
Heat
Dissipation
•••••••••••••••••••••••••••••••••••••••••••••••
8-'2
Cooling
•••••••••••••••••••••••••••••••••••••••••••••••••••••••
8-2
APPLICATION NOTES
••••••••••••
General
•••••••••••••••••••••
Hardware
Considerations
••••••••••••••••••••••••••••••••••••••••
9-1
9-1
9-2
Encoding
Techniques
••••••••••••••••••••••••••••••••••••••••••••
9-4
Single
Density
(FM)
•••••••
Double
Density
(MFM)
••••••••••••••••••••••••••••••••••••••
Software
Considerations
••••••••••••••••••••••••••••••••••••••••
9-4
9-4
9-4
Drive
Selection
............................................
9-4
Addressable
Tracks
(Segments)
•••••••••••••••••••••••••••••••
9-4
Number
of
Sectors
•••••••.•••••••••••••••••••••••••••••••••
9-5
Stream
Formatting
•••••••••••••••••••••••••••••••••••••••••
9-5
I/O
Buffering
&
Sector
Interleaving
•••••••••••••••••••••••••••
9-5
Retension
Pass
•••••••••••••••••••••••••••••••••••••••••••••
9-6
Formatting
...................................................
.
9-6
9-6
Format
Description
•••••••
Data Integrity
.............................................
9-9
Format
Operation
••••••••••••••••••••••••••••••••••••••••••
9-9
Access
Timing
••••••••••••••••••••••••••••••••••••••••••••••••
9-12
Stream
To
Stream
•••••••••••••••••••••••••••••••••••••••••
9-12
Seg
ment
To Seg
ment
••••••••••••••••••••••••••••••••••••••
Read
Reposit
ion
••••••••••••••••••••••••••••••••••••••••••
ii
9-12
9-14

TABLE
OF
CONTENTS (Continued)
APPENDIX A CONFIGURATION TABLES
••••••••••••••••••••••••••••••
A-I
A.l
A.2
A.3
A.3.1
A.3.2
A.3.3
A.3.4
Jumper
Options..
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
••
A-I
Stream
Selection
Tables..
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
••
A-I
Serv
ice
Aids..
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
••
A-4
Continuous
Forward/Reverse
••••••••••••••••••••••••••••••••••
A-4
Stream
Positioning
-All
Streams
•• • • • • • • • • • • • • • • • • • • • • • • • • • • •
••
A-4
Stream
Positioning
-
Streams
0 & 4 •• • • • • • • • • • • • • • • • • • • • • • • • • •
••
A-4
Cyclic
Tape
Motion..
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
••
A-4
APPENDIX B OPERATING PARAMETER CONSIDERATIONS
••••••••••••••
B-1
B.l
B.2
B.3
B.4
B.5
Time Outs
.........•••.....•...........................•......
B-1
Read
After
Write
...••...............•............•.........•.
B-1
Reinstruct
Timing
•••••••••••••••••••••••••••••••••••••••••••••
B-2
Sectors/Segment
Counts
•••••••••••••••••••••••••••••••••••••••
B-2
Stream
(Drive)
Selection
•••••••••••••••••••••••••••••••••••••••
B-2
iii

Figure
1-1
1-2
LIST
OF
ILLUSTRATIONS
Page
525 FloppyTape Drive
................................................
1-1
The Evolution
of
Floppy
Tape
••••••••••••••••••••••••••••••••••••••••••
1-2
3-1 525
Functional
Block
Diagram
••••••••
•
••••••••••••••••••.••••••••••
3-2
3-2
Component
Location
Layout
••••••••••••••••••••••••••••••••••••••••••
3-3
3-3
Read/Write
Head
Assembly..
• • •• • • • •• • • •
•••••••••••••••••••••••••••
3-3
4--1
4--2
4--3
4--4-
4--5
4--6
5-1
5-2
5-3
5-4-
5-5
5-6
6-1
6-2
6-3
7-1
9-1
9-2
9-3
9-4-
9-5
9-6
9-7
9-8
9-9
9-10
9-11
525
Physical
Tape
Layout
••••••••••.•••••••••••••••••••••••••••••••••
4--1
525
Stream
Partitioning
Layout
•••••••••••••••••••••••••••••••••••••••
4--2
Stream
Access
Flowchart
••••••••••
•
•••••••••••••••••••••••••••••
4--3
Random Seg
ment
Access
Timing
••••••••••••••••••••••••••••••••••••••
4-4
Read Timing
........................................................
4-5
Write Timing
..................
.
.................................
4-6
525 Drive
Interface
525 Drive
Interface
SA4-50
SA850
.........................................
.
I/O Listing
........................................................
.
Interface
Signal
Driver/Receiver
••••••••••••••••••••••••••••••••••••••
Read
Data
Signal -
FM
&
MFM
•••••••••••••••••••••••••••••••••••••
Write
Data
Signal -
FM
&
MFM
••••••••••••••••••••••••••••••••••••
525
Interface
Connectors
-SA450
•••••••••••••••••••••••••••••••••••••
J 1
Interface
Connector
Dimensions
SA4-50
•••••••••••••••••••••••••••••
J1
Interface
Connector
Dimensions -SA850
•••••••••••••••••••••••••••••
5-1
5-2
5-3
5-4-
5-6
5-7
6-1
6-1
6-2
525 Dimensions ..................................................• • • 7-1
Typical Host
System
(Block Diagram)
.•.•••••••••.••...•••.••.••.••••••
9-1
Typical Floppy Disk Host
Controller
•• • •• • • • • • • ••• ••• •••• ••• •• •• • • 9-2
525
Controller
Example
-
SA4-50
•••••••••••••••••••••••••••••••••••••••
9-3
FM
vs.
MFM
Recording
..............................................
9-5
IBM
System 34
Format
Example..
•
•••••••••••••••••••••••••••••••••
9-8
Format
Flowchart..
. . . . . . . . . . . . .
.................................
9-10
Verification Pass
Flowchart
•••••
•
••••••••••••••••••••.••••••••••••
9-10
Stream
Format
Timing
••••••••••••••••••••••••••••••••••••••••••••••
Head Positioning
•••••••••••••••••••••••••••••••••••••••••••••••••
Contiguous
Segment-to-Segment
Timing
•••••••••••••••••••••••••••••
Read
Reposition Timing
•••••••••.•••••••••••••••••••••••••••••••••••
iv
9-11
9-12
9-13
9-14-

SECTION 1
INTRODUCTION
1.1 SCOPE
This
manual
describes
the
electrical
and
mechanical
characteristics
0:tr&ipher
Data
Products'
525
FloppyTape
1/4-inch
cartridge
tape
drive.
It
contains
the
timing,
electrical,
and
mechanical
specifications
for
the
525, which is
available
with
a
data
rate
of
500
KHz
with
SA450 or SA850
interface,
or a 250 KHz
rate
with
a SA450
interface.
It
also
recommends
the
formats
and
circuitry
necessary
to
interface
the
525
to
a host
controller.
The
information
in
this
manual
is
correct
at
the
time
of
publication,
but
is
subject
to
change
without
notice.
This
information
is
the
exclusive
property
of
Cipher
Data
Products,
Inc. and shall not
be
reproduced
in
any
manner
without
the
written
permission
of
Cipher
Data
Products,
Inc.
1.2 TERMINOLOGY
The
following new or, possibly,
unfamiliar
terms
relate
to
FloppyTape
technology:
Figure
1-1. 525
FloppyTape
Drive
o Sector -
smallest
unit
of
addressable
memory
located
within
a
segment.
o Segment -a fixed
length
of
tape
that
emulates
a floppy disk
track.
Each
segment
is
26.55
inches,
and has
the
capacity
(unformatted)
of
20.5
kilobytes.
See
Figure
1-2.
o Stream -one
of
six physical
bit
serial
tracks
recorded
on
tape.
Each
stream
contains
255
segments
(0-254).
See
Figure
1-2.
o Index
Pulse
-a
signal
sent
to
the
host
controller
by
the
525
to
indicate
the
detection
of
an Index Mark. An Index pulse
can
be
used by
the
host
controller
to
initialize
segment
operations.
o Index Mark -a
portion
of
a
stream
in
which
the
oxide is
saturated
in
one
direction.
An Index
Mark
is used
for
the
logical
separation
of
segments.
See
Figure
1-2.
o Upstream -a position on
tape
that
is
between
the
present
location
and
the
logical
End
of
Stream
(EOS).
See
Figure
1-2.
o Downstream -a position on
tape
that
is
between
the
present
location
and
the
logical
Beginning
of
Stream
(BOS).
See
Figure
1-2.
o Host Controller -
the
hardware
required
to
interface
the
525
to
the
host
computer.
1-1

0
0
PHYSICAL
BEGINNING
OF TAPE
INDEX MARKS
, /
I
J--TRKO
I
---------
TRK 0
----
I"
Becomes
26.55"
of
Tape
Recorded
at
6400
BPI
-I
11M I 1SEGMENT -
20.5
K BYTES I
: 4
:
-~~---------------------------------------------------.
11M ISEGMENT
111M
ISEGMENT
211M
I
SEGMENT.....
I\\ ISEGMENT 255
256 Segments become a Stream
STREAM 1
..
0 0 0
..
STREAM 2 0
STREAM 3
...
..
STREAM 4
STREAM 5
..
0 0
..
STREAM 6 o 0
~---------
DATA
AREA 600'
----------a~
Figure 1-2. The Evolution of FloppyTape
1-
2
r
1/4"
0 1
PHYSICAL END
OF
TAPE

1.3 GENERAL DESCRIPTION
The
Cipher
525
FloppyTape
cartridge
tape
drive
is
a low
cost,
computer
data
storage
tape
drive,
employing
the
3M
DC600A
or
any
other
Cipher
approved
1/4-inch
cartridge
tape
media.
The 525
emulates
the
industry
standard
SA850 or SA450
interface
and
responds to
common
floppy disk
drive
commands.
Emulation
of
a floppy disk
drive
is
accomplished
by
the
FloppyTape's
on-board
Z8603
microprocessor.
Data
is
recorded
in a
bit
serial
manner
on
each
one
of
the
six
streams
on
the
tape.
Streams
are
selected
by
the
host
system
via
the
four
Drive
Select
and Side
Select
lines
supported
by
the
standard
SA850 or SA450 bus. The
host
treats
each
stream
as
a
logical
disk
surface.
Prior
to
any
stream
access,
the
host
system
must
select
one
of
the
six
logical
surfaces.
Actual
physical
stream
selection
is
accomplished
by
first
having
the
Z8603
microprocessor
interpret
the
Drive
Select
and
Side
Select
lines,
then
positioning
the
Read/Write
head
on
the
selected
stream.
Each
stream
has
an
unformatted
capacity
of
5.2
megabytes.
Emulation
of
a floppy disk
track
is
achieved
by
partitioning
a
stream
into
26-inch
segments.
Segments
are
separated
by DC
saturated
portions
of
tape
referred
to
as
Index
Marks OMs).
Stream
partitioning
into
segments
by
IMs
is
done
by
the
Z8603
microprocessor
during a
stream
format
operation
initiated
by
the
host
system.
Following
the
format
operation,
the
FloppyTape
uses
the
IMs
to
generate
the
Index Pulse
signal
seen
by
the
host
on
the
interface.
Ilvls
are
also
used
by
the
FloppyTape
to
count
the
26-
inch
increments
of
tape,
when a
segment
seek
operation
is
initiated
by
the
host
system
controller.
The
unformatted
capacity
of
a
segment
is 20.5
Kbytes
(approximately
twice
the
capacity
of
an
8-inch
floppy disk
track).
Segments
are
accessed
by
the
host
system
using
the
floppy
disk
protocol
step
and
direction
lines
from
the
floppy disk
controller.
1.4 FEATURES
The
main
features
of
the
525
FloppyTape
include:
o
Standard
ANSI
cartridge
mounting
o
Precise
head
stepping
o SA450 or SA850 floppy disk
interfaces
o
Operable
with
existing
floppy disk
controller
chips
o
No
AC
requirements
o
5-1/4-inch
form
factor
o High
capacity
storage
(32
MB)
o Soft
sector
type
floppy disk
format
o
Enclosed/removable
media
o Low
maintenance
1-3


SECTION
2
SPECIFICATIONS
&
RELIABILITY
2.1
TAPE
SPECIFICATIONS
Tape
Speed/Transfer
Rate:*
Ramp Time:
Tape Speed Variation
Low Frequency:
Instantaneous:
Write
Pre-compensation:
MF
M Recording Density:
Unformatted
Capacity
(MFM
Recording)
Segment:
Stream:
Cartridge:
Recording Tracks:
Recording Method:
Interface
Code
Recommended:
Available:
2.1.1 Recording Times
78
ips (500
Kbits/sec)
39 ips (250 Kbits/sec)
2.1.2 Positioning
Method:
*Transfer
rate
is
tape
drive
dependent.
2-1
78
ips/SOD
Kbits/sec
or
39
ips/2S0
Kbits/sec
350 ms
Less
than
±2%
Less
than
±6%
200 ns @ 500
Kbits/sec
250 ns @ 250
Kbits/sec
6,400 bpi nominal
26.55 inches = 20.5 Kbytes max.
255
segments
= 5.2 Iv'lbytes
6
streams
= 31.3 Mbytes
6
NRZ
N\odified
Frequency
Modulation (MFM)
Frequency
Nlodulation (FM)
0.333
sec/segment
93
sec/stream
558
sec/cartridge
0.666
sec/segment
186
sec/stream
1,116
sec/cartridge
Multi-position
stepper
motor

2.2
RELIASD...ITY
2.2.1 Mean
Time
Between Failures
(MTBF)
The
MTBF
for
a drive is
defined
as
follows:
Power-on
Hours
MTBF = Number
of
Equipment
Failures
Definitions
Failures
caused
by
operator
error,
or an
out-af-specification
operation,
are
not
counted
as
failures.
Product
Workload is
stated
in
terms
of
a
unit
duty
cycle,
and is
defined
as
actual
tape
motion
time
divided
by
total
power-on
time.
Infant
mortality
failures
which
occur
within
the
first
100 hours of
power-on
time
after
si
te
installation
are
not
considered
in
the
MTBF
calculations.
The
sample
size
must
be
greater
than
100
units
for
the
purpose
of MTBF
calculation.
Production
and design
maturity
improvements
allow
the
MTBF
rate'to
be
achieved
18
months from
start
of
production.
In
the
interim
the
actual
MTBF
might
be
lower.
The
minimum MTBF
for
the
525 is:
Product Workload
20%
40%
60%
80%
2.2.2 Mean Time To Repair (MTTR)
MTBF
(Hours)
19,250
9,625
6,416
4,813
MTTR is defined
as
the
time
for
an
adequately
trained
and
competent
serviceman
to
diagnose and
correct
a
malfunction
at
the
subassembly
level.
The MTTR is
expected
to
be
15
minutes.
2.2.3 Preventive Maintenance
(PM)
The 525
requires
no
service
call
related
PM. The hours of
required
operator
PM
are
related
to
the
product
workload.
2-2

Product
Worklood
20%
40%
60%
80%
Hours
of
PM/I
00
Hours
On
0.1
0.3
0.4
0.4
This
preventive
maintenance,
at
a minimum, involves
cleaning
the
tape
path,
including
the
recording
head and
the
drive
roller
surface.
2.3
DATA
INTEGRITY
Errors
attributed
to
operator
mishandling
of
the
tape
cartridge,
or
errors
on
the
cartridge
which
can
be
detected
and flagged during
formatting,
are
not included
in
determi
ning
error
rates.
2.3.1 Media
Only
cartridges
from Cipher approved
sources
may
be
used, such
as
the
3M
DC600A.
Properly
handled,
the
cartridge
can
be
used
for
at
least
5,000 full length passes. (BOT
to
EOT and
back
to
BOT
is
considered
2 passes.)
2.3.2 Recoverable Read Errors
A
recoverable
error
(soft
error)
is
one which may
be
corrected
by
no
more
than
10
re-
read
attempts.
Data
patterns,
tape
position, and
Read/Write
head position do not
affect
data
error
rate
performance.
The
recoverable
read
error
rate
for
the
525
is
less
than
I in
10
9
bits.
2.3.3 Non-Recoverable Read Errors
A
non-recoverable
read
error
(hard
error)
is
one which
cannot
be
corrected
bYl/O
re-read
attempts.
The
non-recoverable
read
error
rate
for
the
525 is less
than
I in
10
bits.
2.3.4 Power Loss
Accidental
loss
of
DC power will not
result
in any
component
failure.
2-3


SECTION 3
FUNCTIONAL CHARACTERISTICS
3.1 GENERAL DESCRIPTION
The 525 FloppyTape
1/4-inch
cartridge
tape
drive
consists
of
Read/Write
electronics,
control
logic,
tape
drive
mechanism,
head positioning
mechanism,
and
the
Read/Write
head.
These
components
perform
the
following
functions:
o
Interpret,
generate,
and
emulate
floppy disk
drive
control
signals
o Position
the
Read/Write
head
on
the
logically
selected
stream
o Monitor and
control
tape
speed
o Read and Write
data
Figure 3-1 is a block
diagram
of
the
525
FloppyTape.
The
host
system
interfaces
the
525
through
the
control
and
data
signal bus. The
control
signals
are
interpreted,
and
appropriate
action
is
initiated
by
the
tape
motion
control
logic.
Tape is
transported
across
the
Read/Write
head
in
both
directions
by a
direct-drive
DC
capstan
motor.
The
built-in
tachometer
circuit
provides
feedback
to
the
control
electronics
for
constant
motor
speed
adjustment.
A photo
detector
senses
the
Beginning
Of
Tape
(BOT),
the
Early Warning (EW), and
the
End
Of
Tape (EOT) holes. The on-board
microprocessor
initiates
subsequent
control
actions.
The Write
protect
circuitry
guards
against
accidental
alterations
of
recorded
data
inhibiting
the
Write
electronics
when
the
cartridge
tumbler
is in
the
"safe"
position.
Figure 3-2 shows
the
physical
locations
of
these
components
on
the
525
chassis.
3.2
READ/WRITE
&:
CONTROL ELECTRONICS
The
Read/Write
and
control
electronics
are
located
on a single
Printed
Circuit
Board
(PCB). The PCB
components
include
the
following
circuits:
o Index
Detector/Generator
o Write
Current
Driver
o Read
Amplifier
and
Transition
Detector
o Write
Protect
Logic
o Logical
Drive/Stream
Selection
o Tape
Speed/Capstan
Control
o Tape Hole Monitor
3-1

--
READ
DATA
-
WRITE
DATA
-
-
WRITE
GATE
--
-
WR
ITE
PROTECT
-
STEP
..
DIRECTION
-
~
TRKtl~
INDEX
...
-
MOTOR
ON
--
.
-
READY
-
DS1
..
.
DS2
..
~
DS3 ..
SEL
.
DS4 _
-
SIS
--
~
READ
AMP
WRITE
LOGIC
~~
CONTROL
LOGIC
--
,
INDEX
DETECT
f+-
ENABLE
MTR
DRV
~~
4~
DIRECTION
...
HI SPEED
-
...
LTH
-
...
UTH
-
-
.
~~
-
HEAD
-
R:3:
~
I
EOT·
BOT
1
SENSOR I
,..
~
.....
I
I
I
I
I
I
I
I
n
HEAD
-
"'OSITION
Figure
3-1. 525
Functional
Block
Diagram
3-2

CARRIAGE
READ/WRITE
HEAD
Figure
3-2.
Component
Location
Layout
3.3
TAPE DRIVE MECHANISM
TAPE HOLE
MONITOR
WR
ITE
PROTECT/
CARTRIDGE
IN
SWITCHES
The
tape
drive
capstan
is driven
by
a
three-phase,
brushless DC
motor.
Feedback
from
the
integral
tachometer
is
utilized
by
the
on-board
microprocessor
for
accurate
pulse-
width
modulation
speed
control.
Precise
cartridge-to-head
alignment
is
accomplished
with
a
"floating"
cartridge
carriage
assembly.
Forces
applied,
similar
to
those
recommended
by
ANSI 3.55-1977,
locate
the
cartridge
positively
against
the
three
registration
pins and
the
datum
surfaces
of
the
deck
plate.
This
configuration
assures
exact
media
positioning. A sliding
contact
pin
opens
the
tape
cartridge
door
to
enable
contact
between
the
media
and
Read/Write
head.
3.4
READ/WRITE HEAD POSITIONING MECHANISM
The
Read/Write
head is
positively
locked
against
the
media
by
an
upward
turn
of
the
cartridge
lock
lever.
Stream
access
is
performed
by
a
multi-position
four-phase
head
stepper
motor.
The
head
stepper
motor
is driven by
the
control
logic
in
response
to
Dri
ve/Side
Select
signals
received
from
the
host
controller.
The
stepper
mechanism
provides
an
approximate
step
size
of
one mil (0.001
inch)
to
position
the
head.
The 525 is designed
with
a
single
element,
glass-bonded
ferrite/ceramic
head
with
tunnel
erase.
PPER
MOTOR
LEAD
SCREW
...
----CyLlNDER
GRAPHITE
PISTON
READ;WRITE HEAD
Figure
3-3.
Read/Write
Head
Assembly
3-3


SECTION 4
FUNCTIONAL DESCRIPTION
4.1 POWER SEQUENCING
The DC
voltage
(+5V, +12V)
can
be
applied
in
any
sequence.
However,
in
order
to
maintain
data
integrity
during
power-up,
the
Write
Gate
line
must
be
held
inactive,
or
the
cartridge
lock
lever
must
be
in
the
open
position.
On a
power-up
sequence,
or
the
insertion
of
a new
cartridge,
the
drive
automatically
performs
a
retension
pass
of
the
tape,
leaving
the
medium
positioned
at
Stream
1,
Segment~.
(See
Paragraph,
9.4.6)
4.2
STREAM SELECTION
Stream
selection
occurs
as
a
function
of
the
Drive
and Side
Select
lines.
These
lines
are
used
as
inputs
to
a
decode
PROM. Through
the
use
of
three
jumpers
(W
1,
W2,
W3), a
total
of
seven
possible
stream
configurations
can
be
derived.
(See
Stream
Selection
Tables,
Appendix A.)
When a new
stream
is
selected
and
the
Head
Load
or
Motor On line
asserted,
the
tape
automatically
moves
to
Segment
0
of
that
stream.
If
no
Step
pulses
are
received,
the
tape
will
position
on
the
new
stream
at
the
same
segment
number
as
on
the
previous
stream.
Each
time
a new
stream
is
selected,
it
is
recommended
that
the
host
issue a
recalibrate
command
to
its
controller
to
avoid
tape
device/controller
confusion.
(See
Figures
4-1
and
4-2.)
STREAM 1
..
f
0 0 0 0
..
STREAM 2 0
STREAM
3
.,
..
STREAM 4
1/4"
STKEAM
5
..
1
0 0 0
..
STREAM
6 0 0 0
EARLY
18" 18"
18'1
WARNING
HOLE
PHYSICAL
..
I
PHYSICAL
END
BEGINNING
DATA
AREA
600' OF TAPE
OF TAPE i
Figure
4-1.
525
Physical
Tape
Layout
4-1

STREAM
INDEX
MARK
(DC ERASED
AREA
OF
TAPE)
SEGMENT
1M
SEGMENT
1M
SEGMENT
I
....
~I--------SEGMENT-------~
A
LENGTH
OF TAPE WHOSE
BIT
CELL
CAPACITY
IS
20.5 K BYTES
SECTOR- SECTOR-
NOTE-
THE
SOFT
SECTORING
OF
A
SEGMENT
IS A
FUNCTION
OF
THE
HOST
CONTROLLER
1M
Figure
4-2.
525
Stream
Partitioning
Layout
4.3 HEAD LOAD/MOTOR ON
SEGMENT
1M
SEGMENT
The Head Load line on
the
SA850
interface
serves
the
same
purpose
as
the
Motor
On
line
on
the
SA450
interface.
This line
must
be
asserted
in
order
to Write or
Read
data_
Following
the
assertion
of
the
Head
Load/Motor
On
line, a 400 ms
nominal
delay
is
introduced
prior
to
any
data
operation
to
allow
the
medium
to
reach
full
operating
speed.
If
the
Head
Load/Motor
On
line
is
asserted
and no
Step
pulses
are
issued by
the
host,
the
525
always
repositions
to
the
last
accessed
segment.
If,
after
four
seconds,
accessing
has
still
not
occurred,
the
host
should
deactivate
the
Head
Load/Motor
On line
to
avoid
excessive
wear
of
the
medium.
4.4 SEGMENT ACCESSING
Segment
accessing
requires
the
host
controller
to
perform
the
following
steps:
a.
Select
the
desired
stream
b.
Activate
the
Head
Load/Motor
On
line
c.
Read
the
segment/sector
address
mark
from
the
tape
d.
Compare
the
segment/sector
address
read
from
the
tape
to
the
target
segment/sector
address.
If
there
is a
mismatch,
go
to
Step
e.
Otherwise
go
to
Step
f.
e.
Address
mismatch:
determine
the
direction
of
the
target
segment
within
the
stream
and
activate
the
Direction
line accordingly. Issue
Step
pulses
equal
to
the
offset
difference
between
the
actual
and
the
target
address.
With
the
Head
Load/Motor
On line
still
asserted
and
with
an incoming
stream
of
Step
pulses,
the
525 responds by moving
the
tape
in
the
direction
selected
by
the
Direction
line
until
the
number
of
Index Marks passed is
equal
to
the
number
of
Step
pulses
received.
At
this
point,
the
host
should
reenter
this
procedure
at
Step
c.
This
process
is
repeated
until
a
segment
address
mark
compare
occurs.
(See Figure 4-3.)
f.
Address
match:
access
the
appropriate
sector
within
the
segment.
4-2

SELECT
DESIRED
STREAM
ACTIVATE
HEAD LOAD I
MOTOR
ON
READ
ADDRESS
MARK
FROM TAPE
SET
DIRECTION LINE
ISSUE
STEP
PULSE
YES
HOST CONTINUES
OPERATION
Figure 4-3.
Stream
Access
Flowchart
4-3
Table of contents