Delta Tau Accessory 11E User manual

Artisan Technology Group is your source for quality
new and certied-used/pre-owned equipment
• FAST SHIPPING AND
DELIVERY
• TENS OF THOUSANDS OF
IN-STOCK ITEMS
• EQUIPMENT DEMOS
• HUNDREDS OF
MANUFACTURERS
SUPPORTED
• LEASING/MONTHLY
RENTALS
• ITAR CERTIFIED
SECURE ASSET SOLUTIONS
SERVICE CENTER REPAIRS
Experienced engineers and technicians on staff
at our full-service, in-house repair center
WE BUY USED EQUIPMENT
Sell your excess, underutilized, and idle used equipment
We also offer credit for buy-backs and trade-ins
www.artisantg.com/WeBuyEquipment
REMOTE INSPECTION
Remotely inspect equipment before purchasing with
our interactive website at www.instraview.com
LOOKING FOR MORE INFORMATION?
Visit us on the web at www.artisantg.com for more
information on price quotations, drivers, technical
specications, manuals, and documentation
Contact us: (888) 88-SOURCE | sales@artisantg.com | www.artisantg.com
SM
View
Instra

1^ USER MANUAL
^2 Accessory 11E
^3 Opto 24 Input / 24 Output Board
^4 3Ax-600307-xUxx
^5 September 29, 2003
Single Source Machine Control Power // Flexibility // Ease of Use
21314 Lassen Street Chatsworth, CA 91311 // Tel. (818) 998-2095 Fax. (818) 998-7807 // www.deltatau.com
Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Copyright Information
© 2003 Delta Tau Data Systems, Inc. All rights reserved.
This document is furnished for the customers of Delta Tau Data Systems, Inc. Other uses are
unauthorized without written permission of Delta Tau Data Systems, Inc. Information contained
in this manual may be updated from time-to-time due to product improvements, etc., and may not
conform in every respect to former issues.
To report errors or inconsistencies, call or email:
Delta Tau Data Systems, Inc. Technical Support
Phone: (818) 717-5656
Fax: (818) 998-7807
Email: [email protected]
Website: http://www.deltatau.com
Operating Conditions
All Delta Tau Data Systems, Inc. motion controller products, accessories, and amplifiers contain
static sensitive components that can be damaged by incorrect handling. When installing or
handling Delta Tau Data Systems, Inc. products, avoid contact with highly insulated materials.
Only qualified personnel should be allowed to handle this equipment.
In the case of industrial applications, we expect our products to be protected from hazardous or
conductive materials and/or environments that could cause harm to the controller by damaging
components or causing electrical shorts. When our products are used in an industrial
environment, install them into an industrial electrical cabinet or industrial PC to protect them from
excessive or corrosive moisture, abnormal ambient temperatures, and conductive materials. If
Delta Tau Data Systems, Inc. products are directly exposed to hazardous or conductive materials
and/or environments, we cannot guarantee their operation.
Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Accessory 11E
Table of Contents i
Table of Contents
INTRODUCTION...................................................................................................................................... 1
HARDWARE SETUP................................................................................................................................ 3
Jumpers .................................................................................................................................................... 3
E1-E4: I/O Gate Transfer Jumpers .................................................................................................... 3
E5: I/O Gate Data Clock Select.......................................................................................................... 3
E6A-E6H: Node Select Jumpers......................................................................................................... 3
E16-E21*: Sinking or Sourcing Output Select................................................................................... 4
Hardware Address Limitations ................................................................................................................ 4
Addressing Conflicts............................................................................................................................ 4
Type A and Type B Example 1: ACC-11E and ACC-36E.................................................................... 5
Type A and Type B Example 2: ACC-11E and ACC-65E.................................................................... 5
USING ACC-11E WITH UMAC TURBO............................................................................................... 7
UMAC-Turbo Memory Mapping for ACC-11E...................................................................................... 7
Control Register....................................................................................................................................... 7
Direction Control Bits ......................................................................................................................... 7
Register Select Control Bits................................................................................................................. 8
Control Word Setup Example.............................................................................................................. 8
Accessory 11E I/O M-Variables for UMAC Turbo................................................................................. 9
MACRO-STATION I/O TRANSFER.................................................................................................... 11
MACRO I/O Gate Locations ................................................................................................................. 11
Node Addresses ..................................................................................................................................... 11
MACRO Station I/O Node Transfer Addresses.................................................................................. 11
PMAC2 Ultralite I/O Node Addresses............................................................................................... 12
PMAC2 TURBO Ultralite I/O Node Addresses................................................................................. 12
MACRO I/O Software Settings ............................................................................................................. 13
Using the MACRO I/O Accessories ...................................................................................................... 17
MACRO Station Input and Output Concepts..................................................................................... 18
Reading and Writing to Node Addresses............................................................................................... 18
Example Setup:.................................................................................................................................. 18
PMAC2 Ultralite Example M-Variable Definitions .............................................................................. 20
PMAC2 TURBO Ultralite Example M-Variable Definitions................................................................ 21
Example 1: 48 Inputs 48 Outputs Using 3×16-Bit Transfers................................................................. 22
Example 2: 48 Inputs 48 Outputs Using 1×24-Bit Transfers................................................................ 23
Example 3: 36 Inputs 36 Outputs Using 1×72-Bit Transfer ................................................................. 24
Setting up Control Word for MACRO I/O ............................................................................................ 25
I/O Terminals......................................................................................................................................... 26
TB1 Top (12-Pin Terminal Block)..................................................................................................... 26
TB2 Top (12-Pin Terminal Block)..................................................................................................... 27
TB3 Top (3-Pin Terminal Block)....................................................................................................... 27
TB1 Bottom (12-Pin Terminal Block)................................................................................................ 27
TB2 Bottom (12-Pin Terminal Block)................................................................................................ 28
* Sinking or Sourcing Output Select.................................................................................................. 28
TB3 Bottom (3-Pin Terminal Block).................................................................................................. 28
DB15 Style Connector J1 Top – Inputs 1 through 12............................................................................ 29
J1 Top Connector .............................................................................................................................. 29
DB15 Style Connector J2 Top – Inputs 12 through 24.......................................................................... 29
J2 Top Connector .............................................................................................................................. 29
DB15 Style Connector J1 Bottom – Outputs 1 through 12.................................................................... 30
J1 Bottom Connector......................................................................................................................... 30
* Sinking or Sourcing Output Select.................................................................................................. 30
DB15 Style Connector J2 Bottom – Outputs 12 through 24.................................................................. 31
Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Accessory 11E
ii Table of Contents
J2 Bottom Connector......................................................................................................................... 31
* Sinking or Sourcing Output Select.................................................................................................. 31
UBUS PINOUTS ...................................................................................................................................... 33
P1 UBUS (96-Pin Header).................................................................................................................... 33
Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Accessory 11E
Introduction 1
INTRODUCTION
The PMAC Accessory 11E is a general-purpose input/output board to the UMAC-Turbo or
UMAC-MACRO systems. It may be configured for a wide variety of different uses to serve many
diverse applications. ACC-11E provides 24 lines of optically isolated inputs and 24 lines of
optically isolated outputs. The actual I/O reads and writes are carried out using M-variables,
which will be described later. ACC-11E is one of the series of 3U rack I/O accessories designed
to transfer data through the UMAC BUS (UBUS). The other boards in the family UBUS I/O
Accessory products include the following:
ACC-9E 48 optically isolated inputs
ACC-10E 48 optically isolated outputs, low power
ACC-11E 24 inputs and 24 outputs, low power, all optically isolated
ACC-12E 24 inputs and 24 outputs, high power, all optically isolated
ACC-14E 48-bits TTL level I/O
The inputs to the ACC-11E board have an activation range from 12V to 24V, and can either be
sinking or sourcing depending on the reference to the opto circuitry. The opto-isolator IC used is
a PS2705-4NEC-ND quad photo-transistor output type. This IC allows the current to flow from
return to flag (sinking) or from flag to return (sourcing).
The output drivers are organized in a set of three 8-bit groups. Each group (each byte) may be
ordered with either current sourcing drivers (default) or with current sinking drivers. The default
configuration of this accessory board uses UDN2981 current sourcing drivers for the three 8-bit
output groups. With this configuration, the current drawn from each output line should be limited
to 100mA at voltage levels between 12 and 24 volts. Custom configurations are available for
current sinking applications. In current sinking configurations, one ULN2803 driver is used per
each 8-bit output group. Each open collector output line can sink up to 100mA when pulled up to
a voltage level between 12 and 24 volts (external pull-up resistors are not supplied).
Sinking Outputs: Sourcing Outputs:
7.2K 3K
+V
2.7K
INVERTING, OPEN COLLECTOR, SINKING, 12-24V
OUTPUT CHIP EQUIVALENT
CIRCUIT ULN2803 FOR SINKING
3K
+V
1.5K
7.2K
20K
NON-INVERTING, SOURCING, 12-24V
OUTPUT CHIP EQUIVALENT
CIRCUIT UDN2981 FOR SOURCING
Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Accessory 11E
Introduction
2
Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Accessory 11E
Hardware Setup 3
HARDWARE SETUP
The Accessory 11E must have several jumpers configured to work properly with other I/O cards
in the ring. The jumpers used on this board will select the starting I/O Gate Array transfer
address and the MACRO Station I/O Node to be transferred to.
Jumpers
E1-E4: I/O Gate Transfer Jumpers
Jumper Chip Select UMAC MACRO UMAC TURBO
E1 10 $FFE0 or $8800* $078C00 (default)
E2 12 $FFE8 or $8840* $078D00
E3 14 $FFF0 or $8880* $078E00
E4 16 $88C0* $078F00
* Could not be used with legacy MACRO CPU’s (rev 100 – rev 104) but $FFE0, $FFE8
and $FFF0 can be used with legacy MACRO CPU’s.
E5: I/O Gate Data Clock Select
Jumper Function
E5 Servo Clock 2-3
Phase Clock (default)
E6A-E6H: Node Select Jumpers
Jumper Setting UMAC MACRO UMAC Turbo
E6A-E6H 1-2 (default*) 1st I/O node set by MI69 and MI70
1st and 2nd node by MI71 Uses Bits 0 – 7 for six consecutive
memory locations (48-bits)
E6A-E6H 2-3 or 3-4 2nd I/O node set by MI69 and MI70
3rd and 4th node by MI71 Uses Bits 8 – 15 for six consecutive
memory locations (48-bits)
E6A-E6H 4-5 3rd I/O node set byMI69 and MI70
5th and 6th node by MI71 Uses Bits 16 – 23 for six consecutive
memory locations (48-bits)
*Could be different if Delta Tau built and tested the UMAC at the factory.
Example: If the UMAC MACRO Rack specified two ACC-9E’s, one board would have E6A-E6H jumpered
1-2 and the next board would be jumpered 2-3, etc.
E6A
E6B
E6C
E6G
E6E
E6F
E6D
E6H
1
2
3
4
5
E6A – E6H Layout Diagram
Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Accessory 11E
Hardware Setup
4
E16-E21*: Sinking or Sourcing Output Select
Jumpers Descriptions
E16 & E17 Sinking inputs with the ULN2803A IC for outputs 25 through 32
2-3 Sourcing outputs with the UDN2981A IC for outputs 25 through 32
E18 & E19 1-2 Sinking inputs with the ULN2803A IC for outputs 33 through 40
2-3 Sourcing outputs with the UDN2981A IC for outputs 33 through 40
E20 & E21 1-2 Sinking inputs with the ULN2803A IC for outputs 41 through 48
2-3 Sourcing outputs with the UDN2981A IC for outputs 41 through 48
* Set by factory
Hardware Address Limitations
The ACC-11E has a hardware address limitation relative to the newer series of UMAC high-
speed IO cards. The new IO cards have four addresses per chip select (CS10, CS12, CS14, and
CS16). This enables these cards to have up to 16 different addresses. The ACC-9E, ACC-10E,
ACC-11E, and ACC-12E all have one address per chip select but also have the low-byte, middle-
byte, and high-byte type of addressing scheme and allows for a maximum of twelve of these IO
cards.
UMAC Card Types
UMAC CARD Number of
Addresses Category Maximum
# of cards
Card Type
ACC-9E, ACC-10E
ACC-11E, ACC-12E 4 General IO 12 A
ACC-65E, ACC-66E
ACC-67E, ACC-68E
ACC-14E
16 General IO 16 B
ACC-28E, ACC-36E
ACC-59E 16 ADC and DAC 16 B
ACC-53E, ACC-57E
ACC-58E 16 Feedback Devices 16 B
Chip Select Addresses
Chip
Select UMAC Turbo
Type A Card MACRO
Type A Card UMAC Turbo
Type B Card MACRO
Type B Card
10 $078C00 $FFE0 or $8800 $078C00, $079C00
$07AC00, $07BC00 $8800,$9800
$A800,$B800
12 $078D00 $FFE8 or $8840 $078D00, $079D00
$07AD00, $07BD00 $8840,$9840
$A840,$B840
14 $078E00 $FFF0 or $8880 $078E00, $079E00
$07AE00, $07EC00 $8880,$9880
$A880,$B880
16 $078F00 $88C0 $078F00, $079F00
$07AF00, $07BF00 $88C0,$98C0
$A8C0,$B8C0
Addressing Conflicts
When just using only the type A UMAC cards or using only the type B UMAC cards in an
application, the user does not have to worry about potential addressing conflicts other than
making sure the individual cards are set to the addresses as specified in the manual.
If the user has both type A and type B UMAC cards in their rack they should be aware of the
possible addressing conflicts. If the customer is using the Type A card on a particular Chip Select
(CS10, CS12, CS14, or CS16) then they cannot use a Type B card with the same Chip Select
Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Accessory 11E
Hardware Setup 5
address unless the Type B card is a general IO type. If the Type B card is a general IO type, then
the Type B card will be the low-byte card at the Chip Select address and the Type A card(s) will
be setup at as the middle-byte and high-byte addresses.
Type A and Type B Example 1: ACC-11E and ACC-36E
If the user has an ACC-11E and ACC-36E, the user cannot allow both cards to use the same Chip
Select because the data from both cards will be overwritten by the other card.
The solution to this problem is to make sure you do not address both cards to the same chip
select.
Type A and Type B Example 2: ACC-11E and ACC-65E
For this example the user could allow the two cards to share the same chip select because the
ACC-65E is a general purpose IO Type B card. The only restriction in doing so is that the ACC-
65E must be considered the low-byte addressed card and the ACC-11E must be jumpered to
either the middle or high bytes (jumper E6A-E6H).
Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Accessory 11E
Hardware Setup
6
Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Accessory 11E
Using ACC-11E with UMAC Turbo 7
USING ACC-11E WITH UMAC TURBO
For the UMAC-Turbo, the ACC-11E can be used for either general purpose I/O or as latched
inputs. The registers used for general I/O use are 8-bit registers and the user will define three 8-
bit registers for each 24-bit I/O port..
UMAC-Turbo Memory Mapping for ACC-11E
The Delta Tau I/O Gate used on the ACC-11E is an 8-bit processor and therefore the memory
mapping to the I/O bits is processed as 8-bit words at the Turbo UMAC. Using this simple
scheme the user could process up to 576 (144×4) bits of data for general purpose I/O.
Jumper E1 Jumper E2 Jumper E3 Jumper E4 Description
Y:$078C00,0,8 Y:$078D00,0,8 Y:$078E00,0,8 Y:$078F00,0,8 I/O bits 0-7
Y:$078C01,0,8 Y:$078D01,0,8 Y:$078E01,0,8 Y:$078F01,0,8 I/O bits 8-15
Y:$078C02,0,8 Y:$078D02,0,8 Y:$078E02,0,8 Y:$078F02,0,8 I/O bits 16-23
Y:$078C03,0,8 Y:$078D03,0,8 Y:$078E03,0,8 Y:$078F03,0,8 I/O bits 24-31
Y:$078C04,0,8 Y:$078D04,0,8 Y:$078E04,0,8 Y:$078F04,0,8 I/O bits 32-39
Y:$078C05,0,8 Y:$078D05,0,8 Y:$078E05,0,8 Y:$078F05,0,8 I/O bits 40-47
E6A-E6H
1-2
Y:$078C07,0,8 Y:$078D07,0,8 Y:$078E07,0,8 Y:$078F07,0,8 Control Word
Y:$078C00,8,8 Y:$078D00,8,8 Y:$078E00,8,8 Y:$078F00,8,8 I/O bits 0-7
Y:$078C01,8,8 Y:$078D01,8,8 Y:$078E01,8,8 Y:$078F01,8,8 I/O bits 8-15
Y:$078C02,8,8 Y:$078D02,8,8 Y:$078E02,8,8 Y:$078F02,8,8 I/O bits 16-23
Y:$078C03,8,8 Y:$078D03,8,8 Y:$078E03,8,8 Y:$078F03,8,8 I/O bits 24-31
Y:$078C04,8,8 Y:$078D04,8,8 Y:$078E04,8,8 Y:$078F04,8,8 I/O bits 32-39
Y:$078C05,8,8 Y:$078D05,8,8 Y:$078E05,8,8 Y:$078F05,8,8 I/O bits 40-47
E6A-E6H
2-3 or 3-4
Y:$078C07,8,8 Y:$078D07,8,8 Y:$078E07,8,8 Y:$078F07,8,8 Control Word
Y:$078C00,16,8 Y:$078D00,16,8 Y:$078E00,16,8 Y:$078F00,16,8 I/O bits 0-7
Y:$078C01,16,8 Y:$078D01,16,8 Y:$078E01,16,8 Y:$078F01,16,8 I/O bits 8-15
Y:$078C02,16,8 Y:$078D02,16,8 Y:$078E02,16,8 Y:$078F02,16,8 I/O bits 16-23
Y:$078C03,16,8 Y:$078D03,16,8 Y:$078E03,16,8 Y:$078F03,16,8 I/O bits 24-31
Y:$078C04,16,8 Y:$078D04,16,8 Y:$078E04,16,8 Y:$078F04,16,8 I/O bits 32-39
Y:$078C05,16,8 Y:$078D05,16,8 Y:$078E05,16,8 Y:$078F05,16,8 I/O bits 40-47
E6A-E6H
4-5
Y:$078C07,16,8 Y:$078D07,16,8 Y:$078E07,16,8 Y:$078F07,16,8 Control Word
Because the data processed at these I/O Gate Arrays are extremely fast, the user were to map the
machine I/O to the ACC-11E memory locations, they could do read or write bit wise or using 8-
bit words.
Control Register
The control register at address {Base + 7} permits the configuration of the IOGATE IC to a
variety of applications. The control register consists of eight write/read-back bits – Bits 0 - 7.
The control register consists of two sections: Direction Control and Register Select.
The direction control allows the user to set his/her input bytes to be read only. One of the
advantages of the IOGATE IC is that we give the user the ability to define the bits as inputs or
outputs. This “control” mechanism allows the user to ensure the inputs will always be read
properly. Our traditional I/O accessories always define the inputs and outputs by hardware.
The register select bits allow the user to define the input or output bytes inversion control or the
latching input features.
Direction Control Bits
Bits 0 to 5 of the control register simply control the direction of the I/O for the matching
numbered data register. That is, Bit ncontrols the direction of the I/O at {Base + n}. A value of
0 in the control bit (the default) permits a write operation to the data register, enabling the output
function for each line in the register. Enabling the output function does not prevent the use of
Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Accessory 11E
Using ACC-11E with UMAC Turbo
8
any or all of the lines as inputs, as long as the outputs are off (non-conducting). A value of 1 in
the control bit does not permit a write operation to the data register, disabling the output,
reserving the register for inputs.
Example: A value of 1 in Bit 3 disables the write function into the data register at address {Base
+ 3}, ensuring that lines IO24 - IO31 can always be used as inputs.
Register Select Control Bits
Bits 6 and 7 of the control register together select which of 4 possible registers can be accessed at
each of the addresses {Base + 0} through {Base + 5}. They also select which of 2 possible
registers can be selected at {Base + 6}.
The following table explains how these bits select registers:
Bit 7 Bit 6 Combined
Value {Base + 0} to {Base + 5}
Register Selected {Base + 6} Register
Selected
0 0 0 Data Register Data Register
0 1 1 Setup Register 1 Setup Register
1 0 2 Setup Register 2 n. a.
1 1 3 Setup Register 3 n. a.
In a typical application, non-zero combined values of Bits 6 and 7 are only used for initial
configuration of the IC. These values are used to access the setup registers at the other addresses.
After the configuration is finished, zeros are written to both Bits 6 and 7, so the data registers at
the other registers can be accessed.
Control Word Setup Example
The user will need to setup the control words for the IO card at power up. A simple plc could be
written to setup the control word properly could accomplish this task. For this example, we will
be setting up one ACC-11E (IC0 –24in/24out), one ACC9E (IC1 - 48 inputs), and one ACC-10E
(IC2 - 48 outputs).
Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Accessory 11E
Using ACC-11E with UMAC Turbo 9
Control Word for ACC-11E (M2007->Y:$078C07,0,8)
Hex ($) 0 7
Binary 0 0 0 0 0 1 1 1
Bit 7 6 5 4 3 2 1 0
M2000->Y:$078C00,0,8 ;I/O bits 0-7 (port A IC0)
M2001->Y:$078C01,0,8 ;I/O bits 8-15 (port A IC0)
M2002->Y:$078C02,0,8 ;I/O bits 16-23 (port A IC0)
M2003->Y:$078C03,0,8 ;I/O bits 0-7 (port B IC0)
M2004->Y:$078C04,0,8 ;I/O bits 8-15 (port B IC0)
M2005->Y:$078C05,0,8 ;I/O bits 16-23 (port B IC0)
M2006->Y:$078C06,0,8 ;register selected
M2007->Y:$078C07,0,8 ;control register
M2008->Y:$078C00,8,8 ;I/O bits 0-7 (port A IC1)
M2009->Y:$078C01,8,8 ;I/O bits 8-15 (port A IC1)
M2010->Y:$078C02,8,8 ;I/O bits 16-23 (port A IC1)
M2011->Y:$078C03,8,8 ;I/O bits 0-7 (port B IC1)
M2012->Y:$078C04,8,8 ;I/O bits 8-15 (port B IC1)
M2013->Y:$078C05,8,8 ;I/O bits 16-23 (port B IC1)
M2014->Y:$078C06,8,8 ;register selected
M2015->Y:$078C07,8,8 ;control register
M2016->Y:$078C00,16,8 ;I/O bits 0-7 (port A IC2)
M2017->Y:$078C01,16,8 ;I/O bits 8-15 (port A IC2)
M2018->Y:$078C02,16,8 ;I/O bits 16-23 (port A IC2)
M2019->Y:$078C03,16,8 ;I/O bits 0-7 (port B IC2)
M2020->Y:$078C04,16,8 ;I/O bits 8-15 (port B IC2)
M2021->Y:$078C05,16,8 ;I/O bits 16-23 (port B IC2)
M2022->Y:$078C06,16,8 ;register selected
M2023->Y:$078C07,16,8 ;control register
;**** PLC to initialize read/write I/O bits ****
OPEN PLC 1 CLEAR
M2007=$07 ;define bits 0-23 as inputs and bits 24-47 as
;outputs (ACC-11E)
M2015=$3F ;define bits 0-23 and 24-47 as inputs (ACC-9E)
M2023=$00 ;define bits 0-23 and 24-47 as outputs (ACC-10E)
DIS PLC1
CLOSE
Accessory 11E I/O M-Variables for UMAC Turbo
The following is a list of suggested M-variables for the default jumper settings is provided. You
may assign any M-variables to these addresses. The user may make these M-variable definitions
and use them as general purpose I/O for their PLC’s or motion programs.
Bits 0-7 are read only
Bits 8-15 are read only
Bits 16-23 are read only
Bits 24-31 are
read/write
Bits 32
-
39
are
Register
Select
Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Accessory 11E
Using ACC-11E with UMAC Turbo
10
M7000->Y:$078C00,0,1 Input 0 M7024->Y:$078C03,0,1 Output 0
M7001->Y:$078C00,1,1 Input 1 M7025->Y:$078C03,1,1 Output 1
M7002->Y:$078C00,2,1 Input 2 M7026->Y:$078C03,2,1 Output 2
M7003->Y:$078C00,3,1 Input 3 M7027->Y:$078C03,3,1 Output 3
M7004->Y:$078C00,4,1 Input 4 M7028->Y:$078C03,4,1 Output 4
M7005->Y:$078C00,5,1 Input 5 M7029->Y:$078C03,5,1 Output 5
M7006->Y:$078C00,6,1 Input 6 M7030->Y:$078C03,6,1 Output 6
M7007->Y:$078C00,7,1 Input 7 M7031->Y:$078C03,7,1 Output 7
M7008->Y:$078C01,0,1 Input 8 M7032->Y:$078C04,0,1 Output 8
M7009->Y:$078C01,1,1 Input 9 M7033->Y:$078C04,1,1 Output 9
M7010->Y:$078C01,2,1 Input 10 M7034->Y:$078C04,2,1 Output 10
M7011->Y:$078C01,3,1 Input 11 M7035->Y:$078C04,3,1 Output 11
M7012->Y:$078C01,4,1 Input 12 M7036->Y:$078C04,4,1 Output 12
M7013->Y:$078C01,5,1 Input 13 M7037->Y:$078C04,5,1 Output 13
M7014->Y:$078C01,6,1 Input 14 M7038->Y:$078C04,6,1 Output 14
M7015->Y:$078C01,7,1 Input 15 M7039->Y:$078C04,7,1 Output 15
M7016->Y:$078C02,0,1 Input 16 M7040->Y:$078C05,0,1 Output 16
M7017->Y:$078C02,1,1 Input 17 M7041->Y:$078C05,1,1 Output 17
M7018->Y:$078C02,2,1 Input 18 M7042->Y:$078C05,2,1 Output 18
M7019->Y:$078C02,3,1 Input 19 M7043->Y:$078C05,3,1 Output 19
M7020->Y:$078C02,4,1 Input 20 M7044->Y:$078C05,4,1 Output 20
M7021->Y:$078C02,5,1 Input 21 M7045->Y:$078C05,5,1 Output 21
M7022->Y:$078C02,6,1 Input 22 M7046->Y:$078C05,6,1 Output 22
M7023->Y:$078C02,7,1 Input 23 M7047->Y:$078C05,7,1 Output 23
;****** Sample E-Stop PLC *****
; This PLC will abort all motion programs and kill the bus voltage to
; the motors when E-stop is depressed. When E-Stop button in pulled out
; the motors will servo to actual position (<ctrl> A command) after
; allowing 5 seconds for proper bus voltage.
; P7000 used as a Latch variable
; M7000 used Emergancy Stop Input
; M7024 used as Main Contact for main AC for Bus Voltage
; I5111 used as count down timer
OPEN PLC 5 CLEAR
IF (M7000=1 and P7000=0) ;emergancy stop condition
CMD^A ;global motion program abort
I5111=500*8388608/I10 ;500 msec delay for deceleration
WHILE (I5111>0) ENDWHILE
CMD^K ;kill all axes
M7024=0 ;turn off BUS voltage
P7000=1 ;latch input
Endif
IF (M7000=0 and P7000=1)
M7024=1 ;enable BUS volatge
I5111=5000*8388608/I10 ;5000 msec delay for bus voltage
WHILE (I5111>0) ENDWHILE
CMD^A ;close loop for all servos
P7000=0 ;latch input
Endif
close
Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Accessory 11E
MACRO-Station I/O Transfer 11
MACRO-STATION I/O TRANSFER
A fundamental understanding of the MACRO Station I/O transfer is needed to set up the MACRO I/O
family of accessories.
Typically, the MACRO station will have up to eight axis nodes (0, 1, 4, 5, 8, 9, 12, and 13) and up to six
I/O transfer nodes (2, 3, 6, 7, 10, and 11). There are two types of I/O transfers allowed to send the
information to the Ultralite from the MACRO-Station: 48-bit transfer and 24-bit transfer. The PMAC2
Ultralite and the MACRO-Station enable the user to transfer 72 bits per I/O node. For a multi Master
system, 432 bits (6×72) of data may be transferred for each Master (Ultralite) in the ring. If only one
Master is used in the ring, node 14 could be used for I/O transfer, which would give us 504 bits (7×72) of
I/O transfer data.
For all MACRO-Station I/O accessories, the information is transferred to or from the accessory I/O Gate
to the MACRO-Station CPU Gate 2B. Information from the MACRO-Station Gate 2B is then read or
written directly to the MACRO IC on the Ultralite. Once the information is at the Ultralite, it can be used
in the users application motion programs or PLC programs.
Ultralite
MACRO IC MACRO Station
Gate 2B
I/O Accessory
Gate
Each I/O board has jumper and software settings to select the I/O transfer memory locations at both the I/O
transfer Gate and the MACRO transfer addresses. These jumpers and software settings are discussed in this
manual.
MACRO I/O Gate Locations
$8800, $8802, $8804
$8840, $8842, $8844
$8880, $8882, $8884
$88C0, $88C2, $88C4
Node Addresses
MACRO Station I/O Node Transfer Addresses
Node(s) Node 24-bit: Transfer Addresses Node 16-bit (upper 16 bits): Transfer Addresses
2 X:$C0A0 X:$C0A1, X:$C0A2, X:$C0A3
3 X:$C0A4 X:$C0A5, X:$C0A6, X:$C0A7
6 X:$C0A8 X:$C0A9, X:$C0AA, X:$C0AB
7 X:$C0AC X:$C0AD, X:$C0AE, X:$C0AF
10 X:$C0B0 X:$C0B1, X:$C0B2, X:$C0B3
11 X:$C0B4 X:$C0B5, X:$C0B6, X:$C0B7
Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Accessory 11E
MACRO-Station I/O Transfer
12
PMAC2 Ultralite I/O Node Addresses
Node(s) Node 24-bit: Transfer Addresses Node 16-bit (upper 16 bits): Transfer Addresses
2 X:$C0A0 X:$C0A1, X:$C0A2, X:$C0A3
3 X:$C0A4 X:$C0A5, X:$C0A6, X:$C0A7
6 X:$C0A8 X:$C0A9, X:$C0AA, X:$C0AB
7 X:$C0AC X:$C0AD, X:$C0AE, X:$C0AF
10 X:$C0B0 X:$C0B1, X:$C0B2, X:$C0B3
11 X:$C0B4 X:$C0B5, X:$C0B6, X:$C0B7
PMAC2 TURBO Ultralite I/O Node Addresses
MACRO
IC Node User
Node Node 24-bit:
Transfer Addresses Node 16-bit (upper 16 bits) Transfer
Addresses
(IC0 ) 2 2 X:$078420 X:$078421, X:$078422, X:$078423
(IC0) 3 3 X:$078424 X:$078425, X:$078426, X:$078427
(IC0) 6 6 X:$078428 X:$078429, X:$07842A, X:$07842B
(IC0) 7 7 X:$07842C X:$07842D, X:$07842E, X:$07842F
(IC0) 10 10 X:$078430 X:$078431, X:$078432, X:$078433
(IC0) 11 11 X:$078434 X:$078435, X:$078436, X:$078437
(IC1) 2 18 X:$079420 X:$079421, X:$079422, X:$079423
(IC1) 3 19 X:$079424 X:$079425, X:$079426, X:$079427
(IC1) 6 22 X:$079428 X:$079429, X:$07942A, X:$07942B
(IC1) 7 23 X:$07942C X:$07942D, X:$07942E, X:$07942F
(IC1) 10 26 X:$079430 X:$079431, X:$079432, X:$079433
(IC1) 11 27 X:$079434 X:$079435, X:$079436, X:$079437
(IC2 ) 2 34 X:$078420 X:$07A421, X:$07A422, X:$07A423
(IC2) 3 35 X:$07A424 X:$07A425, X:$07A426, X:$07A427
(IC2) 6 38 X:$07A428 X:$07A429, X:$07A42A, X:$07A42B
(IC2) 7 39 X:$07A42C X:$07A42D, X:$07A42E, X:$07A42F
(IC2) 10 42 X:$07A430 X:$07A431, X:$07A432, X:$07A433
(IC2) 11 43 X:$07A434 X:$07A435, X:$07A436, X:$07A437
(IC3) 2 50 X:$07B420 X:$07B421, X:$07B422, X:$07B423
(IC3) 3 51 X:$07B424 X:$07B425, X:$07B426, X:$07B427
(IC3) 6 54 X:$07B428 X:$07B429, X:$07B42A, X:$07B42B
(IC3) 7 55 X:$07B42C X:$07B42D, X:$07B42E, X:$07B42F
(IC3) 10 58 X:$07B430 X:$07B431, X:$07B432, X:$07B433
(IC3) 11 59 X:$07B434 X:$07B435, X:$07B436, X:$07B437
Example: If the user wanted to read the inputs from the MACRO Station of the first 24-bit I/O node
address of node 2 (X:$C0A0), then he/she could point an M-variable to the Ultralite or TURBO Ultralite
I/O node registers to monitor the inputs.
M980->X:$C0A0,0,24 ;Ultralite node2 address
M1980->X:$078420,0,24 ;Turbo Ultralite node 2 address
These M-variable definitions (M980 or M1980) could then be used to monitor the inputs for either the
Ultralite or TURBO Ultralite, respectively.
Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Accessory 11E
MACRO-Station I/O Transfer 13
MACRO I/O Software Settings
The MACRO-Station I/O can be configured as either an input or an output. The hardware connected to
the MACRO I/O boards determines whether or not the addresses defined are inputs or outputs. Each I/O
node has 72-bits of data to be transferred automatically to the Ultralite. As stated previously, there are
three methods of transfer: 3×16-bit, 1×24-bit, or 72-bit transfer.
There are several variables at the MACRO-Station and PMAC2 Ultralite that enable the I/O data transfer.
Once these variables are set to the appropriate values, the user can then process the data like a normal
PMAC or PMAC2. The variables to be modified at the MACRO-Station are MI19, MI69, MI70, MI71,
MI169*, MI170*, MI171*, MI172*, MI173*, MI975, and MI996. The Ultralite must have I996 modified
to enable the I/O nodes used.
* Can only be used with MACRO-Station firmware version 1.112 or greater
MI19 controls the data transfer period on a Compact MACRO Station between the MACRO node
interface registers and the I/O registers, as specified by station MI-variables MI20 through MI71. If MI19
is set to 0, this data transfer is disabled. If MI19 is greater than 0, its value sets the period in Phase clock
cycles (the same as MACRO communications cycles) at which the transfer is done.
MI975 permits the enabling of MACRO I/O nodes on the Compact MACRO Station. MI975 is a 16-bit
value (bits 0 to 15) with bit ncontrolling the enabling of MACRO node n. If the bit is set to 0, the node is
disabled; if the bit is set to 1, the node is enabled. The I/O nodes on the Compact MACRO Station are
nodes 2, 3, 6, 7, 10, and 11, which can be enabled by MI975 bits of these numbers. Only bits 2, 3, 6, 7,
10, and 11 of MI975 should ever be set to 1.
MI975 is used at the power-on/reset of the Compact MACRO Station in combination with rotary switch
SW1 and MI976 to determine which MACRO nodes are to be enabled. The net result can be read in
Station variable MI996. To get a value of MI975 to take effect, the value must be saved
(MSSAVE{node}) and the Station reset (MS$$${node}).
Example: Set MI975 to enable nodes 2 and 3
MS0, I975 Set Number MACRO IO nodes to be enabled
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Value 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
∴MS0, i975=$000C
MS0,MI975=$4 ; Enable I/O Node 2 alone
MS0,MI975=$C ; Enable I/O Nodes 2 & 3
MS0,MI975=$4C ; Enable I/O Nodes 2, 3, & 6
MS0,MI975=$CC ; Enable I/O Nodes 2, 3, 6, & 7
MS0,MI975=$4CC ; Enable I/O Nodes 2, 3, 6, 7, & 10
MS0,MI975=$CCC ; Enable I/O Nodes 2, 3, 6, 7, 10, & 11
MS4,MI975=$40 ; Enable I/O Node 6 alone
MS4,MI975=$C0 ; Enable I/O Nodes 6 & 7
MS8,MI975=$400 ; Enable I/O Node 10 alone
MS8,MI975=$C00 ; Enable I/O Nodes 10 & 11
MI69 and MI70 specifies the registers used in 16-bit I/O transfers between MACRO node interface
registers and I/O registers on the MACRO Station I/O accessory board. They are used only if MI19 is
greater than 0.
Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Accessory 11E
MACRO-Station I/O Transfer
14
MI69 and MI70 are 48-bit variables represented as 12 hexadecimal digits. The first 6 digits specify the
number and address of 48-bit (3 x 16) real-time MACRO-node register sets to be used. The second 6
digits specify the number and address of 16-bit I/O sets on the MACRO Station I/O accessory board to be
used. The individual digits are specified as follows:
Digit # Possible Values Description
1 0, 1, 2, 3 Number of MACRO I/O nodes to use (0 disables); this should
also match the number of 48-bit I/O sets you intend to use (see
Digit 7)
2 0 (Reserved for future use)
3-6 $C0A1 (Node 2), $C0A5 (Node 3),
$C0A9 (Node 6), $C0AD (Node 7),
$C0B1 (Node 10), $C0B5 (Node 11)
MACRO Station X Address of MACRO I/O node first of three
16-bit registers
7 0, 1, 2, 3 Number of 16-bit I/O sets to use (1x16, 2x16, 3x16; 0
disables)
8 1 Set to 1 for ACC-14E, ACC-65E, ACC-66E, ACC-67E
consecutive address read (Base, +$1000, +$2000)
9-12 $FFC0, $FFC8, $FFD0, $FFD8
$8800, $8840, $8880, $88C0
$FFE0*, $FFE8*, $FFF0*
MACRO Station Y Base Address of I/O Board as set by Board
Jumper E1-E4 (ACC-3E board) or E15-E18 (ACC-4E board)
MACRO Station Y Base Address of ACC-9E, ACC-10E,
ACC-11E, ACC-12E and ACC-13E
*for legacy systems
When this function is active, the MACRO Station will copy values from the MACRO command (input)
node registers to the I/O board addresses; it will copy values from the I/O board addresses to the MACRO
feedback (output) node registers. Writing a ‘0’ to a bit of the I/O board enables it as an input, letting the
output pull high. Writing a ‘1’ to a bit of the I/O board enables it as an output and pulls the output low.
Example:
(1) 48 bit I/O transfer using node 2 with jumper E1 of ACC-11E selected
MS0, MI69=$10C0A1308800
(2) 96 bit I/O transfer using nodes 2 & 3, jumper E1 of ACC-9E & ACC-11E (72 inputs, 24 outputs),
E6A-E6H set to 1-2 on 1st board and E6A-E6H set to 2-3 on 2nd board.
MS0, MI69=$20C0A1308800
(3) 288-bit I/O transfer using nodes 2, 3, 6, 7, 10, and 11, using 3 ACC-9Es (144 inputs) and 3 ACC-
10Es (144 outputs). Jumpers E1 on all ACC-9Es selected, and jumpers E2 on all ACC-10Es selected.
Jumpers E6A-E6H selected 1-2, 2-3, 4-5 on ACC-9E Input Boards 1, 2, and 3, respectively. Jumpers
E6A-E6H selected 1-2, 2-3, 4-5 on ACC-10E Output Boards 1, 2, and 3, respectively.
MS0, MI69=$30C0A1308800
MS0, MI70=$30C0AD308840
Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Accessory 11E
MACRO-Station I/O Transfer 15
MI71 specifies the registers used in 24-bit I/O transfers between MACRO I/O node interface registers
and I/O registers on the MACRO Station I/O accessory board. It is used only if MI19 is greater than 0.
MI71 is a 48-bit variable represented as 12 hexadecimal digits. The first 6 digits specify the number and
address of 48-bit real-time MACRO-node register sets to be used. The second 6 digits specify the number
and address of 48-bit I/O sets on the MACRO Station I/O accessory board to be used. The individual
digits are specified as follows:
Digit # Possible Values Description
1 0, 1, 2, 3 Number of MACRO I/O nodes to use times 2 (0 disables);
this should also match the number of 48-bit I/O sets you
intend to use (see Digit 7)
2 0 (Reserved for future use)
3-6 $C0A0 (Node 2), $C0A4 (Node 3),
$C0A8 (Node 6), $C0AC (Node 7),
$C0B0 (Node 10), $C0B4 (Node 11)
MACRO Station X Address of MACRO I/O node first of
three 16-bit registers
7 0, 1, 2 Number of 24-bit I/O sets to use (1x24, 2x24; 0 disables)
8 1 Set to 1 for ACC-14E, ACC-65E, ACC-66E, ACC-67E
consecutive address read (Base, +$1000, +$2000)
9-12 $FFC0, $FFC8, $FFD0, $FFD8
$8800, $8840, $8880, $88C0
$FFE0*, $FFE8*, $FFF0*
MACRO Station Y Base Address of I/O Board as set by
Board Jumper E1-E4 (ACC-3E board) or E15-E18 (ACC-4E
board)
MACRO Station Y Base Address of ACC-9E, ACC-10E,
ACC-11E, ACC-12E and ACC-13E
*for legacy systems
When this function is active, the MACRO Station will copy values from the MACRO command (input)
node registers to the I/O board addresses; it will copy values from the I/O board addresses to the MACRO
feedback (output) node registers. Writing a ‘0’ to a bit of the I/O board enables it as an input, letting the
output pull high. Writing a ‘1’ to a bit of the I/O board enables it as an output and pulls the output low.
Example:
(1) Two 24-bit I/O transfers using nodes 2 and 3 with jumper E1 of ACC-11E selected
MS0, MI71=$10C0A0208800
(2) 96 bit I/O transfer using nodes 2, 3, 6, and 7, jumper E1 of ACC-9E & ACC-11E (72 inputs, 24
outputs), E6A-E6H set to 1-2 on 1st board and E6A-E6H set to 2-3 on 2nd board.
MS0, MI71=$20C0A0208800
(3) 144 bit I/O transfer using nodes 2, 3, 6, 7, 10, and 11, using two ACC-9Es (96 inputs)and one ACC-
10E (48 outputs). Jumpers E1 on all ACC-9E selected, and jumpers E1 on all ACC-10Es selected.
Jumpers E6A-E6H selected 1-2, 2-3, 4-5 on Boards 1, 2, and 3, respectively
MS0, MI71=$30C0A0208800
Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com
This manual suits for next models
1
Table of contents