manuals.online logo
Brands
  1. Home
  2. •
  3. Brands
  4. •
  5. Modine Manufacturing
  6. •
  7. Gas Heater
  8. •
  9. Modine Manufacturing PV Manual

Modine Manufacturing PV Manual

This manual suits for next models

1

Other Modine Manufacturing Gas Heater manuals

Modine Manufacturing HDS Manual

Modine Manufacturing

Modine Manufacturing HDS Manual

Modine Manufacturing PDP Manual

Modine Manufacturing

Modine Manufacturing PDP Manual

Modine Manufacturing DBS Manual

Modine Manufacturing

Modine Manufacturing DBS Manual

Modine Manufacturing HDS Manual

Modine Manufacturing

Modine Manufacturing HDS Manual

Modine Manufacturing HD User manual

Modine Manufacturing

Modine Manufacturing HD User manual

Modine Manufacturing HD User manual

Modine Manufacturing

Modine Manufacturing HD User manual

Modine Manufacturing PDP Manual

Modine Manufacturing

Modine Manufacturing PDP Manual

Modine Manufacturing BAE Manual

Modine Manufacturing

Modine Manufacturing BAE Manual

Modine Manufacturing HD Manual

Modine Manufacturing

Modine Manufacturing HD Manual

Modine Manufacturing HD Manual

Modine Manufacturing

Modine Manufacturing HD Manual

Modine Manufacturing BD Manual

Modine Manufacturing

Modine Manufacturing BD Manual

Modine Manufacturing PTP Manual

Modine Manufacturing

Modine Manufacturing PTP Manual

Modine Manufacturing PD Manual

Modine Manufacturing

Modine Manufacturing PD Manual

Modine Manufacturing HD User manual

Modine Manufacturing

Modine Manufacturing HD User manual

Modine Manufacturing HD Manual

Modine Manufacturing

Modine Manufacturing HD Manual

Modine Manufacturing PTS Manual

Modine Manufacturing

Modine Manufacturing PTS Manual

Modine Manufacturing HD Manual

Modine Manufacturing

Modine Manufacturing HD Manual

Modine Manufacturing PSH Manual

Modine Manufacturing

Modine Manufacturing PSH Manual

Modine Manufacturing PTS Manual

Modine Manufacturing

Modine Manufacturing PTS Manual

Modine Manufacturing HD Manual

Modine Manufacturing

Modine Manufacturing HD Manual

Popular Gas Heater manuals by other brands

Desa ROPANE CONSTRUCTION HEATERS owner's manual

Desa

Desa ROPANE CONSTRUCTION HEATERS owner's manual

Desa BCLP375 owner's manual

Desa

Desa BCLP375 owner's manual

Robur Line F1 Series User, installation and service manual

Robur

Robur Line F1 Series User, installation and service manual

Superior BGE18NV Installation and operation instructions

Superior

Superior BGE18NV Installation and operation instructions

Dru Room-sealed atmospheric gas-fired heating... user manual

Dru

Dru Room-sealed atmospheric gas-fired heating... user manual

klover TKR 35 user guide

klover

klover TKR 35 user guide

Rothenberger Industrial 035984 instruction manual

Rothenberger Industrial

Rothenberger Industrial 035984 instruction manual

Hargrove Timberland Glow Operation and installation guide

Hargrove

Hargrove Timberland Glow Operation and installation guide

Kinder Cameo BF Installation and maintenance instructions

Kinder

Kinder Cameo BF Installation and maintenance instructions

Qlima GH 438 B-2 Directions for use

Qlima

Qlima GH 438 B-2 Directions for use

Desa 125-R owner's manual

Desa

Desa 125-R owner's manual

Gasmate AH100 Series instructions

Gasmate

Gasmate AH100 Series instructions

Brant Radiant Heaters QTD Series User instruction

Brant Radiant Heaters

Brant Radiant Heaters QTD Series User instruction

Medallion MBP20TLB OWNER'S OPERATION AND INSTALLATION MANUAL

Medallion

Medallion MBP20TLB OWNER'S OPERATION AND INSTALLATION MANUAL

Sealey LP35.V5 instructions

Sealey

Sealey LP35.V5 instructions

Italkero Falo Evo User manual and assembly instructions

Italkero

Italkero Falo Evo User manual and assembly instructions

Desa 30LP owner's manual

Desa

Desa 30LP owner's manual

Williams 2509822A owner's manual

Williams

Williams 2509822A owner's manual

manuals.online logo
manuals.online logoBrands
  • About & Mission
  • Contact us
  • Privacy Policy
  • Terms and Conditions

Copyright 2025 Manuals.Online. All Rights Reserved.

CCoonntteennttssPages
Inspection on arrival . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
Installation (including venting) . . . . . . . . . . . . . . . . . . . . .2-10
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Checking input rate . . . . . . . . . . . . . . . . . . . . . . . . . . . .12-13
Dimensional data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14-15
Performance data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14-17
Service instructions – safety devices . . . . . . . . . . . . . . . . .24
Service instructions – general . . . . . . . . . . . . . . . . . . . . . . .25
Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25-27
Motor data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18-19
Control options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
Model identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
Warranty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Back cover
WARNING
IImmpprrooppeerriinnssttaallllaattiioonn,,aaddjjuussttmmeenntt,,
aalltteerraattiioonn,,sseerrvviicceeoorrmmaaiinntteennaanncceeccaannccaauussee
pprrooppeerrttyyddaammaaggee,,iinnjjuurryyoorrddeeaatthh,,aannddccoouulldd
ccaauusseeeexxppoossuurreettoossuubbssttaanncceesswwhhiicchhhhaavvee
bbeeeennddeetteerrmmiinneeddbbyyvvaarriioouussssttaatteeaaggeenncciieessttoo
ccaauusseeccaanncceerr,,bbiirrtthhddeeffeeccttssoorrootthheerr
rreepprroodduuccttiivveehhaarrmm..RReeaaddtthheeiinnssttaallllaattiioonn,,
ooppeerraattiinnggaannddmmaaiinntteennaanncceeiinnssttrruuccttiioonnss
tthhoorroouugghhllyybbeeffoorreeiinnssttaalllliinnggoorrsseerrvviicciinnggtthhiiss
eeqquuiippmmeenntt..
FFOORRYYOOUURRSSAAFFEETTYY
IIffyyoouussmmeellllggaass::
11..OOppeennwwiinnddoowwss..
22..DDoonn''ttttoouucchheelleeccttrriiccaallsswwiittcchheess..
33..EExxttiinngguuiisshhaannyyooppeennffllaammee..
44..IImmmmeeddiiaatteellyyccaallllyyoouurrggaassssuupppplliieerr..
FFOORRYYOOUURRSSAAFFEETTYY
TThheeuusseeaannddssttoorraaggeeooffggaassoolliinneeoorrootthheerr
ffllaammmmaabblleevvaappoorrssaannddlliiqquuiiddssiinnooppeenn
ccoonnttaaiinneerrssiinntthheevviicciinniittyyoofftthhiissaapppplliiaanncceeiiss
hhaazzaarrddoouuss..
THIS MANUAL IS THE PROPERTY OF THE OWNER.
PLEASE BE SURE TO LEAVE IT WITH THE OWNER
WHEN YOU LEAVE THE JOB. UNIT HEATER IS
CERTIFIED FOR NON-RESIDENTIAL APPLICATIONS.
All models approved for use in California (with IPI) by the
CEC, in New York by the MEA Division and in
Massachusetts. AGA certified to ANSI Z83 standrads.
TToopprreevveennttpprreemmaattuurreehheeaatteexxcchhaannggeerrffaaiilluurree
ddoonnoottllooccaatteeAANNYYggaass--ffiirreedduunniittssiinnaarreeaass
wwhheerreecchhlloorriinnaatteedd,,hhaallooggeennaatteeddoorraacciidd
vvaappoorrssaarreepprreesseennttiinntthheeaattmmoosspphheerree..
IInnssppeeccttiioonnoonnAArrrriivvaall
1. Inspect unit upon arrival. In case of damage, report
immediately to transportation company and your local
Modine sales representative.
2.
Check rating plate on unit to verify that power supply meets
available electric power at the point of installation.
3. Inspect unit received for conformance with description of
product ordered (including specifications where applicable).
December, 2001
IINNSSTTAALLLLAATTIIOONNAANNDDSSEERRVVIICCEEMMAANNUUAALL
ggaass--ffiirreedduunniitthheeaatteerrss
mmooddeellssPPVV&&BBVV
6-575.4
PPaarrtt55HH7733559944AA((RReevv..CC))
TTHHEEIINNSSTTAALLLLAATTIIOONNAANNDDMMAAIINNTTEENNAANNCCEEIINNSSTTRRUUCCTTIIOONNSSIINNTTHHIISS
MMAANNUUAALLMMUUSSTTBBEEFFOOLLLLOOWWEEDDTTOOPPRROOVVIIDDEESSAAFFEE,,EEFFFFIICCIIEENNTT
AANNDDTTRROOUUBBLLEE--FFRREEEEOOPPEERRAATTIIOONN..IINNAADDDDIITTIIOONN,,PPAARRTTIICCUULLAARR
CCAARREEMMUUSSTTBBEEEEXXEERRCCIISSEEDDRREEGGAARRDDIINNGGTTHHEESSPPEECCIIAALL
PPRREECCAAUUTTIIOONNSSLLIISSTTEEDDBBEELLOOWW..FFAAIILLUURREETTOOPPRROOPPEERRLLYY
AADDDDRREESSSSTTHHEESSEECCRRIITTIICCAALLAARREEAASSCCOOUULLDDRREESSUULLTTIINN
PPRROOPPEERRTTYYDDAAMMAAGGEEOORRLLOOSSSS,,PPEERRSSOONNAALLIINNJJUURRYY,,OORRDDEEAATTHH..
1. Disconnect power supply before making wiring connections to
prevent electrical shock and equipment damage. All units must be
wired strictly in accordance with wiring diagram furnished with the
unit.
2. Turn off all gas before installing unit heaters.
3. Gas pressure to unit heater controls must never exceed 14" W.C.
(1/2 psi).
When leak testing the gas supply piping system, the unit and its
combination gas control must be isolated during any pressure
testing in excess of 14” W.C. (1/2 psi).
The unit should be isolated from the gas supply piping system by
closing its field installed manual shut-off valve.
4. Check gas inlet pressure at unit upstream from combination gas
control. The inlet pressure should be 6-7" W.C. on natural gas or
12-14" W.C. on propane gas. Purging of gas piping should be
performed as described in ANSI Z223.1—Latest Edition or in
Canada in CAN/CGA-B149 codes.
5. All units must be vented to the outside atmosphere.
6. Do not install in potentially explosive or flammable atmospheres
laden with grain dust, sawdust, or similar air-borne materials. In
such applications a blower type heater installed in a separate room
with ducting, including appropriate back flow prevention dampers,
to the dust-laden room is recommended.
7. Installation of units in high humidity or salt water atmospheres will
cause accelerated corrosion resulting in a reduction of the normal
life of the units.
8. To prevent premature heat exchanger failure do not locate ANY
gas-fired unit in areas where chlorinated, halogenated or acid
vapors are present in the atmosphere.
9. Avoid installing units in extremely drafty locations. Drafts can cause
burner flames to impinge on heat exchangers which shortens life.
Maintain separation between units so discharge from one unit will
not be directed into the inlet of another.
10. Do not locate units in tightly sealed rooms or small compartments
without provision for adequate combustion air and venting.
Combustion air must have access to the confined space through a
minimum of two permanent openings in the enclosure, at least one
near the bottom. They should provide a free area of one square
inch per 1000 BTU per hour input rating of the unit with a minimum
of 100 square inches for each opening, whichever is greater.
11. Do not install unit outdoors.
12. Do not locate unit closer to combustible materials than the
clearances listed. For all PV/BV sizes, minimum clearance to
combustibles from the bottom is 12", from the left side 18" and
from the right side 6". For PV sizes 30-145 minimum clearance to
combustible materials from the top is 1", clearance for sizes
175-350 is 2", and clearance for the 400 is 3".
For PV sizes 30-100 minimum clearance to combustible materials
from the vent connector is 2", clearance for sizes 125-300 is 3",
and clearance for sizes 350 & 400 is 6".
For all BV sizes, from the top and from the vent connector is 6".
13. Allow at least 6" clearance at the sides and 12" clearance at rear
(or 6" beyond end of motor at rear of unit, whichever is greater) to
provide ample air for combustion and proper operation of fan.
14. The minimum distance from combustible material is based on the
combustible material surface not exceeding 160°F. Clearance from
the top of the unit may be required to be greater than the minimum
specified if heat damage, other than fire, may occur to materials
above the unit heater at the temperature described.
15. Do not install units below 7 feet measured from the bottom of the
unit to the floor.
16. Modine unit heaters are designed for use in heating applications
with ambient temperatures between 32° F and 90° F. If an
application exists where ambient temperatures can be expected to
fall outside of this range, contact factory for recommendations.
17. Provide clearance for opening hinged bottom for servicing. See
Figure 1. Do not set unit on its bottom.
18. To assure that flames do not impinge on heat exchanger surfaces,
the unit must be suspended in a vertical and level position. Failure
to suspend unit properly may shorten the life of the unit heater.
19. Do not lift unit heater by gas controls, gas manifold, or power
exhauster.
20.
Be sure no obstructions block air intake and discharge of unit heater.
21. Do not attach duct work, air filters, or polytubes to any propeller
(PV) model unit heaters.
22. In aircraft hangars, keep the bottom of the unit at least 10' from the
highest surface of the wings or engine enclosure of the highest
aircraft housed in the hangar and in accordance with the require-
ments of the enforcing authority and/or NFPA 409 – Latest Edition.
23. In garages or other sections of aircraft hangars such as offices and
shops which communicate with areas used for servicing or storage,
keep the bottom of the unit at least 7' above the floor. In public
garages, the unit must be installed in accordance with the Standard
for Parking Structures NFPA 88A and the Standard for Repair
Garages NFPA 88B. In Canada, installation of unit heaters in
airplane hangars must be in accordance with the requirements of
the enforcing authority, and in public garages in accordance with
the current CAN/CGA-B149 codes.
24. Consult piping, electrical, and venting instructions in this manual
before final installation.
25. All literature shipped with your unit should be kept for future use for
servicing or service diagnosis. Do not discard any literature shipped
with your unit.
26. When servicing or repairing this equipment, use only Modine
approved service replacement parts. A complete replacement
parts list may be obtained by contacting Modine Manufacturing
Company. Refer to the rating plate on the unit for complete unit
model number, serial number and company address. Any
substitution of parts or controls not approved by Modine will be at
owners risk.
22
IINNSSTTAALLLLAATTIIOONN
FFiigguurree11
Hinged Bottom for Service
SSPPEECCIIAALLPPRREECCAAUUTTIIOONNSS
WING SCREWS
THAT SECURE
HINGED BOTTOM
THIS IS
DIMENSION C,
PAGE 14 OR 15
In the U.S., the installation of these units must comply with the
“National Fuel Gas Code,” ANSI Z223.1, latest edition (also
known as NFPA 54) and other applicable local building codes.
In Canada, the installation of these units must comply with local
plumbing or waste water codes and other applicable codes and
with the current code CAN/CGA-B149.1, “Installation Code for
Natural Gas Burning Appliances and Equipment” or CAN/CGA-
B149.2, “Installation Code for Propane Burning Appliances and
Equipment.”
1. All installation and service of these units must be performed
by a qualified installation and service agency only as defined
in ANSI Z223.1, latest edition or in Canada by a licensed gas
fitter.
2. This unit is certified by CSA, with the controls furnished. For
replacement parts, please order according to the
replacement parts list on serial plate. Always know your
model and serial numbers. Modine reserves the right to
substitute other authorized controls as replacements.
3. Unit is balanced for correct performance. Do not alter fan or
operate motors at reduced speed.
4. Information on controls is supplied separately.
5. Modine unit heaters use the same burner for natural and
propane gases.
LLooccaattiinnggUUnniittHHeeaatteerrss
In locating units, consider general space-heating requirements,
availability of gas, and proximity to vent locations. Unit heaters
should be located so heated air streams wipe exposed walls
without blowing directly against them. In multiple unit
installations, arrange units so that each supports the air stream
from another, setting up circulatory air movement in the area, but
maintain separation between units so discharge from one unit
will not be directed into the inlet of another. In buildings exposed
to prevailing winds, a large portion of the heated air should be
directed along the windward wall. Avoid interference of air
streams as much as possible.
Mounting height (measured from bottom of unit) at which unit
heaters are installed is critical. Maximum mounting heights are
listed in performance data tables. Alternate mounting heights for
units with deflector hoods or nozzles are also included. The
maximum mounting height for any unit is that height above which
the unit will not deliver heated air to the floor.The maximum
mounting heights must not be exceeded in order to assure
maximum comfort.
Modine unit heaters are designed for use in heating applications
with ambient temperatures between 32° F and 90° F. If an
application exists where ambient temperatures can be expected
to fall outside of this range, contact factory for recommendations.
CCoommbbuussttiioonnAAiirrRReeqquuiirreemmeennttss
Units installed in tightly sealed buildings or confined spaces
should be provided with two permanent openings, one near the
top of the enclosure and one near the bottom. Each opening
should have a free area of not less than one square inch per
1,000 BTU per hour of the total input rating of all units in the
enclosure, freely communicating with interior areas having, in
turn, adequate infiltration from the outside.
UUnniittSSuussppeennssiioonn
The most common method of hanging Modine gas unit heaters
is to utilize 3/8" threaded rod. On each piece of threaded rod
used, screw a nut a distance of about one inch onto the end of
the threaded rods that will be screwed into the unit heater. Then
put a washer over the end of the threaded rod and screw the
threaded rod into the unit heater weld nuts on the top of the
heater at least 5 turns, and no more than 10 turns. Tighten the
nut you first installed onto the threaded rod to prevent it from
turning. Drill holes into a steel channel or angle iron at the same
centerline dimensions as the heater that is being installed. The
steel channels or angle iron pieces need to span and be
fastened to appropriate structural members. Cut the threaded
rods to the preferred length, push them through the holes in the
steel channel or angle iron and secure with washers and lock
nuts or lock washers and nuts. A double nut arrangement can
be used here instead of at the unit heater (a double nut can be
used both places but is not necessary). The entire means of
suspension must of course be adequate to support the weight of
the unit (see page 14 and 15 for unit weights).
For proper operation, the unit must be installed in a level
horizontal position. Clearances to combustibles as specified
above must be strictly maintained. Do not install standard unit
heaters above the maximum mounting height shown in Table 7
on page 13, or below seven feet from the bottom of the unit to
the floor.
For proper operation, the unit must be installed in a level
horizontal position. Clearances to combustibles as specified
above must be strictly maintained. Do not install standard unit
heaters above the maximum mounting height shown in
performance data tables, or below seven feet from the bottom of
the unit to the floor.
On all propeller units, except the PV300, PV350 and PV400, two
tapped holes (3/8-16) are located in the top of the unit to receive
threaded rod.
Units with two point suspension, models PV30 through PV250,
incorporate a level hanging feature. Depending on what options
and accessories are being used, the heater may not hang level
as received from the factory. Do not hang heaters with deflector
hoods until referring to the “installation manual for deflector
hoods” and making the recommended preliminary adjustments
on the heater. These preliminary adjustments need to be made
with the heater resting on the floor.
PV30 through PV250 units without deflector hoods that do not
hang level after being installed, can be corrected in place.
Simply remove both outer side panels (screws to remove are on
back flange of side panel) and you will see the (adjustable)
mounting brackets (Fig. 2). Loosen the set screws holding the
mounting brackets in place and using a rubber mallet or
something similar, tap the heater into a position where it does
hang level. Re-tighten set screws and replace the outer side
panels.
33
IINNSSTTAALLLLAATTIIOONN
CAUTION
Units must not be installed in potentially explosive, flammable
or corrosive atmospheres.
To prevent premature heat exchanger failure do not locate
ANY gas-fired unit in areas where chlorinated, halogenated or
acid vapors are present in the atmosphere.
CAUTION
For all PV/BV sizes, minimum clearance to combustibles from the
bottom is 12", from the left side 18" and from the right side 6".
For PV sizes 30-145 minimum clearance to combustible
materials from the top is 1", clearance for sizes 175-350 is 2",
and clearance for the 400 is 3". For PV sizes 30-100 minimum
clearance to combustible materials from the vent connector is 2",
clearance for sizes 125-300 is 3", and clearance for sizes 350 &
400 is 6". For all BV sizes, from the top and from the vent
connector is 6”. Allow at least 12 inches at the rear, or 6 inches
beyond the end of the motor (whichever is greater), to provide
ample air for combustion and for proper operation of fan. Provide
clearance for opening of the hinged bottom for servicing – See
Figure 1.
The PV300, PV350 and PV400 have four mounting holes. On
all blower units, except the BV300, BV350 and BV400, two
tapped holes are provided in the top of the unit and two holes in
the blower support bracket. The BV300, BV350 and BV400
have four tapped holes in the top of the unit and two in the
blower support bracket for mounting. TTooaassssuurreetthhaattffllaammeessaarree
ddiirreecctteeddiinnttootthheecceenntteerrooffhheeaatteexxcchhaannggeerrttuubbeess,,uunniittmmuussttbbee
ssuuppppoorrtteeddiinnaavveerrttiiccaallppoossiittiioonn,,wwiitthhssuussppeennssiioonnhhaannggeerrss““UUPP..””
CChheecckkwwiitthhaalleevveell..TThhiissiissiimmppoorrttaannttttootthheeooppeerraattiioonnaannddlliiffeeooff
uunniitt..
NNoottee: Pipe hanger adapter kits are available as accessories
from Modine. The hardware allows for pipe caps to be secured
into the top of the unit heater with machine screws (machine
screws are 3/8 - 16 x 1.75 UNC-2A THD). The pipe caps can
then accommodate 3/4" NPT pipe for mounting.
VVeennttiinngg
NNOOTTEE::Avveennttis the vertical passageway used to convey flue gases from the
unit or the vent connector to the outside atmosphere. A vveennttccoonnnneeccttoorris the pipe
which connects the unit to a vent or chimney.
VVeennttiinnggIInnssttrruuccttiioonnss
(Including how to rotate the power exhauster)
1. All vertically vented PV/BV models are venting system category
I. All horizontally vented PV/BV models are venting system
category III.
2. Using Table 1, determine the venting requirements for the
category determined above. A category III unit must conform to
these venting requirements (detailed in following sections) in
addition to those listed below.
3. The power exhauster may be rotated to discharge vertically or
horizontally in either direction (except PV/BV 400). Unfasten
screws connecting power exhauster to vent collar, rotate to
desired location, drill 1/8 inch diameter bite holes and refasten
screws. If positioning the power exhauster to discharge
vertically, a slight offset and use of a drip leg is recommended,
although not required.
4. Models PV30, PV/BV50, 75, 175, 200, 350 and 400 have a
vent transition supplied with the unit. See Table 2 for vent
transition sizes for these models. Fasten the transition to the
power exhauster outlet with at least three corrosion-resistant
sheet-metal screws.
5. Select size of vent pipe to fit power exhauster outlet or vent
transition, where supplied, at rear of unit (see Table 2 for
dimensions). Do not use a vent pipe smaller than the power
exhauster outlet or vent transition on the unit. Vent pipe should
be galvanized steel or other suitable corrosion-resistant
material. Follow the National Fuel Gas Code (in Canada the
National Standard of Canada) for minimum thickness of vent
material; minimum thickness for vent connectors varies
depending on pipe diameter.
6. A minimum of 12 inches straight pipe is recommended from the
power exhauster outlet before turns in the vent system. Install
with a minimum downward slope from unit of 1/4 inch per foot
and suspend securely from overhead structure at points no
greater than 3 feet apart. Fasten individual lengths of vent
together with at least three corrosion-resistant sheet-metal
screws.
7. Avoid venting through unheated space when possible. When
single-wall pipe does pass through an unheated space, insulate
runs greater than 5 feet to minimize condensation. Inspect for
leakage prior to insulating and use insulation that is
noncombustible with a rating of not less than 350°F. Install a tee
fitting at the low point of the vent system and provide a drip leg
with a clean out cap as shown in Figure 3. The drip leg should
be cleaned annually.
8. Keep single wall vent pipe at least 6 inches from combustible
material. For double wall vent pipe used with Category I units,
maintain clearances listed on vent pipe. The minimum distance
from combustible material is based on the combustible material
surface not exceeding 160°F. Clearance from the vent pipe (or
top of the unit) may be required to be greater than the minimum
clearance if heat damage other than fire (such as material
distortion or discoloration) may occur.
9. Where the vent passes through a combustible floor or roof, a
metal thimble 4 inches greater than the vent diameter is
necessary. If there is 6 feet or more of vertical vent pipe in the
open space between the unit heater and where the vent pipe
passes through the floor or roof, the thimble need only be 2
inches greater than the diameter of the vent pipe. If a thimble is
be 2 inches greater than the diameter of the vent pipe. If a
thimble is not used, all combustible material must be cut away
to provide a 6 inch clearance. Any material used to close an
opening must be noncombustible.
44
TTaabbllee22
VVeennttPPiippeeSSiizzeessffoorrUUnniittsswwiitthhTTrraannssiittiioonnss
MMooddeell
PPVV3300,,PPVV//BBVV5500,,7755
PPVV//BBVV110000,,112255,,114455
PPVV//BBVV117755,,220000
PPVV//BBVV225500,,330000
PPVV//BBVV335500,,440000
VVeennttPPiippeeSSiizzee
ffoorrIInnssttaallllaattiioonn
3"
4"
5"
6"
7"
IINNSSTTAALLLLAATTIIOONN
CAUTION
Gas-fired heating equipment must be vented - do not operate
unvented. A built-in power exhauster is provided - additional
external draft hoods (diverters) or power exhausters are not
required or permitted. Installation must conform with local
building codes or in the absence of local codes, with Part 7,
Venting of Equipment, of the National Fuel Gas Code, ANSI
Z223.1 (NFPA 54) - Latest Edition. In Canada installation
must be in accordance with the National Standard of Canada
CAN/CGA-B149.1 for natural gas units, and CAN/CGA-
B149.2 for propane units.
TTaabbllee11
AANNSSIIUUnniittHHeeaatteerrVVeennttiinnggRReeqquuiirreemmeennttss
VVeenntt
TTrraannssiittiioonn
4" to 3"
none
6" to 5"
none
6" to 7"
VVeennttiinngg
CCaatteeggoorryyDDeessccrriippttiioonnRReeqquuiirreemmeennttss
IINegative vent pressure Follow standard
Non-condensing venting requirements.
II Negative vent pressure Condensate must
Condensing be drained.
III Positive vent pressure Vent must be gas tight.
Non-condensing
IV Positive vent pressure Vent must be liquid and
Condensing gastight. Condensate
must be drained.
FFiigguurree22
AAddjjuussttaabblleeMMoouunnttiinnggBBrraacckkeettss
REMOVE SIDE PANELS TO
ADJUST MOUNTING BRACKETS
55
IINNSSTTAALLLLAATTIIOONN
10. When vertically venting, the vent must terminate at least 5
feet in vertical height above the unit.
11. Top of vertical stack must extend above any portion of a
building within a horizontal distance of 2 feet (see Figure
3).
12. Use an approved vent terminal to reduce downdrafts and
moisture in vent.
13. A masonry chimney must not be used as part of the venting
system.
14. Use of dampers or other devices in vents is not allowed.
AAddddiittiioonnaallRReeqquuiirreemmeennttssffoorrHHoorriizzoonnttaallllyyVVeenntteedd
CCaatteeggoorryyIIIIIIUUnniittss
1. Seal all vent joints with a metallic tape or silastic suitable for
temperatures up to 350°F. (3M tapes 425, 433 or 363 are
acceptable.) Wrap tape two full turns around the vent pipe.
2. Limit the total equivalent vent pipe length to a minimum of 2
feet and a maximum of 50 feet (except PV/BV145 is 40
feet), making the vent system as straight as possible. (The
equivalent length of a 3 inch elbow is 1 foot; a 4 inch elbow,
5 feet; a 5 inch elbow, 6 feet; a 6 inch elbow, 7 feet; and a 7
inch elbow, 11 feet.)
3. Where horizontal vents pass through a combustible wall (up
to 8 inches thick), use a thimble with 2" clearances to the
vent and insulate between thimble and vent. The vent
passage may also be constructed and insulated as shown in
Figure 3a. Where horizontal vents pass through a non-
combustible wall, no clearances to the wall are required.
4. The vent terminal must be a Gary Steel 1092, Breidert Type
L, Tjernlund VH1, or Constant Air-Flo 2433 style terminal.
5. If a Gary Steel 1092 or Breidert Type L vent terminal is used
the vent must extend 6 inches beyond the exterior surface
of an exterior wall as shown in Figure 3b. Precautions must
be taken to prevent degradation of building materials by flue
products.
6. If a Tjernlund VH1 vent terminal is used the vent may be
flush with the exterior surface of an exterior wall.
Precautions must be taken to prevent degradation of
building materials by flue products. Where the terminal is
not available in the appropriate size for the unit to be
installed, use a transition and the next larger size terminal.
7. If a Constant Air-Flo vent terminal is used the vent must
extend 12 inches beyond the exterior surface of an exterior
wall and be supported as shown in Figure 3c. Precautions
must be taken to prevent degradation of building materials
by flue products.
8. The vent system shall terminate at least 3 feet above any
forced air inlet (except direct vent units) located within 10
feet, and at least 4 feet below, 4 feet horizontally from, or 1
foot above any door, window, or gravity air inlet into any
building. The bottom of the vent terminal shall be located
above the snow line or at least 1 foot above grade;
whichever is greater. When located adjacent to public
walkways the vent system shall terminate not less than 7
feet above grade.
9. When condensation may be a problem, the vent system
shall not terminate over public walkways or over an area
where condensate or vapor could create a nuisance or
hazard or could be detrimental to the operation of
regulators, relief openings, or other equipment.
10. The venting system must be exclusive to a single unit, and
no other unit is allowed to be vented into it.
AAddddiittiioonnaallVVeennttiinnggRReeqquuiirreemmeennttssffoorrVVeennttiinnggIInnttooaa
CCoommmmoonnVVeenntt((CCaatteeggoorryyIIUUnniittssOOnnllyy))
1. Do not vent a Category I unit into a common vent with
mechanical draft systems operating under positive pressure
(Category III or IV units).
2. The area of the common vent should be equal to or greater
than the area of the largest vent plus 50 percent of the area
of all additional vents.
3. The individual vents should enter at different levels.
METAL
SLEEVE FIBER GLASS
INSULATION
MIN. 2"
2" MIN.
VENT TERMINATION
SUPPORT BRACKET
(where required)
(Make from 1" x 1" steel angle)
9"
9"
45°
1"
METAL
SLEEVE
2" MIN.
V
ENT PIPE
D
IAMETER
METAL FACE
PLATE 1"
TEE WITH DRIP LEG
AND CLEANOUT CAP
AT LOW POINT OF
VENT SYSTEM
POWER EXHAUSTER
PITCH VENT PIPE DOWNWARD
FROM UNIT 1/4" PER FOOT
6"
BREIDERT TYPE L
OR GARY STEEL
MODEL 1092 TERMINAL
FFiigguurree33aa
VVeennttCCoonnssttrruuccttiioonnTThhrroouugghhCCoommbbuussttiibblleeWWaallllss
FFiigguurree33bb
HHoorriizzoonnttaallVVeennttiinngg--BBrreeiiddeerrttoorrGGaarryySStteeeellVVeennttTTeerrmmiinnaall
2' MIN.
TO WALL OR ADJOINING BUILDING
(IF LESS THAN 2' SEE ITEM 10, THIS PAGE)
2'
MIN.
ROOF FLASHING
USE THIMBLE
THROUGH CEILING
POWER EXHAUSTER
12" MIN.
RECOMMENDED
APPROVED
TERMINAL
TEE WITH DRIP
LEG AND
CLEANOUT CAP
*
* size for expected snow depth
FFiigguurree33
VVeerrttiiccaallVVeennttiinngg
66
IINNSSTTAALLLLAATTIIOONN
AAddddiittiioonnaallVVeennttiinnggRReeqquuiirreemmeennttssffoorrUUnniittssIInnssttaalllleeddiinn
CCaannaaddaa
1. The vent pipe must not pass through an unheated space or
interior part of an open chimney unless the vent pipe is
insulated.
2. Where the vent pipe may be exposed to extreme cold, or
come into contact with snow or ice, the vent construction
method shown in Figures 3d & 3e must be used. It is
preferred that the double wall vent be one continuous piece
but a joint is allowed outside the building.
3. The vent terminal must extend 16 inches beyond the
exterior surface of an exterior wall and be supported as
shown in figure 3a.
4. The heater system shall be checked at least once a year by
a qualified service technician.
AAPPPPRROOVVEEDD
VVEENNTTTTEERRMMIINNAALL
AAPPPPRROOVVEEDD
VVEENNTTTTEERRMMIINNAALL
FFiigguurree33dd
AAlltteerrnnaatteeCCaannaaddiiaannVVeennttiinngg
AArrrraannggeemmeennttffoorrVVeerrttiiccaallVVeennttiinngg
FFiigguurree33ee
AAlltteerrnnaatteeCCaannaaddiiaannVVeennttiinngg
AArrrraannggeemmeennttffoorrHHoorriizzoonnttaallVVeennttiinngg
(Modine
recommended but
not required in
Canada by CGA.)
DOUBLE
WALL “B”
VENT
2
MIN.
USE THIMBLE
THROUGH CEILING
SEAL JOINT BETWEEN SINGLE
WALL VENT AND “B” VENT AND
THE ANNULAR SPACE OF THE “B”
VENT
8” TO 10”
MAX
12”
MIN.
*TEE WITH
CLEANOUT CAP
POWER EXHAUSTER
SINGLE
WALL
VENT
16”
MIN.
24”
MAX
3 FEET MIN
ABOVE GRADE
DOUBLE
WALL “B”
VENT
SEAL JIONT BETWEEN SINGLE WALL
VENT AND ”B” VENT AND THE
ANNULAR SPACE OF THE “B” VENT
POWER EXHAUSTER
SINGLE
WALL
VENT
TEE WITH CLEANOUT
CAP AT LOW POINT
IN VENT SYSTEM
PITCH VENT PIPE DOWN
TOWARD OUTLET 1/4” PER
FOO OF RUN TO ALLOW
FOR CONDENSATE
DRAINAGE
11//2233//441111--11//4411--11//222233446688
115576 218 440 750 1220 2480 6500 13880 38700 79000
330073 152 285 590 890 1650 4700 9700 27370 55850
445544 124 260 435 700 1475 3900 7900 23350 45600
660050 105 190 400 610 1150 3250 6800 19330 39500
775597 200 345 545 1120 3000 6000 17310 35300
990088 160 320 490 930 2600 5400 15800 32250
11005580 168 285 450 920 2450 5100 14620 29850
112200158 270 420 860 2300 4800 13680 27920
115500120 242 380 710 2000 4100 12240 25000
118800128 225 350 720 1950 4000 11160 22800
221100205 320 660 1780 3700 10330 21100
224400190 300 620 1680 3490 9600 19740
227700178 285 580 1580 3250 9000 18610
330000170 270 545 1490 3000 8500 17660
445500140 226 450 1230 2500 7000 14420
660000119 192 380 1030 2130 6000 12480
77
PPiippiinngg
1. Installation of piping must be in accordance with local codes,
and ANSI Z223.1, “National Fuel Gas Code,” or CAN/CGA-
B149 in Canada.
2. Piping to units should conform with local and national
requirements for type and volume and gas handled, and
pressure drop allowed in the line. Refer to Table 5a, to
determine the cubic feet per hour (cfh) for the type of gas and
size of unit to be installed. Using this cfh value and the length
of pipe necessary, determine the pipe diameter from Table 3.
Where several units are served by the same main, the total
capacity, cfh, and length of main must be considered. Avoid
pipe sizes smaller than 1/2”. Table 1 allows for the usual
number of fittings with a 0.3” W.C. pressure drop. Where the
gas supplied has a specific gravity other than 0.60, apply the
multiplying factor as given in Table 4.
3. After threading and reaming the ends, inspect piping and
remove loose dirt and chips.
4. Support piping so that no strains are imposed on unit or
controls.
5. Use two wrenches when connecting piping to unit controls.
6. Provide a drip sediment trap before each unit and in the line
where low spots cannot be avoided. (See Figure 4).
7. Take-off to unit should come from top or side of main to avoid
trapping condensate.
8. Piping, subject to wide temperature variations, should be
insulated.
9. Pitch piping up toward unit at least 1/4” per 15’ of horizontal
run.
10. Compounds used on threaded joints of gas piping must be
resistant to action of liquefied petroleum gases.
11. Purge air before lighting unit by disconnecting pilot tubing at
combination gas control. In no case should line be purged into
heat exchanger.
12. After installation, check system for gas leaks, using a soap
solution.
13. Install a ground joint union and a manual shut off valve
immediately upstream of the unit including a 1/8” NPT plugged
tapping accessible for test gage connection. (See Figure 4).
14. Allow at least 5 feet of piping between any high pressure
regulator and unit control string.
15. When Pressure/Leak testing, pressures above 14" W.C.
(1/2 psi), close the field installed shut-off valve, disconnect
the appliance and its combination gas control from the gas
supply line, and plug the supply line before testing. When
testing pressures 14" W.C. (1/2 psi) or below, close the
manual shut-off valve on the appliance before testing.
GAS
SUPPLY LINE
GAS
SUPPLY LINE
GROUND
JOINT
UNION
MANUAL
SHUT-OFF
VALVE
3"
MIN.
SEDIMENT
TRAP
PLUGGED
1/8" NPT TEST
GAGE CONNECTION
TO
CONTROLS
CCAAUUTTIIOONN
Gas pressure to unit heater controls must never exceed
14" W.C. (1/2 psi).
When leak testing the gas supply piping system, the
appliance and its combination gas control must be
isolated during any pressure testing in excess of 14" W.C.
(1/2 psi).
The appliance should be isolated from the gas supply
piping system by closing its field installed manual shut-off
valve. This manual shut-off valve should be located within
6' of the heater.
!
IINNSSTTAALLLLAATTIIOONN
FFiigguurree44
RReeccoommmmeennddeeddPPiippiinnggttooCCoonnttrroollss
TTaabbllee44
SSppeecciiffiiccGGrraavviittyyCCoonnvveerrssiioonnFFaaccttoorrss
Multiplying factors to be used with table 1 when the specific
gravity of gas is other than 0.60.
TTaabbllee33––GGaassPPiippeeCCaappaacciittiieess
In Cu. Ft. per Hour with Pressure Drop pf 0.3 in. W.C. with Specific Gravity 0.60.
DDiiaammeetteerrooffPPiippee--IInncchheess
LLeennggtthhooff
PPiippeeiinnFFtt..
NNaattuurraallGGaassPPrrooppaanneeGGaass
SSppeecciiffiiccSSppeecciiffiicc
GGrraavviittyyFFaaccttoorrGGrraavviittyyFFaaccttoorr
0.55 1.04 1.50 0.633
0.60 1.00 1.53 0.626
0.65 0.962 1.60 0.612
88
WWiirriinngg
All field installed wiring must be done in accordance with the
National Electrical Code ANSI/NFPA 70 – Latest Edition or
Canadian Electrical Code CSA C22.1 Part 1 or local codes.
Unit must be electrically grounded according to these codes.
See wiring diagram shipped with unit.
The power to these unit heaters should be protected with a
circuit breaker. Units for use with three-phase electric power
must be provided with a motor starter having properly sized
overload protection.
Location of thermostat should be determined by heating
requirements and be mounted on an inside wall about 5' above
floor level where it will not be affected by heat from the unit or
other sources, or drafts from frequently opened doors. See
instructions packed with thermostat.
IInnssttaallllaattiioonnooffBBlloowweerrMMooddeellss((BBVVUUnniittss))
AAttttaacchhmmeennttooffFFiieellddIInnssttaalllleeddDDuuccttwwoorrkk,,
BBlloowweerr((BBVV))MMooddeellssOOnnllyy
Burned-out heat exchanger as well as shorter equipment life
will result from not providing uniform air distribution.
When installing heater always follow good duct design practices
for even distribution of the air across the heat exchanger.
Recommended layouts are shown below. When installing
blower units with ductwork the following must be done.
1. Provide uniform air distribution over the heat exchanger.
Use turning vanes where required. See figures below.
2. Provide removable access panels in the ductwork on the
downstream side of the unit heater. These openings should
be large enough to view smoke or reflect light inside the
casing to indicate leaks in the heat exchanger and to check
for hot spots on exchanger due to poor air distribution or
lack of sufficient air.
3. If ductwork is connected to the rear of the unit use Modine
blower enclosure kit or if using field designed enclosure
maintain dimensions of blower enclosure as shown on
page 15.
A
BAFFLE
B
12"
MIN.
A
B
BAFFLE
TURNING
VANES
12" MIN.
B
3" MAX.
TURNING
VANES
3" MIN.
A
A
3" MIN.
12"
MIN.
3" MAX.
TURNING
VANES
12"
B
BAFFLE
A
B12"
MIN.
12"
MIN.
TURNING
VANES
IINNSSTTAALLLLAATTIIOONN
RReeccoommmmeennddeeddIInnssttaallllaattiioonnss--Dimension “B” Should Never Be Less than 1/2 of “A”. Duct must be fitted to discharge of unit only.
SSIIDDEEVVIIEEWWSSIIDDEEVVIIEEWWTTOOPPVVIIEEWW
SSIIDDEEVVIIEEWWSSIIDDEEVVIIEEWWTTOOPPVVIIEEWW
CCBBAA
FFEEDD
CCAAUUTTIIOONN
Disconnect power supply before making wiring connections to
prevent electrical shock and equipment damage. ALL UNITS
MUST BE WIRED STRICTLY IN ACCORDANCE WITH
WIRING DIAGRAM FURNISHED WITH UNIT.
ANY WIRING DIFFERENT FROM WIRING DIAGRAM MAY
BE HAZARDOUS TO PERSONS AND PROPERTY.
Any damage to or failure of Modine units caused by incorrect
wiring of the units is not covered by MODINE’S STANDARD
WARRANTY (see Back Cover).
!
CAUTION
Proper air flow and distribution, across the heat exchanger
must be provided to prevent early failure of the blower unit
heater.
!
CAUTION
Do not attempt to attach ductwork of any kind to propeller
PV models.
!
CAUTION
Check for red heat exchanger tubes. If bottom of tubes
become red while blower unit is in operation, check for proper
air volume and air distribution. Adjust blower speed or correct
discharge duct design to correct problem.
!
99
IINNSSTTAALLLLAATTIIOONN
IInnssttaallllaattiioonnooffBBlloowweerrMMooddeellss((BBVVUUNNIITTSS))
DDeetteerrmmiinniinnggBBlloowweerrSSppeeeedd
The drive assembly and motor on all gas-fired blower unit
heaters are factory assembled. The adjustable motor sheave
has been pre-set to provide the highest CFM at the lowest static
pressure the drive can be used (see pages 16 & 17). The motor
sheave should be adjusted as required when the unit is to be
operated at other conditions. Adjustment must always be within
the range shown in the performance data tables for blower unit
heaters, and the temperature rise range shown on the unit’s
rating plate.
To determine the proper blower speed and motor sheave turns
open, the conditions under which the unit is to operate must be
known. If the blower unit is to be used without duct work,
nozzles or filters, the only criteria for determining the motor
sheave turns open and blower speed is the amount of air to be
delivered. The performance data tables for blower models are
shown on pages 16 and 17. As an example, a model BV350
unit, operating with no external static pressure, that is, no duct
work, nozzles, etc., and is to deliver an air volume of 6481 cfm
(cfm = cubic feet of air per minute) requires that the unit be
supplied with a 5 hp motor, a C116 drive, and the drive pulley
must be set at 2.5 turns open to achieve a blower speed of 970
rpm. See "Blower Adjustments" on page 10 for setting of motor
sheave turns open.
If a blower unit is to be used with ductwork or nozzles, etc., the
total external static pressure under which the unit is to operate,
and the required air flow must be known before the unit can be
properly adjusted. Any device added externally to the unit, and
which the air must pass through, causes a resistance to air flow.
This resistance is called pressure loss. The total of the pressure
losses must be determined before adjusting the blower speed.
If Modine filters are used, the expected pressure loss through
the filters is given in the filter table on page 17. If Modine
supplied discharge nozzles are used, the expected pressure
drop of the nozzles can be found footnoted at the bottom of
page 14. If filters, nozzles or ductwork are to be used with the
unit, and they are not supplied by Modine, the design engineer
or installing contractor must determine the pressure loss for the
externally added devices or ductwork to arrive at the total
external static pressure under which the unit is to operate.
Once the total static pressure and the required air flow are
known, the operating speed of the blower can be determined
and the correct motor sheave adjustments made. As an
example, let's say, a model BV350 is to be used with a Modine
supplied blower enclosure and Modine supplied filters attached
to someone else's ductwork. The unit is to move 6481 cfm or air
flow against an external static pressure of 0.2" W.C. Also, you
must add 0.2” W.C. for the filter pressure drop for a total of 0.4”
W.C. total pressure drop. Entering the performance table on
page 16 for a BV350, at 6481 cfm and 0.4" W.C. static
pressure, it is seen that the unit will require a 5 hp motor using a
C116 drive, and the motor sheave should be set at .5 turns
open to achieve a blower speed of 1060 rpm. You can see this
example differs from similar conditions in paragraph 2 by the
number of turns open and a higher rpm, which is needed to
overcome the added external static pressure from the filters.
TTooIInnssttaallll((FFiigguurree55))
1. Remove and discard the motor tie down strap and the
shipping block beneath the belt tension adjusting screw
(Not used on all models.)
2. Adjust motor adjusting screw for a belt deflection of
approximately 3/4" with five pounds of force applied midway
between the sheaves (refer to Figure 6a). Since the belt
tension will decrease dramatically after an initial run-in
period, it is necessary to periodically re-check the tension.
Excessive tension will cause bearing wear and noise.
3. The blower bearings are lubricated for life; however, before
initial unit operation the blower shaft should be lubricated at
the bearings with SAE 20 oil. This will reduce initial friction
and start the plastic lubricant flowing.
4. Make electrical connections according to the wiring
diagram.
5. Check rotation of the blower. Motor should be in clockwise
rotation when facing motor sheave. If rotation is incorrect,
correction should be made by interchanging wiring within
the motor. See wiring diagram on the motor.
6. The actual current draw of the motor should be determined.
Under no condition should the current draw exceed that
shown on the motor rating plate.
7. It is the installers responsibility to adjust the motor sheave
to provide the specified blower performance as listed on
pages 16 & 17 for blower settings different from the factory
set performance. The drive number on the unit may be
identified by referring to the Power Code number on the
serial plate of the unit (see page 27 for model number
nomenclature) and matching that number with those shown
on page 18. From the listing, the drive number can be
determined.
8. Blower sheave and motor sheave should be measured to
assure correct drive is on unit. Refer to page 19 for drive
sizes.
FFiigguurree55
MMaaiinnBBlloowweerrUUnniittHHeeaatteerrCCoommppoonneennttss
THREADED MOUNTING BRACKETS ON
BLOWER ASSEMBLY
MOTOR SHEAVE
(MOVEABLE
FACE TO
OUTSIDE)
BLOWER
HOUSING MOTOR
ADJUSTMENT
SCREW
MOTOR MOUNTING
BRACKET
BLOWER
SHEAVE
1100
TOWARD MOTOR
SET SCREW
ADJUSTABLE HALF
OF SHEAVE
3/4" DEFLECTION
WITH 5# FORCE
IINNSSTTAALLLLAATTIIOONN
FFiigguurree66
MMoottoorrSShheeaavveeAAddjjuussttmmeennttFFiigguurree66aa
BBeellttTTeennssiioonnAAddjjuussttmmeenntt
CAUTION
Start-up and adjustment procedures should be performed by
a qualified service technician.
Check the gas inlet pressure at the unit upstream of the
combination gas control. The inlet pressure should be 6-7"
W.C. on natural gas or 12-14" W.C. on propane. If inlet
pressure is too high, install an additional pressure regulator
upstream of the combination gas control.
The pilot flame must be adjusted as described below.
Purging of air from gas lines, piping, and lighting the pilot
should be performed as described in ANSI Z223.1-latest
edition “National Fuel Gas Code” (CAN/CGA-B149 in
Canada).
Be sure no obstructions block air intake and discharge of unit
heater.
!
OOPPEERRAATTIIOONNPPrriioorrttooOOppeerraattiioonn
Although this unit has been assembled and fire-tested at the
factory, the following pre-operational procedures should be
performed to assure proper on-site operation.
1. Turn off power.
2. Check burner to insure proper alignment.
3. Check fan clearance. Fan should not contact casing when
spun by hand.
4. Check all electrical connections to be sure they are secure.
5. If you are not familiar with the unit’s controls (i.e.
combination gas control), refer to the control manufacturer’s
literature supplied with the unit.
6. Check that all horizontal deflector blades are open a
minimum of 30° as measured from vertical.
BBlloowweerrAAddjjuussttmmeennttss
Following electrical connections, check blower rotation to
assure blow-through heating. If necessary interchange wiring to
reverse blower rotation. Start fan motor and check blower
sheave RPM with a hand-held or strobe-type tachometer. RPM
should check out with the speeds listed in Performance Data
shown on pages 16 and 17. A single-speed motor with an
adjustable motor sheave is supplied with these units. If blower
fan speed changes are required, adjust motor sheave as
follows:
NNOOTTEE::Do not fire unit until blower adjustment has been made
or unit may cycle on limit (overheat) control.
1. Shut-off power before making blower speed adjustments.
Refer to Determining Blower Speed on previous page and
to Blower Drive Selection on pages 16 and 17 to determine
proper blower RPM.
2. Loosen motor base and take belt off of motor sheave.
3. Loosen set screw on outer side of adjustable motor sheave
(see Figure 6).
4. To reduce the speed of the blower, turn outer side of motor
sheave counterclockwise.
5. To increase the speed of the blower, turn outer side of
motor sheave clockwise.
6. Retighten motor sheave set screw, replace belt and
retighten motor base. Adjust motor adjusting screw such
that there is 3/4” belt deflection when pressed with 5
pounds of force midway between the blower and motor
sheaves (see Figure 6a). Since the belt tension will
decrease dramatically after an initial run-in period, it is
necessary to periodically re-check the tension to assure
continual proper belt adjustment.
7. Check to make certain motor sheave and blower sheave
are aligned. Re-align if necessary.
8. Re-check blower RPM after adjustment.
9. Check motor amps. Do not exceed amps shown on motor
nameplate. Slow blower if necessary.
10. Check air temperature rise across unit. Check temperature
rise against values shown in Performance Tables on
pages16 and 17 to assure actual desired air flow is being
achieved.
11. If adjustments are required, recheck motor amps after final
blower speed adjustment.