manuals.online logo
Brands
  1. Home
  2. •
  3. Brands
  4. •
  5. Cosel
  6. •
  7. I/O System
  8. •
  9. Cosel TUNS300 Instructions for use

Cosel TUNS300 Instructions for use

This manual suits for next models

2

Popular I/O System manuals by other brands

SMC Networks EX600-AXA Installation & maintenance manual

SMC Networks

SMC Networks EX600-AXA Installation & maintenance manual

Siemens SIMATIC ET 200SP HA Equipment manual

Siemens

Siemens SIMATIC ET 200SP HA Equipment manual

Advantech PCM-27J3AU Startup manual

Advantech

Advantech PCM-27J3AU Startup manual

Hitachi HX-RIO3 Series user manual

Hitachi

Hitachi HX-RIO3 Series user manual

ICP DAS USA tM-AD2 quick start

ICP DAS USA

ICP DAS USA tM-AD2 quick start

IFM AL1200 operating instructions

IFM

IFM AL1200 operating instructions

Allen-Bradley D Series installation instructions

Allen-Bradley

Allen-Bradley D Series installation instructions

Allen-Bradley 1794-OF8IH installation instructions

Allen-Bradley

Allen-Bradley 1794-OF8IH installation instructions

Allen-Bradley SLC 500 1746-FIO4I user manual

Allen-Bradley

Allen-Bradley SLC 500 1746-FIO4I user manual

WAGO I/O-SYSTEM 750 manual

WAGO

WAGO I/O-SYSTEM 750 manual

System Sensor M201E installation instructions

System Sensor

System Sensor M201E installation instructions

M-system R7D-YV2A instruction manual

M-system

M-system R7D-YV2A instruction manual

NTP Technology Penta 721 digital I/O installation guide

NTP Technology

NTP Technology Penta 721 digital I/O installation guide

Bosch B208 user manual

Bosch

Bosch B208 user manual

Acces I/O products MPCIE-ISODIO-16 Hardware manual

Acces I/O products

Acces I/O products MPCIE-ISODIO-16 Hardware manual

ExpertDAQ EX-9017F Operation manual

ExpertDAQ

ExpertDAQ EX-9017F Operation manual

SeaLevel SeaI/O-580E user manual

SeaLevel

SeaLevel SeaI/O-580E user manual

Technosoft iPOS360x MX Technical reference

Technosoft

Technosoft iPOS360x MX Technical reference

manuals.online logo
manuals.online logoBrands
  • About & Mission
  • Contact us
  • Privacy Policy
  • Terms and Conditions

Copyright 2025 Manuals.Online. All Rights Reserved.

The information contained in this document has been carefully researched and is, to the best
of our knowledge, accurate. However, we assume no liability for any product failures or
damages, immediate or consequential, resulting from the use of the information provided
herein. Our products are not intended for use in systems in which failures of product could
result in personal injury. All trademarks mentioned herein are property of their respective
owners. All specifications are subject to change without notice.
Application Manual
TUNS 300/500/700
Cosel
Our company network supports you worldwide with offices in ermany, Austria,
Switzerland, reat Britain and the USA. For more information please contact:
FORTEC Elektronik AG
Hauptniederlassung
Lechwiesenstr. 9
86899 Landsberg am Lech
Telefon: +49 (0) 8191 91172-0
Telefax: +49 (0) 8191 21770
E-Mail: [email protected]
Internet: www.fortecag.de
FORTEC Elektronik AG
Büro Nord
Am Hasenkamp 36
22457 Hamburg
Telefon: +49 (0) 40 54 80 56 11
Telefax: +49 (0) 40 54 80 56 13
E-Mail: [email protected]
Internet: www.fortecag.de
FORTEC Elektronik AG
Büro West
Hohenstaufenring 55
50674 Köln
Telefon: +49 (0) 221 272 273-0
Telefax: +49 (0) 221 272 273-10
E-Mail: [email protected]
Internet: www.fortecag.de
FORTEC Elektronik AG
Büro Wien
Nuschinggasse 12
A-1230 Wien
Telefon: +43 1 8673492-0
Telefax: +43 1 8673492-26
E-Mail: [email protected]
Internet: www.fortec.at
A TRAC AG
(Tochter der FORTEC):
Bahnhofstraße 3
CH-5436 Würenlos
Telefon: +41 (0) 44 7446111
Telefax: +41 (0) 44 7446161
E-Mail: [email protected]
Internet: www.altrac.ch
Rev. 1.4E
08-Jan-2016
Applications Manual
for TUNS300/500/700
Applications Manual for TUNS300/500/700
1. Pin Assignment
Pin Assignment
2. Connection for Standard Use
Connection for standard use
Input fuse :
F11
Input capacitor :
C11
Y capacitors and noise filters :
CY,CX,L1
Output capacitors :
Co,C40
Smoothing capacitor for boost voltage :
Cbc
Capacitor for boost voltage :
C20,C30
Inrush current limiting resistor :
TFR1
Discharging resistor :
R1
3. Derating
Output current derating
Input voltage derating
4.Output voltage adjustment
Output voltage adjustment
Output voltage adjustment by potentiometer
Output voltage adjustment by e ternal voltage
. Parallel operation (option :-P)
Parallel operation
6. Operation under low temperature conditions
Ripple voltage of boost voltage
7. Holdup time
Holdup time
8. Mounting method
Mounting method
9.Thermal Design
Thermal Design
E amples of Convection cooling
E amples of Forced air cooling
10. Board layout
Consideration for board layout
Reference PCB layout
11. Example of
 
  
 
which reduces EMI
Means of the EMI reduction
Switching frequency noise reduction (200kHz)
High frequency band noise reduction (more than 10 MHz)
EMI measure e ample
Note
:
Information contained in this document is subject to change without notice for improvement.
The materials are intended as a reference design, component values and circuit examples
described in this document varies depending on operating conditions and component variations.
Please select the components and design under consideration of usage condition etc.
11.2
A- 9
11.3
A- 9
11.4
A- 9
10.2
A- 8
A- 9
11.1
A- 9
8.1
A-17
A-18
9.1
A-18
A-16
7.1
A-16
A-17
A-13
5.1
A-13
A-14
6.1
A-14
4.1
A-10
4.2
A-10
4.3
A-1
A-8
3.1
A-8
3.2
A-9
A-10
2.7
A-5
2.8
A-6
2.9
A-7
2.4
A-4
2.5
A-4
2.6
A-5
A-
2.1
A-
2.2
A-3
2.3
A-3
Contents
Page
A-1
1.1
A-1
A-18
A- 0
9.2
9.3
A- 4
10.1
A- 4
1.1 Pin Assignment
Fig.1.1
Pin Assignment
Table 1.1
Pin configu ation
and function
A-1
⑪
IOG Inverter operation monitor
- FG Mounting hole(FG)
⑨
+S Remote sensing(+)
⑩
TRM Adjustment of output voltage
⑦
-VOUT -DC output
⑧
-S Remote sensing(-)
⑤
-BC -BC output
⑥
+VOUT +DC output
③
R E ternal resistor for inrush current protection
④
+BC +BC output
No. Pin
Connection Function
①
AC1 AC input
②
AC2
2.1 Pin configuration
1. Pin Assignment
Applications Manual
TUNS300/500/700
2.1 Connection for standard use
■
■
Fig.2.1
Connection fo
standa d use
Table 2.1
Components
name
・
Parts name are shown in Table 2.1 as reference.
・
E ternal parts should be changed according to the ambient temperature, and
input and output conditions.
For details, refer to the selection method of individual parts.
To use the TUNS300/500/700 series, e ternal components should be connected as shown
in Fig.2.1.
The TUNS300/500/700 series should be conduction-cooled. Use a heatsink or fan to
dissipate heat.
A-2
Heatsink
2.1 Pin configuration
2. Connecrion for Standard Use
Rating Part name Rating Part name Rating Part name
1 F11
AC250V/10A 0325010
(Littelfuse)
AC250V/15A 0325015
(Littelfuse)
AC250V/15A 0325015
(Littelfuse)
2 C11
AC275V/2.2uF ECQUAAF225
(Panasonic) AC275V/2.2uF ECQUAAF225
(Panasonic) AC275V/1.5uF
 
× 2parallel ECQUAAF155
 
× 2 (parallel)
(Panasonic)
3 CY1
AC250V/2200pF DE1E3KX222M
(Murata Manufacturing) AC250V/2200pF DE1E3KX222M
(Murata Manufacturing) AC250V/2200pF DE1E3KX222M
(Murata Manufacturing)
4 L11
6mH/12A ADM-25-12-060T
(Ueno) 6mH/12A ADM-25-12-060T
(Ueno) 6mH/12A ADM-25-12-060T
(Ueno)
5 L12
6mH/12A ADM-25-12-060T
(Ueno)
6mH/12A ADM-25-12-060T
(Ueno)
6mH/12A ADM-25-12-060T
(Ueno)
6 CX1
AC275V/1.5uF ECQUAAF155
(Panasonic) AC275V/1.5uF ECQUAAF155
(Panasonic) AC275V/1.5uF ECQUAAF155
(Panasonic)
7 CX2
AC275V/1.5uF ECQUAAF155
(Panasonic) AC275V/1.5uF ECQUAAF155
(Panasonic) AC275V/1.5uF ECQUAAF155
(Panasonic)
8 CY2
AC250V/2200pF DE1E3KX222M
(Murata Manufacturing)
AC250V/2200pF DE1E3KX222M
(Murata Manufacturing)
AC250V/2200pF DE1E3KX222M
(Murata Manufacturing)
9 CY3
AC250V/2200pF DE1E3KX222M
(Murata Manufacturing) AC250V/2200pF DE1E3KX222M
(Murata Manufacturing) AC250V/2200pF DE1E3KX222M
(Murata Manufacturing)
F12
DC25V/2200uF ELXZ250ELL222
(Nippon Chemi-Con) DC25V/2200uF ELXZ250ELL222
(Nippon Chemi-Con) DC25V/2200uF ELXZ250ELL222
(Nippon Chemi-Con)
F28
DC50V/1000uF ELXZ500ELL102
(Nippon Chemi-Con) DC50V/1000uF ELXZ500ELL102
(Nippon Chemi-Con) DC50V/1000uF ELXZ500ELL102
(Nippon Chemi-Con)
F48
DC63V/470uF ELXZ630ELL471
(Nippon Chemi-Con)
DC63V/470uF ELXZ630ELL471
(Nippon Chemi-Con)
DC63V/470uF ELXZ630ELL471
(Nippon Chemi-Con)
F12
DC25V/10uF GRM31CR71E106
(Murata Manufacturing) DC25V/10uF GRM31CR71E106
(Murata Manufacturing) DC25V/10uF GRM31CR71E106
(Murata Manufacturing)
F28
DC50V/4.7uF GRM31CR71H475
(Murata Manufacturing) DC50V/4.7uF GRM31CR71H475
(Murata Manufacturing) DC50V/4.7uF GRM31CR71H475
(Murata Manufacturing)
F48
DC100V/2.2uF GRM31CR72A225
(Murata Manufacturing)
DC100V/2.2uF GRM31CR72A225
(Murata Manufacturing)
DC100V/2.2uF GRM31CR72A225
(Murata Manufacturing)
12 Cbc
DC450V/470uF ELXS451VSN471
(Nippon Chemi-Con) DC450V/390uF
×2parallel ELXS451VSN391 × 2 (parallel)
(Nippon Chemi-Con) DC450V/390uF
×2parallel ELXS451VSN391 × 2 (parallel)
(Nippon Chemi-Con)
13 C20
DC450V/0.68uF
×2parallel AFS450V684K × 2 (parallel)
(OKAYA ELECTRIC INDUSTRIES) DC450V/0.68uF
×2parallel AFS450V684K × 2 (parallel)
(OKAYA ELECTRIC INDUSTRIES) DC450V/0.68uF
×2parallel AFS450V684K × 2 (parallel)
(OKAYA ELECTRIC INDUSTRIES)
14 C30
DC450V/0.68uF
×2parallel
AFS450V684K × 2 (parallel)
(OKAYA ELECTRIC INDUSTRIES)
DC450V/0.68uF
×2parallel
AFS450V684K × 2 (parallel)
(OKAYA ELECTRIC INDUSTRIES)
DC450V/0.68uF
×2parallel
AFS450V684K × 2 (parallel)
(OKAYA ELECTRIC INDUSTRIES)
15 TFR1
10Ω F5K-100J14
(TAMURA THERMAL DEVICE)
10Ω F5K-100J14
(TAMURA THERMAL DEVICE)
10Ω F5K-100J14
(TAMURA THERMAL DEVICE)
16 R1
68kΩ
×3series
2parallel
CRS32 683
(HOKURIKU ELECTRIC INDUSTRY)
68kΩ
×3series
2parallel
CRS32 683
(HOKURIKU ELECTRIC INDUSTRY)
68kΩ
×3series
2parallel
CRS32 683
(HOKURIKU ELECTRIC INDUSTRY)
17
SK11
SK21
SK22
620V TND14V-621K
(Nippon Chemi-Con) 620V TND14V-621K
(Nippon Chemi-Con) 620V TND14V-621K
(Nippon Chemi-Con)
18 S 11
4kV DSA-402MA
(Mitsubishi Materials)
4kV DSA-402MA
(Mitsubishi Materials)
4kV DSA-402MA
(Mitsubishi Materials)
No. Symbol Item TUNS300F TUNS500F
Input fuse
Input capacitor
Y capacitor
Noise
filter
Line Filter
X capacitor
Y capacitor
10 Co Output
capacitor
11 C40 Bypass
capacitor
Smoothing
capacitor
Capacitor
for boost voltage
Capacitor
for boost voltage
Surge absorber
TUNS700F
Inrush current
protection resistor
Discharging
resistor
Varistor
AC1
AC2
+VOUT
-VOUT
-BCFG
F11
+BC
Co
+
Load
C40
AC
INPUT
L11
CY2
CX1
SK11
SK21
SA11
CX2
CY3
L12
SK22
Noise
Fil er
C11
-S
+S
R
+
C30 TFR1
Cbc
C20 CY1
R1
FG
Applications Manual
TUNS300/500/700
2.2 Input fuse: F11
■
No protective fuse is preinstalled on the input side. To protect the unit, install a slow-blow
type fuse shown in Table 2.2 in the input circuit.
Table 2.2
Recommended
fuse
2.3 Input capacitor: C11
■
Connect a film capacitor of 2 uF or higher as input capacitor C11.
■
Use a capacitor with a rated voltage of AC250V which complies with the safety standards.
■
If C11 is not connected, the power supply or e ternal components could be damaged.
■
When selecting a capacitor, check the ma imum allowable ripple current.
■
Ripple current includes low frequency component (input frequency) and high frequency
component (100kHz).
■
Ripple current values flowing into C11 as listed in Table 2.1 are shown in Fig.2.2.
■
The ripple current changes with PCB patterns, e ternal parts, ambient temperature, etc.
Check the actual ripple current value flowing through C11.
Fig.2.2
Ripple cu ent
values
C11
Rated current 10A 15A 15A
A-3
Model TUNS300F TUNS500F TUNS700F
Applications Manual
TUNS300/500/700
2.4 Y Capacitors and noise filters: CY, CX, L1
■
The TUNS300/500/700 series has no internal noise filter.
Connect e ternal noise filters and capacitors (CY) to reduce conduction noise and stabilize
the operation of the power supply.
■
Noise filters should be properly designed when the unit must conform to the EMI/EMS
standards or when surge voltage may be applied to the unit.
■
Install the primary Y capacitor (CY1) as close as possible to the input pins (within 50 mm
from the pins).
A capacitance of 470 pF or more is required.
■
When the total capacitance of CYs e ceeds 8,800 pF, input-output withstanding voltage
may be dropped. In this case, either reduce the capacitance of Y capacitors or install a
grounding capacitor between output and FG.
■
Use capacitors with a rated voltage of AC250V which comply with the safety standards
as CY.
2. Output capacitors: Co, C40
■
Install an e ternal capacitor, Co, between +VOUT and -VOUT pins for stable operation
of the power supply. Recommended capacitance of Co is shown in Table 2.3.
■
Use low impedance electrolytic capacitors with e cellent temperature characteristics.
■
When Using at ambient temperatures below 0 ºC, the output ripple voltage increases due
to the characteristics of equivalent series resistor (ESR). In this case, connect three
capacitors, Co, of recommended capacitance in parallel connection.
■
Specifications, output ripple and ripple noise as evaluation data values are measured
according to Fig.2.3.
Table 2.3
Recommended
capacitance
Co
Fig.2.3
Measu ing
envi onment
48V 470uF 470uF 470uF
A-4
12V 2,200uF 2,200uF 2,200uF
28V 1,000uF 1,000uF 1,000uF
Output Voltage TUNS300F TUNS500F TUNS700F
R=50Ω
C=0.01uF
Load
1.5m 50Ω
Coaxial Cable
C40:
12V 10µF
28V 4.7µF
48V 2.2µF
+VOUT
-VOUT
-
+
0
0
0
0
Co
+
C40
50mm
Oscilloscope
BW:100MHz
R
C
Applications Manual
TUNS300/500/700
2.6 Smoothing capacitor for boost voltage: Cbc
■
In order to smooth boost voltage, connect Cbc between +BC and -BC.
Recommended capacitance of Cbc is shown in Table 2.4.
■
Install a capacitor Cbc with a rated voltage of DC420 V or higher within the allowable
capacitance.
■
When operated below 0ºC, operation may become unstable as boost ripple voltage
increases due to ESR characteristics. Choose a capacitor which has higher capacitance
than recommended.
Select a capacitor so that the ripple voltage of the boost voltage is 30 Vp-p or below.
■
If the ripple voltage of the boost voltage increases, the ripple current rating of the
smoothing capacitor may be e ceeded. Check the ma imum allowable ripple current of
the capacitor.
■
The ripple current changes with PCB patterns, e ternal parts, ambient temperature, etc.
Check the actual ripple current value flowing through Cbc.
Table 2.4
Recommended
capacitance
Cbc
※
Refer to item 6 and 7 for selection method of Cbc.
2.7
 
  
 
Capacitor for boost voltage :C20,C30
■
Install film capacitors with a rating of 1uF/DC450V or higher as C20 and C30.
■
If C20 and C30 are not connected, the power supply or e ternal components could be
damaged.
■
The ripple current flows into these capacitors. Check the ma imum allowable ripple
current of the capacitor while selecting.
■
The frequency of the ripple current is 100 kHz to 200 kHz.
■
Ripple current values flowing into C20 and C30 as listed in Table 2.1 are shown in
Fig.2.4 and Fig.2.5.
■
The ripple current changes with PCB patterns, e ternal parts, ambient temperature, etc.
Check the actual ripple current values flowing through C20 and C30.
Fig.2.4
Ripple cu ent
values
C20
※
Ripple current value is total of 2 paralleled capacitors.
TUNS700F
390uF × 2 pa allel 470uF ~ 2,200uF
A-5
TUNS300F
470uF 390uF ~ 2,200uF
TUNS500F
390uF × 2 pa allel 390uF ~ 2,200uF
Model Recommended capacitance Allowable capacitance range
0
500
1000
1500
2000
2500
3000
3500
0 20 40 60 80 100 120
R
i
p
p
l
e
c
u
r
r
e
n
t
[
m
A
r
m
s
]
Output current [%]
TUNS300F(100VAC)
TUNS300F(200VAC)
TUNS500F(100VAC)
TUNS500F(200VAC)
TUNS700F(100VAC)
TUNS700F(200VAC)
Applications Manual
TUNS300/500/700
Fig.2.5
Ripple cu ent
values
C30
※
Ripple current value is total of 2 paralleled capacitors.
2.8 Inrush current limiting resistor: TFR1
■
The TUNS300/500/700 must connect TFR1.
■
If TFR1 is not connected, the power supply will not operate.
■
Connect TFR1 between R and +BC.
Recommended resistance of TFR1 is shown in Table 2.5.
■
The surge capacity is required for TFR1.
■
Wirewound resistor with thermal cut-offs type is required.
■
Therefore, we don’t recommend connecting a large resistance as TFR1.
■
The inrush current changes by PCB pattern, parts characteristic etc.
Check the actual inrush current value flowing through the AC line.
Table 2.5
Recommended
esisto
TFR1
■
The selection method of TFR1 is shown below.
・
Calculation of resistance
Resistance can be calculated using the following formula.
TFR1
:
Inrush current limiting resistor
RL
:
Line impedance
Vin
:
Input voltage (rms)
Ip
:
Primary Inrush current (peak)
・
Calculation of required surge capacity
Required surge capacity can be calculated using the following formula.
Please contact to the component manufacturer regarding the surge current withstanding capability.
I2t
:
urrent squared times
TFR1
:
Inrush current limiting resistor
bc
:
Smoothing capacitor for boost voltage
Vin
:
Input voltage (rms)
A-6
TUNS300F
4.7
Ω
~ 22
Ω
TUNS500F
4.7
Ω
~ 22
Ω
TUNS700F
4.7
Ω
~ 22
Ω
Model Recommended re i tance
Inrush current limiting resistor can be used to limit the primary inrush current. However, the
secondary inrush current can’t be limited by increasing the resistor value of inrush current
limiting resistor. The secondary inrush current is appro . 25 ~ 30A.
][
1
2
2
2
sA
TFR
VinCbc
tI ×
=
][
2
1Ω−
×
=
L
R
Ip
Vin
TFR
0
500
1000
1500
2000
2500
3000
3500
0 20 40 60 80 100 120
R
i
p
p
l
e
c
u
r
r
e
n
t
[
m
A
r
m
s
]
Output current [%]
TUNS300F(100VAC)
TUNS300F(200VAC)
TUNS500F(100VAC)
TUNS500F(200VAC)
TUNS700F(100VAC)
TUNS700F(200VAC)
Applications Manual
TUNS300/500/700
2.9 Discharging resistor: R1
■
If you need to meet the safety standards, connect a discharging resistor R1 at input
interphase.
■
Please select a resistor so that the input interphase voltage decreases in 42.4V or less
at 1 second after turn off the input.
■
Fig.2.6 shows the relationship between a necessary resistance of R1 and total capacitance
of input interphase capacitors.
And the data of Fig.2.6 is the values that assumed the worst condition.
■
Please keep margin for rated voltage and power of R1.
Fig.2.6
TUNS500F
Relationship
between
a necessa y
esistance of R1
and total
capacitance of
input inte phase
capacito s
A-7
0
50
100
150
200
250
300
350
400
450
0 1 2 3 4 5 6 7 8 9 10
Total capacitance of input interphase capacitors [uF]
R
1
[
k
Ω
]
Applications Manual
TUNS300/500/700