HiTech Global HTG-ZRF8 User manual

HTG-ZRF8 Platform User Manual
www.HiTechGlobal.com
1
HiTech Global ZYNQ UltraScale+™ RFSoC Development Platform
HTG-ZRF8 User Manual
Version 1.0 August 2018
Copyright © HiTech Global 2004-2018

HTG-ZRF8 Platform User Manual
www.HiTechGlobal.com
2
Disclaimer
HiTech Global does not assume any liability arising out of the application or use of any product described or
shown herein; nor does it convey any license under its patents, copyrights, or mask work rights or any rights of
others. HiTech Global reserves the right to make changes, at any time, in order to improve reliability and
functionality of this product. HiTech Global will not assume responsibility for the use of any circuitry described
herein other than circuitry entirely embodied in its products. HiTech Global provides any design, code, or
information shown or described herein "as is." By providing the design, code, or information as one possible
implementation of a feature, application, or standard, HiTech Global makes no representation that such
implementation is free from any claims of infringement. End users are responsible for obtaining any rights they
may require for their implementation. HiTech Global expressly disclaims any warranty whatsoever with respect
to the adequacy of any such implementation, including but not limited to any warranties or representations that
the implementation is free from claims of infringement, as well as any implied warranties of merchantability or
fitness for a particular purpose.
HiTech Global will not assume any liability for the accuracy or correctness of any engineering or software
support or assistance provided to a user. HiTech Global products are not intended for use in life support
appliances, devices, or systems. Use of a HiTech Global product in such applications without the written
consent of the appropriate HiTech Global officer is prohibited.
The contents of this manual are owned and copyrighted by HiTech Global Copyright HiTech Global All Rights
Reserved. Except as stated herein, none of the material may be copied, reproduced, distributed, republished,
downloaded, displayed, posted, or transmitted in any form or by any means including, but not limited to,
electronic, mechanical, photocopying, recording, or otherwise, without the prior written consent of HiTech
Global. Any unauthorized use of any material contained in this manual may violate copyright laws, trademark
laws, the laws of privacy and publicity, and communications regulations and statutes.
Revision History
Date
Version
Notes
8/15/2017
1.0

HTG-ZRF8 Platform User Manual
www.HiTechGlobal.com
3
Table Of Contents
1.0) Overview
5
2.0) Features
6
3.0) Banks Assignment, Block Diagram, & Clocks
6
4.0) Main Clocks
11
5.0) PCI Express
14
6.0) DDR 4 Memory
17
7.0) FPGA Mezzanine Card (FMC+)
24
8.0) ADC / DAC Ports
30
9.0) USB To UART Bridges
32
10.0) ARM Trace Port
33
11.0) SDIO Interface
34
12.0)10/100/1000 Ethernet
35
13.0) Display Port
36
14.0) USB2.0/3/0
36
15.0) SATA
37
16.0) 1-PPS
37
17.0) LEDs, XDAC, User I/O Headers & Pushbutton
38
18.0) IP Protection
39
19.0) I2C Bus Switch
39
20.0) Configuration
40
Tables & Figures
Table (1) FPGA Features
5
Table (2): Main Clocks
11
Table (3): Summary of the Si5341 (U46) Clock Outputs
13
Table (4): PCI Express FPGA Pin Assignments
15
Table (5): PCI Express Clock Circuit
16
Table (6): DDR4 FPGA Pin Assignment (SODIMM-PL Side)
20
Table (7) DDR4 FPGA Pin Assignment (Components-PS Side)
24
Table (8): Vita57.4 FMC+ Pin Assignment
25
Table (9): FPGA Mezzanine Connector (FMC+) Pin Assignment
28
Table (10): RFB Resistor Table vs Various Output Voltages
29
Table (11): ADC Interface Pin Assignment
30
Table (12): DAC Interface Pin Assignment
31
Table (13): USB To UART FPGA Pin Assignment
33
Table (14): Trace/Debug Port’s FPGA Pin Assignment
34

HTG-ZRF8 Platform User Manual
www.HiTechGlobal.com
4
Table (15): SDIO Port’s FPGA Pin Assignment
35
Table (16): Ethernet Port’s FPGA Pin Assignment
35
Table (17): Display Port’s FPGA Pin Assignment
36
Table (18): USB Port’s FPGA Pin Assignment
37
Table (19): SATA Port’s FPGA Pin Assignment
37
Table (20): 1-PPS Port’s FPGA Pin Assignment
38
Table (21): User Interface FPGA Pin Assignment
38
Figure (1): FPGA Bank Assignment
7
Figure (2): System Block Diagram
8
Figure (3): Clock Block Diagram
9
Figure (4): Mechanical Drawing
10
Figure (5): Si5341 Block Diagram
12
Figure (6): LMX2482 Block Diagram
14
Figure (7): PCI Express Clock Circuit
16
Figure (8): PCI Express Clock Enable Circuit
17
Figure (9): HSPC (Vita57.4) Carrier Card Connector Grid Labeling
24
Figure (10): FMC+/FMC VADJ Configurations
29
Figure (11): ADC/DAC Clock Diagram
32
Figure (12): I2C Bus Switch
40
Figure (13): Configuration Option
41

HTG-ZRF8 Platform User Manual
www.HiTechGlobal.com
5
◙1.0) Overview
Populated with one Xilinx ZYNQ UltraScale+ RFSoC ZU25DR, ZU27DR, or ZU28DR, the HTG-ZRF8
provides access to large FPGA gate densities, multiple ADC/DAC ports, expandable I/Os ports and DDR4
memory for variety of different programmable applications.
The HTG-ZRF8 is supported by eight 12-bit ADC (4GSPS) and eight 14-bit DAC (6.4GSPS) ports. The ADC
and DAC ports are supported through high-performance front panel micro Rf connectors.
The HTG-ZRF8 architecture allows easy and versatile functional expansion through one Vita 57.4 compliant
(FMC+) port. The HTG-ZRF8 can host wide range of Vita57.1 /Vita57.4 compliant daughter cards.
The HTG-ZRF8 is supported by one 72-bit ECC DDR4 SODIMM socket providing access to up to 16 GB of
SDRAM memory. The processor’s side is supported by up to 2GB of DDR4 memory.
The HTG-ZRF8 can be used in PCI Express and Standalone mode and powered through its 6-pin Molex PCIe
connector.
Table (1) illustrates key features of the supported FPGAs by the HTG-ZRF8 platform.
Table (1): Summary of supported ZYNQ RFSoc UltraScale+ FPGA Features

HTG-ZRF8 Platform User Manual
www.HiTechGlobal.com
6
◙2.0) HTG-ZRF8 Platform’s Features
►Xilinx Zynq UltraScale+ RFSoc ZU25DR, ZU27DR, or ZU28DR
►x8 ADC (12-bit , 4GSPS) ports (SMCC connectors)
►x8 DAC (14-bit, 6.4GSPS) ports (SMCC connectors)
►Programmable ADC/DAC Clock Generator
►x8 PCI Express end-point Gen4
►x1 Vita57.4 FPGA Mezzanine Connector (FMC+) with 68 single-ended I/Os and 8 GTY (32.75Gbps) Serial
Transceivers
►Independent DDR4 memory for the FPGA (up to 16GB SODIMM) and the ARM Processors (2GB
component)
►x2 QSPI Configuration Flash devices
►x1 10/100/1000 Ethernet (RJ45) port (Processor)
►x1 MicroSD (Processor)
►x1 SATA (Processor)
►x1 Display Port (Processor)
►x1 USB2.0 / USB 3.0 port (Processor)
►x2 USB/UART (FPGA and Processor)
►Programmable Clocks (with default frequencies but programmable through I2C bus)
►1PPS port
►ARM Debug Header
►FPGA JTAG Header
►External Synchronous Clock port
►6.6" x 4.25"
►Supports both PCI Express and Standalone operations
- 12V/8A Power adapter for standalone operation
◙3.0) Banks Assignment, Block Diagram, Clocks Diagram & Mechanical Drawing
Figure (1) , (2), (3) and (4) illustrate FPGA I/O bank assignment, block diagram , clocks diagram, and
mechanical dimensions of the HTG-ZRF8 platform.

HTG-ZRF8 Platform User Manual
www.HiTechGlobal.com
7
Figure (1): FPGA Bank Assignment

HTG-ZRF8 Platform User Manual
www.HiTechGlobal.com
8
Figure (2): System Block Diagram

HTG-ZRF8 Platform User Manual
www.HiTechGlobal.com
9
Figure (3): Clock Block Diagram

HTG-ZRF8 Platform User Manual
www.HiTechGlobal.com
10
Figure (4): Mechanical Drawing

HTG-ZRF8 Platform User Manual
www.HiTechGlobal.com
11
◙4.0) Clocks
The HTG-ZRF8 provides combination of fixed, programmable, and adjustable ultra-low-jitter clock sources for
different interfaces as summarized by the table (2).
Source
Part Number (Manufacturer)
Default Value
Clock Function
U19
Si5341A
Programmable
User, DDR 4 , FMC+, Processor GTR & SMP
U40
SIT8103AC-23-18E-33.33333MHz
33.33 MHz
Processor
U4
871S1022EKLF (IDT)
100 MHz
PCI Express
U68
LMX2592RHA
Programmable
ADC & DAC
U69
VCC6-LAB-122M880000
122.88 MHz
ADC & DAC Input
ZQ1
7M-25.000MEEQ-T (not installed)
25 MHz
PCIe Standalone
ZQ2
7M48072002
48 MHz
U19 Main Reference
ZQ3
FA-238 25.0000MB
25 MHz
Ethernet
ZQ4
FA-238 24.0000MB
24 MHz
USB2
ZQ5
9HT10-32.768KDZF-T
32.768 KHz
PS_PADI/PS_PADO RTC
X1/X2
Mini SMP
Variable
U19 Additional External Output
X3/X4
SSMC Connector
Variable
U19 Additional External Input
Table (2): Main Clocks
►The ICS871S1022 (U4 )is a PLL-based clock generator specifically designed for PCI Express Clock
Generation applications. The device generates 100MHz, 125MHz, 250MHz or 500MHz from either a 25MHz
fundamental mode crystal or a 100MHz recovered clock. The ICS871S1022 has two modes of operation: (1)
high frequency jitter attenuator and (2) high performance clock synthesizer mode. When in jitter attenuator
mode, the ICS871S1022 is able to both suppress high frequency noise components and function as a frequency
translator. Designed to receive a jittery and noisy clock from an external source, the ICS871S1022 uses
FemtoClock® technology to clean up the incoming clock and translate the frequency to one of the four common
PCI Express frequencies. When in synthesizer mode, the device is able to generate high performance SSC and
non-SSC clocks from a low cost external, 25MHz, fundamental mode crystal. The ICS871S1022 uses
FemtoClock® technology to generate low noise clock outputs capable of providing the seed frequencies for the
common PCI Express link rates.
Additional product information is available at http://www.idt.com/products/clocks-timing/application-specific-
clocks/pci-express-pcie-clocks/871s1022-differential-07v-differential-pci-express-jitter-attenuator
►The any-frequency, any-output Si5341(U19) clock generator combines a wide-band PLL with proprietary
MultiSynth fractional synthesizer technology to offer a versatile and high performance clock generator
platform. This highly flexible architecture is capable of synthesizing a wide range of integer and no-integer
related frequencies up to 712.5 MHz on 10 differential clock outputs while delivering sub-100 fs rms phase
jitter performance with 0 ppm error. Each of the clock outputs can be assigned its own format and output
voltage enabling the Si5341/40 to replace multiple clock ICs and oscillators with a single device making it a
true “clock tree on a chip”.
The Si5341/40 can be quickly and easily configured using ClockBuilder Pro software. The device can be
programmed in circuit via I2C and SPI serial interfaces or using Silicon Labs’ dongle and the J28 header.
https://www.silabs.com/products/development-tools/software/clockbuilder-pro-software

HTG-ZRF8 Platform User Manual
www.HiTechGlobal.com
12
Figure (5): Si5341 Clock Generator Block Diagram

HTG-ZRF8 Platform User Manual
www.HiTechGlobal.com
13
Table (3) provides summary of clock outputs of the Si5341 (U46) clock generator.
Output #
Signal Name
Destination
FPGA Pin
Number
OUT0_P
CLK_PL_USER1_P
FPGA Bank 87
(User Clock)
C8
OUT0_N
CLK_PL_USER1_N
C7
OUT1_P
SYS_CLK_DDR4_PL_P
FPGA Bank67
(DDR4 SODIMM Clock)
G13
OUT1_N
SYS_CLK_DDR4_PL_N
G12
OUT2_P
FMC_PL_REFCLK_C2M_P
FMC + Connector
(Carrier to Mezzanine Clock)
-
OUT2_N
FMC_PL_REFCLK_C2M_N
-
OUT3_P
GTY_131_REFCLK_P
FPGA GTY 131
(FMC+ DP4-DP7)
P31
OUT3_N
GTY_131_REFCLK_N
P32
OUT4_P
GTY_130_REFCLK_P
FPGA GTY 130
(FMC+ DP0-DP3)
U33
OUT4_N
GTY_130_REFCLK_N
U34
OUT5_P
CLK_PL_USER2_P
FPGA Bank 64
(User Clock)
AM15
OUT5_N
CLK_PL_USER2_N
AN15
OUT6_P
GTR_505_REFCLK3_P
FPGA GTR 505
(USB3/SATA/Display Port)
AC34
OUT6_N
GTR_505_REFCLK3_N
AC35
OUT7_P
CLK_OUT_SMA_P
X1 /X2 Mini SMP Connector
(Output Clock)
-
OUT7_N
CLK_OUT_SMA_N
-
OUT8_P
GTR_505_REFCLK2_P
FPGA GTR 505
(USB3/SATA/Display Port)
AE34
OUT8_N
GTR_505_REFCLK2_N
AE35
OUT9_P
GTR_505_REFCLK1_P
FPGA GTR 505
(USB3/SATA/Display Port)
AG34
OUT9_N
GTR_505_REFCLK1_N
AG35
Table (3): Summary of the Si5341 (U46) Clock Outputs
►The LMX2592 (U68) is a high performance wideband synthesizer (PLL with integrated VCO). The output
frequency range is from 20 MHz to 5.5 GHz. The VCO core covers an octave from 3.55 to 7.1 GHz. The output
channel divider covers the frequency range from 20 MHz to the low bound of the VCO core.
The input signal frequency has a wide range from 5 to 1400 MHz. Following the input, there is an
programmable OSCin doubler, a pre-R divider (previous to multiplier), a multiplier, and then a post-R divider
(after multiplier) for flexible frequency planning between the input (OSCin) and the phase detector.
The phase detector (PFD) can take frequencies from 5 to 200 MHz, but also has extended modes down to 0.25
MHz and up to 400 MHz. The phase-lock loop (PLL) contains a Sigma-Delta modulator (1st to 4th order) for
fractional N-divider values. The fractional denominator is programmable to 32-bit long, allowing a very fine
resolution of frequency step. There is a phase adjust feature that allows shifting of the output phase in relation
to the input (OSCin) by a fraction of the size of the fractional denominator.
The output power is programmable and can be designed for high power at a specific frequency by the pullup
component at the output pin.
The digital logic is a standard 4-wire SPI or uWire interface and is 1.8-V and 3.3-V compatible.

HTG-ZRF8 Platform User Manual
www.HiTechGlobal.com
14
Figure (6): LMX2592 Block Diagram
◙5.0) PCI Express
The HTG-ZRF8 platform provides an 8-lane PCI Express Gen4 (8@16Gbps) end-point interface through
integration of eight GTY serial transceivers (GTY 128 and 129) and one eight-lane hard-coded PCIe Link Layer
Controller (X0Y0) of the FPGA.
Table (4) illustrates signal names and FPGA pin assignment for the PCI Express interface.
PCIe Signal Name
FPGA Signal Name
FPGA Pin Number
PCIE_CLK_N
PCIE_CLK0_MGT0_N
AA34
PCIE_CLK_P
PCIE_CLK0_MGT0_P
AA33
PCIE_CLK_N
PCIE_CLK0_MGT1_N
Y32
PCIE_CLK_P
PCIE_CLK0_MGT1_P
Y31
PCIE_CLK_N
PCIE_CLK1_MGT_N
W34
PCIE_CLK_P
PCIE_CLK1_MGT_P
W33
PERST
PCIE_PERST_N_F
AJ13
PETN0
PCIE_RX[0]_N
AA39
PETP0
PCIE_RX[0]_P
AA38
PETN1
PCIE_RX[1]_N
W39
PETP1
PCIE_RX[1]_P
W38
PETN2
PCIE_RX[2]_N
U39
PETP2
PCIE_RX[2]_P
U38
PETN3
PCIE_RX[3]_N
R39
PETP3
PCIE_RX[3]_P
R38
PETN4
PCIE_RX[4]_N
N39
PETP4
PCIE_RX[4]_P
N38

HTG-ZRF8 Platform User Manual
www.HiTechGlobal.com
15
PETN5
PCIE_RX[5]_N
M37
PETP5
PCIE_RX[5]_P
M36
PETN6
PCIE_RX[6]_N
L39
PETP6
PCIE_RX[6]_P
L38
PETN7
PCIE_RX[7]_N
K37
PETP7
PCIE_RX[7]_P
K36
PERN0
PCIE_TX[0]_N
Y36
PERP0
PCIE_TX[0]_P
Y35
PERN1
PCIE_TX[1]_N
V36
PERP1
PCIE_TX[1]_P
V35
PERN2
PCIE_TX[2]_N
T36
PERP2
PCIE_TX[2]_P
T35
PERN3
PCIE_TX[3]_N
R34
PERP3
PCIE_TX[3]_P
R33
PERN4
PCIE_TX[4]_N
P36
PERP4
PCIE_TX[4]_P
P35
PERN5
PCIE_TX[5]_N
N34
PERP5
PCIE_TX[5]_P
N33
PERN6
PCIE_TX[6]_N
L34
PERP6
PCIE_TX[6]_P
L33
PERN7
PCIE_TX[7]_N
J34
PERP7
PCIE_TX[7]_P
J33
WAKE
PCIE_WAKE_N
E7
Table (4): PCI Express FPGA Pin Assignments
5.1) PCI Express Clock
The HTG-ZRF8 platform is supported by an auxiliary PCI Express jitter attenuator chip (871S1022EKLF)
cleaning the 100MHz clock received by host PCs or servers. The jitter attenuator can also generate clock for the
PCIe interface independent from host PCs or servers through its 25MHz (ZQ1) oscillator. This jitter attenuator
circuit can be bypassed by uninstalling R104 and R105 resistors and installing C82 and C83 capacitors.
Figure (7) illustrates clock circuit of the PCI Express interface and Jitter Attenuator.

HTG-ZRF8 Platform User Manual
www.HiTechGlobal.com
16
Figure (7): PCI Express Clock Circuit
PCI Express clock frequency value is set to 100 MHz by default. The output clock value can be adjusted by
selecting N1:N0 attributes as shown by table (5) and figure (8).
Table (5): PCI Express Clock Circuit

HTG-ZRF8 Platform User Manual
www.HiTechGlobal.com
17
Figure (8): PCI Express Clock Enable Circuit
◙6.0) DDR-4 Memory
The HTG-ZRF8 platform supports one DDR4 SODIMM socket providing access to up to 16GB of memory
through the FPGA programmable logic and five DDR4 components providing access to 2GB of memory
through the processor’s block of the FPGA.
Table (6) and (7) illustrate the FPGA bank assignment for the DDR4 SODIMM and Component interfaces.
DDR4 SODIMM Signal Name
FPGA Pin Number
DDR4_PL_A[0]
F11
DDR4_PL_A[1]
C13
DDR4_PL_A[2]
F14
DDR4_PL_A[3]
F10
DDR4_PL_A[4]
E11
DDR4_PL_A[5]
E13
DDR4_PL_A[6]
B13
DDR4_PL_A[7]
E12
DDR4_PL_A[8]
A11
DDR4_PL_A[9]
C12
DDR4_PL_A[10]
K13
DDR4_PL_A[11]
C15
DDR4_PL_A[12]
C11
DDR4_PL_A[13]
K10
DDR4_PL_A[14]
B14
DDR4_PL_A[15]
H12

HTG-ZRF8 Platform User Manual
www.HiTechGlobal.com
18
DDR4_PL_A[16]
K12
DDR4_PL_ACT_N
B15
DDR4_PL_ALERT_N
D14
DDR4_PL_BA[0]
H13
DDR4_PL_BA[1]
A14
DDR4_PL_BG[0]
B12
DDR4_PL_BG[1]
D11
DDR4_PL_CK0_C
J10
DDR4_PL_CK0_T
J11
DDR4_PL_CK1_C
J13
DDR4_PL_CK1_T
J14
DDR4_PL_CKE0
A12
DDR4_PL_CKE1
A15
DDR4_PL_CS0_N
H10
DDR4_PL_CS1_N
E14
DDR4_PL_CS2_N
K11
DDR4_PL_CS3_N
F12
DDR4_PL_DM_DBI_N[0]
N14
DDR4_PL_DM_DBI_N[1]
J15
DDR4_PL_DM_DBI_N[2]
G17
DDR4_PL_DM_DBI_N[3]
D18
DDR4_PL_DM_DBI_N[4]
J23
DDR4_PL_DM_DBI_N[5]
F21
DDR4_PL_DM_DBI_N[6]
C23
DDR4_PL_DM_DBI_N[7]
N20
DDR4_PL_DM_DBI_N[8]
J8
DDR4_PL_DQ[0]
M12
DDR4_PL_DQ[1]
M13
DDR4_PL_DQ[2]
N15
DDR4_PL_DQ[3]
M17
DDR4_PL_DQ[4]
L12
DDR4_PL_DQ[5]
N13
DDR4_PL_DQ[6]
M15
DDR4_PL_DQ[7]
N17
DDR4_PL_DQ[8]
K17
DDR4_PL_DQ[9]
L17
DDR4_PL_DQ[10]
J19
DDR4_PL_DQ[11]
H16
DDR4_PL_DQ[12]
J16
DDR4_PL_DQ[13]
K16
DDR4_PL_DQ[14]
H17

HTG-ZRF8 Platform User Manual
www.HiTechGlobal.com
19
DDR4_PL_DQ[15]
J18
DDR4_PL_DQ[16]
E16
DDR4_PL_DQ[17]
F15
DDR4_PL_DQ[18]
E17
DDR4_PL_DQ[19]
H18
DDR4_PL_DQ[20]
F16
DDR4_PL_DQ[21]
G15
DDR4_PL_DQ[22]
E18
DDR4_PL_DQ[23]
G18
DDR4_PL_DQ[24]
C16
DDR4_PL_DQ[25]
D15
DDR4_PL_DQ[26]
C17
DDR4_PL_DQ[27]
A19
DDR4_PL_DQ[28]
A16
DDR4_PL_DQ[29]
D16
DDR4_PL_DQ[30]
A17
DDR4_PL_DQ[31]
B19
DDR4_PL_DQ[32]
H23
DDR4_PL_DQ[33]
J21
DDR4_PL_DQ[34]
H22
DDR4_PL_DQ[35]
K24
DDR4_PL_DQ[36]
G23
DDR4_PL_DQ[37]
H21
DDR4_PL_DQ[38]
G22
DDR4_PL_DQ[39]
L24
DDR4_PL_DQ[40]
E21
DDR4_PL_DQ[41]
F20
DDR4_PL_DQ[42]
E23
DDR4_PL_DQ[43]
F24
DDR4_PL_DQ[44]
D21
DDR4_PL_DQ[45]
E22
DDR4_PL_DQ[46]
E24
DDR4_PL_DQ[47]
G20
DDR4_PL_DQ[48]
C20
DDR4_PL_DQ[49]
A20
DDR4_PL_DQ[50]
B24
DDR4_PL_DQ[51]
C21
DDR4_PL_DQ[52]
B20
DDR4_PL_DQ[53]
A21
DDR4_PL_DQ[54]
C22
DDR4_PL_DQ[55]
A24

HTG-ZRF8 Platform User Manual
www.HiTechGlobal.com
20
DDR4_PL_DQ[56]
L19
DDR4_PL_DQ[57]
L21
DDR4_PL_DQ[58]
L23
DDR4_PL_DQ[59]
N19
DDR4_PL_DQ[60]
L20
DDR4_PL_DQ[61]
M19
DDR4_PL_DQ[62]
L22
DDR4_PL_DQ[63]
M20
DDR4_PL_DQ[64]
F9
DDR4_PL_DQ[65]
G7
DDR4_PL_DQ[66]
H6
DDR4_PL_DQ[67]
G6
DDR4_PL_DQ[68]
G9
DDR4_PL_DQ[69]
H7
DDR4_PL_DQ[70]
K9
DDR4_PL_DQ[71]
J9
DDR4_PL_DQS_C[0]
L14
DDR4_PL_DQS_C[1]
K18
DDR4_PL_DQS_C[2]
F19
DDR4_PL_DQS_C[3]
B17
DDR4_PL_DQS_C[4]
H20
DDR4_PL_DQS_C[5]
D24
DDR4_PL_DQS_C[6]
A22
DDR4_PL_DQS_C[7]
K22
DDR4_PL_DQS_C[8]
G8
DDR4_PL_DQS_T[0]
L15
DDR4_PL_DQS_T[1]
K19
DDR4_PL_DQS_T[2]
G19
DDR4_PL_DQS_T[3]
B18
DDR4_PL_DQS_T[4]
J20
DDR4_PL_DQS_T[5]
D23
DDR4_PL_DQS_T[6]
B22
DDR4_PL_DQS_T[7]
K21
DDR4_PL_DQS_T[8]
H8
DDR4_PL_EVENT_N
G14
DDR4_PL_ODT0
J7
DDR4_PL_ODT1
H11
DDR4_PL_PAR
G10
DDR4_PL_RST_N
D13
Table (6): DDR4 FPGA Pin Assignment (SODIMM-PL Side)
Table of contents
Popular Motherboard manuals by other brands

ASROCK
ASROCK 775V88 installation guide

Microchip Technology
Microchip Technology SAM L10 Xplained Pro Getting started

Biostar
Biostar M7VIT Bravo Description

Rigel Corporation
Rigel Corporation R-31JP Assembly manual

Texas Instruments
Texas Instruments ADS5263EVM user guide

Micronics
Micronics M54E2 PCI/EISA Hardware user manual