Lattice MIPI D-PHY User manual

MIPI D-PHY Bandwidth Matrix Table
User Guide
FPGA-UG-02041 Version 1.1
May 2018

MIPI D-PHY Bandwidth Matrix Table
User Guide
© 2015-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
2 FPGA-UG-02041-1.1
Contents
Acronyms in This Document .......................................................................................................................................... 4
1. Introduction .......................................................................................................................................................... 5
2. Video Format......................................................................................................................................................... 6
2.1. Video Resolution and Pixel Clock .................................................................................................................. 7
2.2. Color Depth.................................................................................................................................................. 8
3. MIPI CSI-2/DSI Interfaces ....................................................................................................................................... 9
4. Packetizing .......................................................................................................................................................... 13
4.1. xMulti-lane................................................................................................................................................. 14
5. Bandwidth and Data Rate .................................................................................................................................... 15
5.1. Bandwidth and Data Rate Calculation ......................................................................................................... 15
5.1.1. Pixel Clock .............................................................................................................................................. 15
5.1.2. Total Data Rate or Bandwidth................................................................................................................. 15
5.1.3. Data Rate per Lane ................................................................................................................................. 15
5.1.4. Bit Clock ................................................................................................................................................. 15
5.2. Examples.................................................................................................................................................... 15
5.2.1. Example 1: 1920x1080p@60Hz, RAW10, 2-lane...................................................................................... 15
5.2.2. Example 2: 3840x2160@30Hz, RAW8, 4-lane.......................................................................................... 15
6. Device Selection .................................................................................................................................................. 16
6.1. Hardware Features ..................................................................................................................................... 16
7. MIPI Data Rate Calculation .................................................................................................................................. 18
7.1. FPGA Receiver Interface ............................................................................................................................. 18
7.1.1. MachXO2/MachXO3L ............................................................................................................................. 18
7.1.2. LatticeECP3 ............................................................................................................................................ 19
7.1.3. ECP5/ECP5-5G ........................................................................................................................................ 20
7.1.4. CrossLink Soft D-PHY .............................................................................................................................. 21
7.1.5. tSU/tHD Valid Window at Higher Data Rate ............................................................................................... 21
7.2. FPGA Transmitter Interface ........................................................................................................................ 22
7.2.1. MachXO2/MachXO3L ............................................................................................................................. 22
7.2.2. LatticeECP3 ............................................................................................................................................ 23
7.2.3. ECP5/ECP5-5G ........................................................................................................................................ 24
7.2.4. Tskew Window at Higher Data Rate ........................................................................................................ 24
7.3. MIPI D-PHY Lane Number Selection Matrix Table ........................................................................................ 25
Reference ................................................................................................................................................................... 27
Technical Support ....................................................................................................................................................... 27
Revision History .......................................................................................................................................................... 27

MIPI D-PHY Bandwidth Matrix Table
User Guide
© 2015-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
FPGA-UG-02041-1.1 3
Figures
Figure 1.1. CMOS Sensor Bridge Model ..........................................................................................................................5
Figure 2.1. Interlaced Mode Video Frame Format ..........................................................................................................6
Figure 2.2. Most Common Display Resolutions...............................................................................................................7
Figure 3.1. Unidirectional Receive HS Mode and Bidirectional LP Mode Interface Implementation .................................9
Figure 3.2. Unidirectional Receive HS Mode Only Implementation ...............................................................................10
Figure 3.3. Unidirectional Transmit HS Mode and Bidirectional LP Mode Interface Implementation .............................11
Figure 3.4. Unidirectional Transmit HS Mode Only Implementation ............................................................................. 12
Figure 4.1. An Example of RAW10 Transmissions on CSI-2 Bus .....................................................................................13
Figure 7.1. MachXO2/MachXO3L Maximum Data Rate................................................................................................. 18
Figure 7.2. LatticeECP3 Maximum Data Rate................................................................................................................19
Figure 7.3. ECP5/ECP5-5G Maximum Data Rate ...........................................................................................................20
Figure 7.4. CrossLink Maximum Data Rate ...................................................................................................................21
Figure 7.5. MachXO2 Maximum Data Rate...................................................................................................................22
Figure 7.6. LatticeECP3 Maximum Data Rate................................................................................................................23
Figure 7.7. ECP5/ECP5-5G Maximum Data Rate ...........................................................................................................24
Tables
Table 2.1. Common Video Format..................................................................................................................................8
Table 4.1. CSI-2 Packet Size Constraints* .....................................................................................................................14
Table 6.1. MIPI Soft D-PHY RX/TX Hardware Comparison .............................................................................................16
Table 7.1. tSU/tHD Window for Higher Data Rate ...........................................................................................................21
Table 7.2. Tskew Window for Higher Data Rate............................................................................................................24
Table 7.3. MIPI D-PHY Interface Lane Number and Line Rate Selection Example Matrix Table....................................... 25

MIPI D-PHY Bandwidth Matrix Table
User Guide
© 2015-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
4 FPGA-UG-02041-1.1
Acronyms in This Document
A list of acronyms used in this document.
Acronym
Definition
CSI
Camera Serial Interface
DE
Data Enable
DMT
Display Monitor Timing
DSI
Display Serial Interface
EAV
End of Active Video
FPGA
Field-Programmable Gate Array
HS
High Speed; Horizontal Sync
LP
Low Power
MIPI
Mobile Industry Processor Interface
SAV
Start of Active Video
VS
Vertical Sync

MIPI D-PHY Bandwidth Matrix Table
User Guide
© 2015-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
FPGA-UG-02041-1.1 5
1. Introduction
As we move from the world of standard-definition to the high-definition and ultra-high-definition, the common parallel
interfaces are difficult to expand, require many interconnects and consume relatively large amounts of power.
Emerging packet-based serial interfaces, such as MIPI CSI-2 and DSI address many of the shortcomings of the parallel
interfaces, while also introducing system complexity. Understanding the mathematics behind the parallel and serial
interface bandwidth estimation can prevent a lot of problems when choosing an FPGA device with the right number of
data lanes supporting the required data transfer rate. This document describes in details the methods of calculating the
bandwidth and data rate of the image sensor’s output of the RGB, YUV, or RAW data over a single or multi-lane MIPI
CSI-2 and DSI interface. The same calculation method can be applied to other video interface such as FPD-Link, HiSPI,
and HDMI.
Figure 1.1 shows a conceptual model of the CMOS Sensor Bridge Design. On the left, a CMOS sensor transfers image
data to the FPGA through 1 to 4 serial data lanes; the FPGA sensor bridge merges the image data from multiple lanes
and converts them into parallel data; on the right, the image data are sent out over the parallel bus in standard video
format. Based on the known video format information, we can calculate the required bandwidth. Because the FPGA
does not buffer the video frames, the peak transfer rate of CMOS sensor input must meet the bandwidth requirement
of the output. With this presumption, we can estimate the maximum data rate and bit clock frequency of the CMOS
sensor interface.
Figure 1.1. CMOS Sensor Bridge Model

MIPI D-PHY Bandwidth Matrix Table
User Guide
© 2015-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
6 FPGA-UG-02041-1.1
2. Video Format
To estimate the data transfer rate, we need to understand the format of the video data transferred over the sensor
bridge. Video is composed of a series of still images. Each still image is composed of individual lines of pixel data. Figure
2.1 illustrates a conceptual interlaced video frame. The progressive video frame is similar to it except for only one field
per frame.
Figure 2.1. Interlaced Mode Video Frame Format
For digital video, either a separate Horizontal Sync (HS), Vertical Sync (VS) and Data Enable (DE) signals are used to
synchronize the video data transfer, or a special sequence embedded into the video data stream indicating the Start of
Active Video (SAV) or End of Active Video (EAV). For MIPI CSI-2, two packets structures are defined for Low Level
Protocol layer: Long packets to carry payload data, and the Short Packets for Frame Synchronization (that is Frame
Start and Frame End) and Line Synchronization (that is Line Start and Line End).

MIPI D-PHY Bandwidth Matrix Table
User Guide
© 2015-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
FPGA-UG-02041-1.1 7
There are many characteristics of the video streams such as frame rate, interlaced vs progressive, aspect ratio,
stereoscopic, color space and color depth. We will review the major parameters that will be used in the calculation of
the data transfer rate in the later sections of the document.
2.1. Video Resolution and Pixel Clock
The video resolution is quoted as Width x Height, with the unit in pixels: for example, 1920x1080 means the horizontal
width is 1920 pixels and the vertical height is 1080 lines. Figure 2.2 shows the chart of the common display resolutions.
Figure 2.2. Most Common Display Resolutions
Source: https://en.wikipedia.org/wiki/File:Vector_Video_Standards4.svg
There are two major types of video format standards: SMPTE/CEA defines video standards for the Television and broadcast;
VESA Display Monitor Timing (DMT) standard defines the video standards for the computer monitors. Table 2.1 lists the
most common video resolutions. Among them, we choose HD (1280x720p), FHD (1920x1080p) and UHD (3840x2160p) as
examples to calculate the bandwidth and data rate in the later sections.

MIPI D-PHY Bandwidth Matrix Table
User Guide
© 2015-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
8 FPGA-UG-02041-1.1
Table 2.1. Common Video Format
Hactive
Vactive
Htotal
Vtotal
Refresh
Rate (Hz)
Pixel Freq
(MHz)
Television Video Format
EDTV
640x480p @ 59.94 Hz
640
480
800
525
59.94
25.175
720x480p @ 59.94 Hz
720
480
858
525
59.94
27
720x576p @ 50 Hz
720
576
864
625
50
27
HDTV
1280x720p @ 60 Hz
1280
720
1650
750
60
74.25
Full HD
1920x1080i @ 60 Hz
1920
1080
2200
1125
60
74.25
1920x1080p @ 60 Hz
1920
1080
2200
1125
60
148.5
UHDTV
3840x2160p @ 60 Hz
3840
2160
4400
2250
60
594
4096x2160p @ 60 Hz
4096
2160
4400
2250
60
594
Computer Monitor Format
XGA
1024x768p @ 60 Hz
1024
768
1344
806
60
65
WXGA
1280x800p @ 60 Hz
1280
800
1680
831
59.81
83.5
WXGA+
1440x900p @ 60 Hz
1440
900
1904
934
59.887
106.5
HD
1366x768p @ 60 Hz
1366
768
1792
798
59.79
85.5
HD+
1600x900p @ 60 Hz (RB)
1600
900
1800
1000
60
108
WUXGA
1920x1200p @ 60 Hz (RB)
1920
1200
2080
1235
59.95
154
WQXGA
2560x1600p @ 60 Hz (RB)
2560
1600
2720
1646
59.97
268.5
Some of the image sensors can output the standard video formats by cropping or binning the pixels, the others may
output non-standard resolutions. The important thing is to obtain the information of the Total Horizontal Samples,
Total Vertical Lines and frame Refresh Rate. We will discuss how to calculate the bandwidth based on the above
information.
2.2. Color Depth
Color depth, also known as bit depth, can be either referred to as bits-per-pixel (bpp) which specifies the number of
bits used for a single pixel, or referred to as bits-per-component (bpc) which specifies the number of bits used to
represent each color component of a single pixel. Deep color supports 30/36/48-bit for three RGB colors. In this
document, the term Pixel Size is equivalent to the color depth in bits-per-pixel. For example, the pixel size of a 30-bit
deep color RGB is defined as 30 bits per pixel, or 10 bits per color component.

MIPI D-PHY Bandwidth Matrix Table
User Guide
© 2015-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
FPGA-UG-02041-1.1 9
3. MIPI CSI-2/DSI Interfaces
MIPI Camera Serial Interface 2 (CSI-2) and Display serial Interface (DSI) are two of the serial interface protocols based
on MIPI D-PHY physical interface. MIPI D-PHY supports unidirectional HS (High Speed) mode and Bidirectional LP (Low
Power) mode. For the application of CMOS sensor bridge, we will only need the MIPI D-PHY receiver (RX) on the FPGA
receive interface, which allows the bridge to receive HS data on one clock lane and up to four data lanes. Figure 3.1
shows the block diagram of the Unidirectional Receive HS Mode and Bidirectional LP Mode interface. Figure 3.2 shows
the block diagram of the Unidirectional Receiver HS Mode Only interface. Figure 3.3 shows the block diagram of the
Unidirectional Transmit HS Mode and Bidirectional LP Mode interface. Figure 3.4 shows the block diagram of the
Unidirectional Transmit HS Mode Only interface.
Note: Figure 3.1 and Figure 3.2 do not apply to CrossLink since the CrossLink device uses dedicated MIPI D-PHY Input
buffers for both HS and LP mode to meet MIPI input voltage specfication. Figure 3.3 and Figure 3.4 also do not apply to
CrossLink as CrossLink’s programmable I/Os can only be configured as a MIPI D-PHY receiver (soft MIPI D-PHY). Only
the hardened MIPI D-PHY blocks can be configured as a transmitter.
For details on both Receiver/Transmitter HS and LP modes interface implementation, please refer to Lattice reference
design document MIPI D-PHY Interface IP (RD1182).
Aligner
iDDRx4
I/O Controller
LVDS25
LVCMOS12
LVCMOS12
50 Ω
50 Ω
DATA3_P
DATA3_N
LP3[1]
D3_p
LP3[0]
D3_n
50 Ω
50 Ω
DATA0_P
DATA0_N
LP0[1]
D0_p
LP0[0]
D0_n
50 Ω
50 Ω
CLOCK_P
CLOCK_N
LPCLK[1]
DCK_p
LPCLK[0]
DCK_n LVDS25
LVCMOS12
LVCMOS12
LVDS25
LVCMOS12
LVCMOS12
Figure 3.1. Unidirectional Receive HS Mode and Bidirectional LP Mode Interface Implementation

MIPI D-PHY Bandwidth Matrix Table
User Guide
© 2015-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
10 FPGA-UG-02041-1.1
MIPI DPHY
TX Device
LATTICE FPGA
DATA3_P
DATA3_N
D3_p
D3_n
100 Ω
LVDS25
DPHY RX Module
I/O Controller
iDDRx4
Aligner
LVDS25
LVDS25
DATA0_P
DATA0_N
D0_p
D0_n
100 Ω
CLOCK_P
CLOCK_N
DCK_p
DCK_n
100 Ω
Figure 3.2. Unidirectional Receive HS Mode Only Implementation

MIPI D-PHY Bandwidth Matrix Table
User Guide
© 2015-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
FPGA-UG-02041-1.1 11
Lattice FPGA
50 Ω
LVDS25E
LVCMOS12
LVCMOS12 CLOCK_P
CLOCK_N
DATA3_P
DATA3_N
DPHY TX
Module
iDDRx4
I/O Controller
LVDS25E
LVCMOS12
LVCMOS12
LVCMOS12
LVCMOS12
330 Ω
DATA0_P
DATA0_N
MIPI DPHY
RX Device
LVDS25E
330 Ω
50 Ω
50 Ω
330 Ω
330 Ω
50 Ω
50 Ω
330 Ω
330 Ω
50 Ω
Figure 3.3. Unidirectional Transmit HS Mode and Bidirectional LP Mode Interface Implementation

MIPI D-PHY Bandwidth Matrix Table
User Guide
© 2015-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
12 FPGA-UG-02041-1.1
Lattice FPGA
70 Ω
LVDS25E
CLOCK_P
CLOCK_N
DATA_P
DATA_N
DPHY TX
Module
iDDRx4
I/O Controller
LVDS25E
LVDS25E
330 Ω
330 Ω
330 Ω
330 Ω
330 Ω
330 Ω
DATA_P
MIPI DPHY
RX Device
70 Ω
DATA_N
70 Ω
70 Ω
70 Ω
70 Ω
70 Ω resistors
connected to
ground for HS-only
mode.
Figure 3.4. Unidirectional Transmit HS Mode Only Implementation

MIPI D-PHY Bandwidth Matrix Table
User Guide
© 2015-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
FPGA-UG-02041-1.1 13
4. Packetizing
The MIPI CSI-2 supports YUV, RGB or RAW data with varying pixel formats from 6 to 24 bits per pixel. In the transmitter
the pixels are packed into bytes (Pixel-to-byte Packing) before sending the data to Low Level Protocol layer; in the
receiver the bytes received from the Low Level Protocol layer are unpacked into pixel (Byte-to-pixel Unpacking). One
CSI-2 long packet shall contain one line of image data. The total size of data within a long packet for all data types shall
be a multiple of eight bits (byte). Figure 4.1 shows an example of packing four 10-bit pixel data, or RAW10, into five
bytes to look like 8-bit data format.
FS P1 P2
FE
P4 LSBsP3 …. P637 P638 P640 LSBsP639
P1 P2 P4 LSBsP3 …. P637 P638 P640 LSBsP639
P1 P2 P4 LSBsP3 …. P637 P638 P640 LSBsP639
P1 P2 P4 LSBsP3 …. P637 P638 P640 LSBsP639
P1 P2 P4 LSBsP3 …. P637 P638 P640 LSBsP639
P1 P2 P4 LSBsP3 …. P637 P638 P640 LSBsP639
P1 P2 P4 LSBsP3 …. P637 P638 P640 LSBsP639
P1 P2 P4 LSBsP3 …. P637 P638 P640 LSBsP639
P1 P2 P4 LSBsP3 …. P637 P638 P640 LSBsP639
P1 P2 P4 LSBsP3 …. P637 P638 P640 LSBsP639
P1 P2 P4 LSBsP3 …. P637 P638 P640 LSBsP639
P1 P2 P4 LSBsP3 …. P637 P638 P640 LSBsP639
P5
P5
P5
P5
P5
P5
P5
P5
P5
P5
P5
P5
Packer Header, PH
Packer Footer, PF
Data A2
P1[9:2] (A)
A3 A4 A5 A6 A7 A8 A9
P1
[1:0] P2
[1:0] P3
[1:0] P4
[1:0]
A0 A1 B0 B1 C0 C1 D0 D1
P5[9:2] (E)
B2 B3 B4 B5 B6 B7 B8 B9
P2[9:2] (B) P3[9:2] (C) P4[9:2] (D)
8 bits
Byte Values Transmitted LS Bit First
E2 E3 E4 E5 E6 E7 E8 E9
8 bits 8 bits
F2 F3 F4 F5 F6 F7 F8 F9
P6[9:2] (F)
G2 G3 G4 G5 G6 G7 G8 G9
P7[9:2] (G)
D2 D3 D4 D5 D6 D7 D8 D9
8 bits
G2 C3 C4 C5 C6 C7 C8 C9
Line Start
Line End
P1[9:2] P2[9:2] P3[9:2] P4[9:2] P4
[1:0] P3
[1:0]
LSBs
P2
[1:0] P1
[1:0] P5[9:2] P6[9:2]
P636
[1:0] P635
[1:0] P634
[1:0] P633
[1:0]
LSBs
P637[9:2] P638[9:2] P639[9:2] P640[9:2]
LSBs
P640
[1:0] P639
[1:0] P638
[1:0] P637
[1:0]
Figure 4.1. An Example of RAW10 Transmissions on CSI-2 Bus

MIPI D-PHY Bandwidth Matrix Table
User Guide
© 2015-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
14 FPGA-UG-02041-1.1
Table 4.1 specifies the packet size constraints for the supported data formats. The length of each packet must be a
multiple of the values in the table. For simplicity, all data format examples are single lane configurations.
Table 4.1. CSI-2 Packet Size Constraints*
Data Format
Odd/Even Lines
Pixels
Bytes
Bits
YUV420 8-bit
Odd
2
2
16
Even
2
4
32
YUV420 10-bit
Odd
4
5
40
Even
4
10
80
YUV422 8-bit
—
2
4
32
YUV422 10-bit
—
2
5
40
RGB888
—
1
3
24
RGB666
—
4
9
72
RGB565
—
1
2
16
RGB555
—
1
2
16
RGB444
—
1
2
16
RAW6
—
4
3
24
RAW7
—
8
7
56
RAW8
—
1
1
8
RAW10
—
4
5
40
RAW12
—
2
3
24
RAW14
—
4
7
56
*Note: RGB555 and RGB444 data should be made to look like RGB565 data by inserting padding bits to the LSBs of each color
component.
4.1. xMulti-lane
MIPI CSI-2 is lane-scalable. Applications requiring more bandwidth than that provided by one data lane, or those trying
to avoid high clock rates, can expand the data path to two, three, or four lanes wide and obtain approximately linear
increases in peak bus bandwidth

MIPI D-PHY Bandwidth Matrix Table
User Guide
© 2015-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
FPGA-UG-02041-1.1 15
5. Bandwidth and Data Rate
This section provides the definitions of terms used in video performance and summarizes the process of calculating
bandwidth and data transfer rate.
Pixel Clock –the time base in MHz at which individual pixels are transmitted
Bandwidth –the capacity required in Mbps of a given system to pass a specific frequency
Data Rate –the data flow throughput in bits per second of the transport layer
5.1. Bandwidth and Data Rate Calculation
5.1.1. Pixel Clock
If the video format is standard, the pixel clock frequency can be obtained from the SMPTE/CEA or VESA standards. You
can also calculate the pixel clock frequency using the following equation:
Pixel Clock Frequency = Total Horizontal Samples * Total Vertical Lines * Refresh Rate
The Total Horizontal Samples and Total Vertical Lines include blanking period. The Refresh Rate may be referred to as
Frame Rate or Vertical Frequency
5.1.2. Total Data Rate or Bandwidth
The bandwidth of a given video format is simply a product of the Pixel Clock Frequency and Pixel Size in bits. The total
data rate of the CMOS sensor interface must match the bandwidth.
Total Data Rate (Bandwidth) = Pixel Clock Frequency * Pixel Size (in bits)
5.1.3. Data Rate per Lane
The per-lane data rate (Line Rate) is the total data rate (bandwidth) divided by the number of lanes. CSI-2 can support
up to four data lanes.
Data Rate per Lane = Total Data Rate (Bandwidth)/Number of Data Lane
5.1.4. Bit Clock
Because the MIPI data lane is a Double Data Rate interface, the CSI-2 Bit Clock frequency is ½ of the Data Rate per Lane
Bit Clock Frequency = Data Rate per Lane/2
5.2. Examples
5.2.1. Example 1: 1920x1080p@60Hz, RAW10, 2-lane
Total Horizontal Samples = 2200, Total Vertical Lines = 1125
Pixel Clock Frequency = 2200 x 1125 x 60 = 148.5 MHz
Bandwidth (Total Data Rate) = 148.5 MHz * 10-bit = 1.485 Gbps
Line Rate (Data Rate per Lane) = 1.485 Gbps/2-lane = 742.5 Mbps
MIPI Bit Clock Frequency = 742.5/2 = 371.25 MHz
5.2.2. Example 2: 3840x2160@30Hz, RAW8, 4-lane
Total Horizontal Samples = 4400, Total Vertical Lines = 2250
Pixel Clock Frequency = 4400 x 2250 * 30 = 297 MHz
Bandwidth (Total Data Rate) = 297 MHz * 8-bit = 2.376 Gbps
Line Rate (Data Rate per Lane) = 2.376 Gbps/4-lane = 594 Mbps
MIPI Bit Block Frequency = 594/2 = 297 MHz

MIPI D-PHY Bandwidth Matrix Table
User Guide
© 2015-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
16 FPGA-UG-02041-1.1
6. Device Selection
This section summarizes Lattice FPGA families that support MIPI interface with external components as described in
the MIPI CSI-2/DSI Interfaces section.
6.1. Hardware Features
Table 6.1 highlights the features of MIPI D-PHY hardware implementation using MachXO2, MachXO3L, LatticeECP3,
ECP5/ECP5-5G and Crosslink device families. For more details on MIPI D-PHY Receiver and Transmitter resource
utilization and design performance, refer to the MIPI D-PHY Interface IP (RD1182) document.
Table 6.1. MIPI Soft D-PHY RX/TX Hardware Comparison
MachXO2/
MachXO3L
LatticeECP3 EA
ECP5/ECP5-5G
CrossLink3
MIPI D-PHY
Rx Implementations
HS Mode
LVDS25
VCCIO = 2.5 V
or 3.3 V
Internal 100 Ω
differential
termination.
LVDS25
VCCIO = 2.5v
or 3.3v
Internal 100 Ω
differential
termination.
LVDS25
VCCIO = 2.5 V
or 3.3 V
Internal 100 Ω
differential
termination.
Dedicated
MIPI D-PHY
inputs buffer
Internal 100 Ω
differential
termination
LP Mode
LVCMOS12
VCCIO = 1.2 V
LVCMOS12
VCCIO = 1.2 V
LVCMOS12
VCCIO = 1.2 V
Dedicated
MIPI D_PHY
input buffer
MIPI D-PHY Tx
Implementations
HS Mode:
LVDS25E
LVDS25E or
LVCMOS33D2
LVDS25E or
LVCMOS33D2
—
LP Mode:
LVCMOS12
VCCIO = 1.2 V
LVCMOS12
VCCIO = 1.2 V
LVCMOS12
VCCIO = 1.2 V
—
DDR Gearing Ratio
X4
X2
X2
X8
Number of D-PHY
Rx
Up to two RX D-
PHYs; Bank 2 only.
Up to two RX D-
PHYs. Only two
clock divider
primitives, one on
Bank 2 or 3 (right),
one on Bank 6 or 7
(left)
Up to 4 RX D-PHYs
(left and right sides)
Four dedicated
Clock Divider
(CLKDVI) available
Limited by PIO pairs
and clock divider
available in Bank 1
and 2 only
Tx
TX D-PHY max
limited by PIO A/B
pairs; Bank 0 only
TX D-PHY maximum
limited by PIO pairs
available in Bank 2,
3, 6 and 7 if CLKDIV
is shared on each
side. If TX D-PHY on
side, can only have
RX D-PHY on the
other
TX D-PHY maximum
limited by PIO
pairs, available in
the left and right
banks.
—
Number of Lanes
Depends on data
rate and number of
PIO A/B pairs
available. DDRX4
requires A/B pair
and Edge clock
Depends on data
rate and number of
PIO A/B pairs
available. DDRX4
requires A/B pair
and Edge clock
Depends on data
rate and number of
PIO A/B pairs
available. DDRX4
requires A/B pair
and Edge clock
4 lanes max
RX Performance1
523 Mbps
467 Mbps
467 Mbps
898 Mbps
TX Performance1
728 Mbps
698 Mbps
820 Mbps
1250 Mbps

MIPI D-PHY Bandwidth Matrix Table
User Guide
© 2015-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
FPGA-UG-02041-1.1 17
Notes:
1. Rx and Tx Performance is calculated from the data sheet External Timing Table using IDDRX2/X4/X8 and ODDRX2/X4/X8with
data and clock centered aligned. See the MIPI Data Rate Calculation section for the calculations based on current data sheet.
Re-calculate to confirm these values with the most up to date data sheet specification
2. If LVCMOS33D is used instead of LVDS25E, external resistors shown in Figure 3.3 and Figure 3.4 should be adjusted to modulate
common mode voltage level.
3. CrossLink has two hardened MIPI IPs on the top side of the chip, and has dedicated IO associated with harded IP. Regard to
MIPI D-PHY interface implementation, on the receiver side it has hardened IP offering as well as soft IP offering, but on the
transmitter side it only offers hardened IP implemtation.

MIPI D-PHY Bandwidth Matrix Table
User Guide
© 2015-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
18 FPGA-UG-02041-1.1
7. MIPI Data Rate Calculation
This section shows the calculations of the maximum data rate that can be achieved on Lattice FPGA products. The
values are based on data sheet specification of DDRX2/X4/X8 with clock and data center-aligned. These are MIPI
Alliance Specification compliant with ±0.15 UI setup/hold window on the receiver at ≤1 Gbps and ±0.15 UI skew
window on the transmitter at ≤1 Gbps.
This section also provides the method of calculating the windows if higher data rate is desired. The window for higher
data rate does meet MIPI Alliance Specification, but can still be practical in the user’s implementation. Check the latest
data sheet on the maximum data rate each Lattice FPGA device family can achieve.
7.1. FPGA Receiver Interface
7.1.1. MachXO2/MachXO3L
Maximum MIPI compliance data rate calculation for MachXO2/MachXO3L:
Max (0.233, 0.287) = 0.15 x UI
UI = 0.287/0.15 = 1.913 ns
Max Data Rate = 1/UI = 1/1.913 = 523 Mbps (at 0.15 UI)
Setup Time Hold Time
0.233 0.287
MachXO2 Data Sheet Rev. 3.3 at 756 Mbps
Generic DDRX4 Inputs with Clock and Data Centered at Pin Using PCLK Pin for Clock Input –GDDRX4_RX.ECLK.Centered
tSU Input Data Setup Before CLK
MachXO2-640U,
MachXO2-1200/U and
larger devices,
bottom side only
tHO Input Data Hold After CLK
fDATADDRX4 Serial Input Data
Speed
fDDRX4 DDRX2 ECLK Frequency
fSCLK SCLK Frequency
0.233
0.287
756
378
95
—
—
—
—
—
0.219
0.287
630
315
79
—
—
—
—
—
0.198
0.344
524
262
66
—
—
—
—
—
Mbps
MHz
MHz
ns
ns
Figure 7.1. MachXO2/MachXO3L Maximum Data Rate

MIPI D-PHY Bandwidth Matrix Table
User Guide
© 2015-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
FPGA-UG-02041-1.1 19
7.1.2. LatticeECP3
Maximum MIPI compliance data rate calculation for LatticeECP3:
Max (0.321, 0.321) = 0.15 x UI
UI = 0.321/0.15 = 2.14 ns
Max Data Rate = 1/UI = 1/2.14 = 467 Mbps (at 0.15 UI)
Setup Time Hold Time
0.321 0.321
LatticeECP3 Data Sheet Rev. 2.8EA at 800 Mbps
Generic DDRX2 Inputs with Clock and Data (>10 Bits Wide) Centered at Pin (GDDRX2_RX.ECLK.Centered) Using PCLK Pin for Clock Input
tSUGDDR
tHOGDDR Data Hold After CLK
fMAX_GDDR DDRX2 Clock Frequency
321
—
405
321
—
—403
—
325
403
—
—
ps
MHz
ps
Data Setup Before CLK ECP3-150EA
ECP3-150EA
ECP3-150EA
Left and Right Sides
tSUGDDR Data Setup Before CLK
tHOGDDR Data Hold After CLK
—
—
—
335
335
405 —
—
—
425
425
325
ps
ps
MHz
DDRX2 Clock Frequency ECP3-70EA/95EA
ECP3-35EA
ECP3-35EA
tSUGDDR
tHOGDDR Data Hold After CLK
321
—321
—403
—403
—
ps
ps
Data Setup Before CLK ECP3-70EA/95EA
ECP3-70EA/95EA
fMAX_DDR
tSUGDDR Data Setup Before CLK
tHOGDDR Data Hold After CLK
—
—
—
335
335
405 —
—
—
425
425
325
ps
ps
MHz
DDRX2 Clock Frequency ECP3-35EA
ECP3-17EA
ECP3-17EA
fMAX_GDDR —405 —325 MHz
DDRX2 Clock Frequency ECP3-17EA
fMAX_GDDR
471
—
280
471
—
—
—
—
—
535
535
250
535
—535
—
—
—
—
535
535
250
—250
Figure 7.2. LatticeECP3 Maximum Data Rate

MIPI D-PHY Bandwidth Matrix Table
User Guide
© 2015-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
20 FPGA-UG-02041-1.1
7.1.3. ECP5/ECP5-5G
Maximum MIPI compliance data rate calculation for ECP5/ECP-5G:
Max (0.321, 0.321) = 0.15 x UI
UI = 0.321/0.15 = 2.14 ns
Max Data Rate = 1/UI = 1/2.14 = 467 Mbps (at 0.15 UI)
Setup Time Hold Time
0.321 0.321
ECP5/ECP5-5G Data Sheet Rev. 1.9 at 800 Mbps
Generic DDRX2 Inputs with Clock and Data Centered at Pin (GDDRX2_RX.ECLK.Centered) Using PCLK Clock Input, Left and Right Sides Only
tSU_GDDRX2_CENTERED Data Setup before CLK Input
tHD_GDDRX2_CENTERED
fDATA_GDDRX2_CENTERED GDDRX2 Data Rate
fMAX_GDDRX2_CENTERED GDDRX2 CLK Frequency (ECLK)
0.321
0.321
800
400
—
—
—
—
0.403
0.403
700
350
—
—
—
—
0.471
0.471
624
312
—
—
—
—
Mb/s
MHz
ns
ns
Data Hold after CLK Input
All Devices
All Devices
All Devices
All Devices
Figure 7.3. ECP5/ECP5-5G Maximum Data Rate
Table of contents
Popular Server manuals by other brands

Supermicro
Supermicro SuperServer SYS-420GU-TNXR user manual

Intel
Intel SR1500 - AXXMINIDIMM DDR-2 RAID Controller Cache... manual

Mitsubishi Electric
Mitsubishi Electric MES3-255C-DM-EN user manual

Supero
Supero SUPERSERVER 7045W-NTR+ user manual

Harman
Harman AMX Vision V2-MASTER-1200 quick start guide

IBM
IBM System x3650 M4 Type 7915 Specifications