Broadcom ACPL-C740 User manual

User Guide
Broadcom ACPL-C740-EvalKit-UG100
January 4, 2019
Description
The Broadcom ACPL-C740 isolated sigma-delta (Σ-Δ) modulator converts an analog input signal into a high-speed (20 MHz
typical) single-bit data stream by means of a sigma-delta over-sampling modulator. The time average of the modulator data
is directly proportional to the input signal voltage. The modulator uses an internal speed of 20 MHz. The modulator data are
encoded and transmitted across the isolation boundary where they are recovered and decoded into a high-speed data
stream of digital ones and zeros. The original signal information is represented by the density of ones in the data output.
The input signal information is contained in the modulator output data stream, represented by the density of ones and zeros.
The density of ones is proportional to the input signal voltage, as shown in Figure 1. A differential input signal of 0V ideally
produces a data stream of ones 50% of the time and zeros 50% of the time. A differential input of –200 mV corresponds to
an 18.75% density of ones, and a differential input of +200 mV is represented by an 81.25% density of ones in the data
stream. A differential input of +320 mV or higher results in ideally all ones in the data stream, while an input of –320 mV or
lower results in all zeros, ideally. Table 1 shows this relationship.
Figure 1: Modulator Output vs. Analog Input
Table 1: Input Voltage with Ideal Corresponding Density of 1s at Module Data Output, and ADC Code
Analog Input Voltage Input Density of 1s Density of 0s ADC Code (16-bit unsigned decimation)
+Full-Scale +320 mV 100% 0% 65,535
+Recommended Input Range +200 mV 81.25% 18.75% 53,248
Zero 0 mV 50% 50% 32,768
–Recommended Input Range –200 mV 18.75% 81.25% 12,288
–Full-Scale –320 mV 0% 100% 0
+FS (ANALOG INPUT)
0V (ANALOG INPUT)
TIME
MODULATOR OUTPUT
ANALOG INPUT
–FS (ANALOG INPUT
)
ACPL-C740 Evaluation Kit Board
Isolated Sigma-Delta Modulator

Broadcom ACPL-C740-EvalKit-UG100
2
ACPL-C740 Evaluation Kit Board User Guide Isolated Sigma-Delta Modulator
A digital filter converts the single-bit data stream from the modulator into a multi-bit output word similar to the digital output
of a conventional A/D converter. With this conversion, the data rate of the word output is also reduced (decimation). A Sinc3
filter is recommended to work together with the ACPL-C740. With a 20-MHz internal clock frequency, 256 decimation ratio,
and 16-bit word settings, the output data rate is 78 kHz (20 MHz/256). This filter can be implemented in an ASIC, FPGA, or
DSP.
In this evaluation board, a Sinc3 filter is implemented using the Xilinx Spartan XC3S250E FPGA. The FPGA hardware is
designed in a Verilog/VHDL environment. The major building blocks are the Digital Filter and USB interface control, as
shown in Figure 2. The design is synthesized and implemented using the Xilinx Tool to a bitstream file. This bitstream file
can be loaded to FPGA through USB, a step already done for each evaluation board kit.
Figure 2: Digital Filter and USB Interface Control
Preparation and Setup
Each complete ACPL-C740 evaluation kit shipment includes the following items:
ACPL-C740 evaluation board
Cable with USB/mini-USB terminations
Softcopy folder containing drivers and application software programs. The softcopy folder contains the following
document or software programs:
– ACPL-C740 Xilinx FPGA Evbd Kit User Guide.pdf: Evaluation board user guide
– CDM21228_Setup.exe: FTDI USB chipset driver for Windows 32-bit and 64-bit operating systems. For other
operating systems, download from the manufacturer's website (http://www.ftdichip.com/Drivers/VCP.htm)
– dig_filter.exe: Broadcom application GUI software
– DigFil_200mvINcmosOUT.bit: FPGA bitfile
– Sinc3_verilog.txt: Sinc3 filter codes in Verilog
– Sinc3_VHDL.txt: Sinc3 filter codes in VHDL
– Sine wave files: Sine waves configured to different frequencies 500 Hz, 1000 Hz, and 2000 Hz that can be played
from any audio player
1. Save the softcopy folder to a PC directory location. See the appendix for descriptions of the major components on the
evaluation board, the schematic diagrams, and PCB layout.
2. Connect the FPGA-EVBD board to the PC using the provided USB cable.
3. Turn on switch SW1. The red 5VIN LED lights up, indicating the presence of a USB connection.
4. Install the CDM21228_Setup.exe USB chipset driver file. The driver installs two ports: USB Serial Converter A and USB
Serial Converter B.
ACPL-C740
FPGA
Digital
Filter USB
interface
Chip
USB
interface
control
Clock detection
mclk
mdat
A
n
alog Input

Broadcom ACPL-C740-EvalKit-UG100
3
ACPL-C740 Evaluation Kit Board User Guide Isolated Sigma-Delta Modulator
5. To verify that the installation is successful, open the Device Manager. Under Universal Serial bus controllers, the two
ports USB Serial Converter A and USB Serial Converter B should appear.
6. Each time the evaluation board SW1 is turned on, the board goes through a series of power-on sequences. When
completed, the green DONE LED comes on to indicate completion of the power-on sequences.
7. Connect the C740-SDM-EVBD board to the FPGA-EVBD. Once connected, LED1 to LED4 light up in an undefined
sequence to indicate that the board connections are properly done.
The C740-SDM-EVBD and FPGA-EVBD boards are shown, respectively, below:
8. Go to the PC directory and run the dig_filter.exe application program. Refer to the application GUI screen capture as
shown in Figure 3. If the evalboard is connected and SW1 switched on, a Broadcom-System message appears on the
right of the Search button. If SW1 is not turned on, an error message appears, as shown below.
Click OK and the application GUI appears. The message System not connected!! displays instead.
9. Switch on SW1. Go to the application GUI, and click Search. Now, the message changes to Broadcom-System to
indicate that the connection is established.

Broadcom ACPL-C740-EvalKit-UG100
4
ACPL-C740 Evaluation Kit Board User Guide Isolated Sigma-Delta Modulator
Application GUI
The application GUI has three displays: two showing the signal in the time domain and frequency domain, and a third
showing SNR and SNDR historical plots. The time domain signal can be displayed in terms of ADC count or voltage level
(mV) by checking the Display (mV).
Figure 3: Application GUI Example
To the right of the displays, real-time minimum, maximum, and average signal levels are shown in the time domain in terms
of either mV or ADC count. SNR, SNDR, 2nd harmonic, and 3rd harmonic levels are displayed in the frequency domain.
1. Click Start to begin capturing the input signal. The configured board frequency is captured under the Frequency box and
the type of sigma-delta modulator in terms of input range and output signal type displays in the Board/Product.
2. Save the signal, FFT, and SNR/SNDR history data into text files that are readable and compatible to Microsoft Excel by
selecting the Datalog (signal, fft, and snr/sndr history) box. The snr.txt, signal.txt, and fft.txt files are stored in the same
file directory as the application GUI.

Broadcom ACPL-C740-EvalKit-UG100
5
ACPL-C740 Evaluation Kit Board User Guide Isolated Sigma-Delta Modulator
3. If there is an updated FPGA bitfile or a newly configured bitstream file, this can be can be uploaded by clicking Load
FPGA Bit File on the top-left corner of the application GUI. When the bitfile is being uploaded, the green DONE LED
goes off and the red UPLOAD LED displays. When uploading is completed, the red UPLOAD LED goes off, while the
green DONE LED displays again to signal completion. The FPGA LOAD Completed! pop-up appears, as shown below.
4. For quick help, click Help from the top-right corner of the application GUI, then select the setup guide. The help guide
also describes the calibration procedure to zero the offset.
Measurement
There are a few ways to apply an input signal to the evaluation board:
Apply input current signal with a shunt resistor.
Example: Select the shunt resistor value is shown below:
If maximum RMS current through the motor = 30A, 20% overloads during normal operation, then, peak current is 51A
(30 × 1.414 × 1.2). The recommended maximum input voltage for ACPL-C740 is ±200 mV.
Shunt resistor value = V/I = 200 mV/51A ≈ 4 mΩ
Power dissipation = I2 × R = (30)2 × 4 mΩ = 3.6W

Broadcom ACPL-C740-EvalKit-UG100
6
ACPL-C740 Evaluation Kit Board User Guide Isolated Sigma-Delta Modulator
The shunt resistor mounting pad is designed to accommodate various shunt resistor package types. The Kelvin
connection PCB trace connects from the center of the pad to the inputs of ACPL-C740 through the anti-aliasing filters
(AAFs). Connecting from the center of the pads is usually the optimum location for most shunt resistor designs. The
evaluation board also provides pads P1 and P2 for soldering thick cables to the motor driving board.
Apply an input voltage signal without a shunt resistor.
Connect the audio cable with the audio 3.5-mm jack connected to either a PC, smart phone, tablet, MP3 player, or any
kind of audio player device. Then, connect the crocodile clips to the shunt resistor mounting pads.
Check the 1 kHz sine test signal and supply a 1 kHz sine wave voltage signal to the evaluation board. Other methods
include playing any of the three provided sine wave files on a music player software program from the audio player
devices described previously. Adjust the volume until the signal level is near ±200 mV or ±20,000 ADC counts for best
SNR/SNDR performance.
The performance of SNR/SNDR is dependent on a few factors:
– The evaluation board
– The sigma-delta modulator used, in this case, the ACPL-C740
– Input signal frequency used
– The decimation ratio, which can be set at the application GUI to 256, 128, or 64.
– The input signal level. The ACPL-C740 recommended input voltage range is from –200 mV to 200 mV. To achieve
the best SNR/SNDR, design the maximum input signal range nearest ±200 mV (using the selection of the input
current range and shunt resistor value).
– The input signal source.
Table 2 shows a comparison of the SNR/SNDR performance between audio signal sources coming from a laptop.
Table 2: SNR/SNDR Comparison
Filter
Configuration
Signal Source from Audio Jack of Laptop
Signal Freq. = 500 Hz Signal Freq. = 1000 Hz Signal Freq. = 2000 Hz
SNR(dB) SNDR(dB) SNR(dB) SNDR(dB) SNR(dB) SNDR(dB)
Sinc3 DR = 64 not enough sampling sinewave cycles 66 64 61 59
Sinc3 DR = 128 76 73 74 73 70 63
Sinc3 DR = 256 77 75 78 77 73 63

Broadcom ACPL-C740-EvalKit-UG100
7
ACPL-C740 Evaluation Kit Board User Guide Isolated Sigma-Delta Modulator
Figure 4: Measurement Setup
Lab bench test: Apply input voltage signal from a function generator with one shunt resistor mounted on the input of
evaluation board.
A more accurate method to measure the performance of the ACPL-C740 evaluation board is to connect a 1-shunt
resistor, then supply the voltage signal from a function generator that can drive sufficient current through the 1-shunt
resistor until an input signal level of ±200 mV is reached. One such function generator is the ultra low distortion DS360
function generator from Standford Research Systems.
Table 3 shows the SNR/SNDR performance using this method.
If such a function generator is not available, it is best to connect an actual shunt resistor and connect to the current-sensing
system directly.
Table 3: SNR/SNDR Performance
Filter
Configuration
Signal Source from Audio Jack of Laptop
Signal Freq. = 500 Hz Signal Freq. = 1000 Hz Signal Freq. = 2000 Hz
SNR(dB) SNDR(dB) SNR(dB) SNDR(dB) SNR(dB) SNDR(dB)
Sinc3 DR = 64 not enough sampling sinewave cycles 75 72 72 71
Sinc3 DR = 128 81 77 79 76 79 76
Sinc3 DR = 256 82 78 82 78 81 77

Broadcom ACPL-C740-EvalKit-UG100
8
ACPL-C740 Evaluation Kit Board User Guide Isolated Sigma-Delta Modulator
Isolated DC-DC Converter
The isolated DC-DC converter circuitry is designed based on the push-pull transformer method to provide isolated Vdd1=5V
for the Broadcom ACPL-C740 sigma-delta modulator from the 5V power supply directly from the micro-USB type B
connector of the FPGA-EVBD board. The design incorporates the push-pull transformer driver, PE22100 from pSemi, which
is built in a small form factor of 2 x 2 x 0.5 mm3 QFN package and can operate from –40°C to +125°C. The device consists
of an on-chip oscillator where switching frequency can be set by an external capacitor. The oscillator output is divided by
two in frequency to create anti-phase clock signals that drive two power switches. In this design, Cset of the PE22100 is
selected as 100 pF, which results in a switching frequency of around 200 kHz. This frequency is outside the operating
bandwidth of the ACPL-C740 sigma-delta modulator and the Sinc3 filter FFT bandwidth used for filtering and decimating the
sigma-delta bitstream from the ACPL-C740.
The PE22100 drives the Wurth push-pull transformer coil (PN 750313638). The transformer coil can withstand isolation
voltage of Viso = 5 kVrms per 1 min., and built into a package with creepage and clearance distance of 8 mm. The
transformer coil operates at an ambient temperature from –40°C to +125°C. The two outputs of the transformer coil are then
combined after the Schottky diodes. The output voltage must be regulated through a 5V/5V LDO regulator. The plot below
shows measurement conversion efficiency versus output load current.
Figure 5: Vout and Conversion Efficiency of the Isolated DC-DC Converter
For further technical support and pricing enquiries, contact pSemi at sales_europe@psemi.com or Wurth at midcom@we-
online.com.

Broadcom ACPL-C740-EvalKit-UG100
9
ACPL-C740 Evaluation Kit Board User Guide Isolated Sigma-Delta Modulator
PCB Modifications
1. Vdd1 is supplied from the 5V/5V isolated DC-DC converter using the push-pull transformer method. Vdd1 can also be
supplied externally. To do that, ensure that R1 is disconnected.
2. The ACPL-C740 Vdd2 is supplied from the 3.3V regulator. To check the performance or troubleshoot the ACPL-C740
component only at Vdd2 = 5V, short Pin 1 and Pin2 of the J5 connector on the C740-SDM-EVBDv2 board. The Vdd2 is
then supplied directly from the USB power, 5VCC.
Note that R18 must be removed on the FPGA-EVBD board.
3. Green LED1–4 signals the detection of ACPL-C740. To modify the FPGA, use these LED indicators for other functions.
4. The H1 and H2 connector pins are physically connected to the FPGA. To modify the FPGA, use these connector pins
for input (I/P) or input/output (I/O).
Troubleshooting
If the green DONE LED does not come on after switching on SW1, reset the FPGA by pressing SW2 once. If the problem
arises, perform a full board reset by pressing SW3 once.
Each evaluation board is functionally checked and tested. before being sent to the customer. If a problem continues to arise,
consult a Broadcom Application Engineer. If need be, Broadcom will send a new board.
Appendix
Figure 6: PCB Description
ACPL-C740
Isolated Sigma-
Delta Modulator
pSemi PE22100
transformer driver
Shunt
Resistor
Mounting
SW1 board turn
on switch
Xilinx Spartan
XC3S250E
FPGA
SW2 reset
FPGA to
default setting
USB
Connector
Interface
SW3 board
power on
sequence reset
Xilinx JTAG
Interface
ACPL-C40 Low
Voltage Side
Connections
I/P pins
physically
connected to
FPGA
I/O pins
physically
connected to
FPGA
LED “5VIN”
indicates
presence
of USB
connection
USB UART /
FIFO IC
EEPROM to
store USB
chipset
settings
Nonvolatile flash
memory to store
FPGA bitfile
LED “DONE”
indicates power
on sequence
complete
LED “HB”
application
software is
running
LED “UPLOAD”
indicates FPGA
bitfile is being
uploaded
Undefined LED
2,3,4 Indicators
LED1-4 indicates
that FPGA detects
ACPL-C740
C740-SDM-Evbdv2 FPGA-Evbd
Wurth 750313638
transformer coil
A
blic S-1200B50
5V-5V voltage
regulator
Isolated DC -DC Converter

Broadcom ACPL-C740-EvalKit-UG100
10
ACPL-C740 Evaluation Kit Board User Guide Isolated Sigma-Delta Modulator
Figure 7: PCB Description
C740-SDM-EVBD Schematic Diagram
Figure 8: C740-SDM-EVBD Schematic Diagram
3.3V
Regulator
2.5V
Regulator
1.2V
Regulator
+
10 uF
C1
0.1 uF
C2
0.1 uF
C13
22 nF
C10
10RR5
10RR6
0RR1
1 uF
DNM
C14
DNM
0R
R7
VDD2
MDAT
MCLK
DNM
0R
R3
DNM
10m
Rsm
DNM
10m
Rshunt
100 nF
C12
RUBBER
FOOTER
RF1
Vdd1
+10 uF
C15
VDD1
1
VIN+
2
VIN-
3
GND1
4GND2 5
MDAT 6
MCLK 7
VDD2 8
U1
ACPL-C740
0RR8
GND1
GND1 GND2
P1
RSHUNT+
P2
RSHUNT-
0RR9
0RR10
RUBBER
FOOTER
RF2
RUBBER
FOOTER
RF3
RUBBER
FOOTER
RF4
GND2
5VCC
1
2
3
4
5
6
7
8
J5
Header pin 1x8 RA
+
10 uF
C11
OUTA 1
GND 2
CSET 3
EN 4
VREG 5
RSET 6
VDD
7
GND
8
OUTB
9
OUTB
10
SGND
11
OUTA
12
U9
PE22100
VIN 1
VSS 2
EN 3
NC
4
VOUT
5
U10
S-1200B50
1
2
H3
2
1
3
1:1.3
4
5
6
T1
750313638
Vdd1
GND1
1 uF
DNM
C3 +
10 uF
C4
D1
MBR0520L
D2
MBR0520L
GND1
100 nF
C9
+
10 uF
C8
470 nF
C7
100 pF
C6
5VCC
GND2
82K
R2
GND2
0RR4
1 uF
C5
GND2
GND2
8 mm Isolation
GND2

Broadcom ACPL-C740-EvalKit-UG100
11
ACPL-C740 Evaluation Kit Board User Guide Isolated Sigma-Delta Modulator
C740-SDM-EVBD PCB Layout
Figure 9: C740-SDM-EVBD PCB Top Layer
Figure 10: C740-SDM-EVBD PCB Second Layer

Broadcom ACPL-C740-EvalKit-UG100
12
ACPL-C740 Evaluation Kit Board User Guide Isolated Sigma-Delta Modulator
Figure 11: C740-SDM-EVBD PCB Third Layer
Figure 12: C740-SDM-EVBD PCB Bottom Layer

Broadcom ACPL-C740-EvalKit-UG100
13
ACPL-C740 Evaluation Kit Board User Guide Isolated Sigma-Delta Modulator
FPGA-EVBD Schematic Diagram
Figure 13: FPGA-EVBD Schematic Diagram (Part 1)
3V3OUT
6
USBDM
8
USBDP
7
RSTOUT#
5
XTIN
43
XTOUT
44
RESET#
4
EECS
48
EESK
1
EEDA TA
2
TEST
47
AGND
45
GND
9
GND
18
GND
25
GND
34
AD0 24
AD1 23
AD2 22
AD3 21
AD4 20
AD5 19
AD6 17
AD7 16
AC0 15
AC1 13
AC2 12
AC3 11
SI/WUA 10
BD0 40
BD1 39
BD2 38
BD3 37
BD4 36
BD5 35
BD6 33
BD7 32
BC0 30
BC1 29
BC2 28
BC3 27
SI/WUB 26
PWREN 41
AVCC 46
VCC 3
VCC 42
VCCIOA 14
VCCIOB 31
U2
FT2232D
GND2
GND2
VCC
8
NC
7
ORG
6
GND
5
CS 1
SK 2
DIN 3
DOUT 4
U3
93C56B
GND2
2.2KR410KR7
SW2
B3S-1000
EEPROM, 2 MHz, 128x16
FTDI_SI
27R17
27R16
FTDI_WR
FTDI_RD
FTDI_TXE
FTDI_RXF
FTDI_D0
FTDI_D1
FTDI_D2
FTDI_D3
FTDI_D4
FTDI_D5
FTDI_D6
FTDI_D7
SPI_PROG 150 5%
R13
GND2
FPGA_RESET
SPI_INIT
SPI_CSO_B
SPI_DIN
SPI_MOSI
SPI_CLK
10K 5%
R28
3V3X
0.1 uF
C39
GND2
3V3X
2.2K
R5
I/O Setat
3.3V
0.01 uF
C8
GND2
0.1 uF
C6
Downloading
FPGA Code
For FPGA configuration via
SPI only.
12
FB2
1 2
FB1
470
R1
0.1 uF
C2
GND2
27
R2
GND2
GND2
47 pF
C11
GND2
27
R3
1.5KR6
0.47 uFC12
+
C34
GND2
0.1 uF
C3
GND2
0.01 uF
C1
GND2
1
2
DNM
J1
GND2
PORTVCC
5VIN
0.1 uF
C5
0.1 uF
C10
GND2
+
C33
GND2
VCCSW
USER_IN0
USER_IN1
USER_IN2
USER_IN3
USER_IN4
USER_IN5
USER_IN6
USER_IN7
USER_IN8
USER_IO0
USER_IO1
USER_IO2
USER_IO3
USER_IO4
USER_IO5
USER_IO6
USER_IO7
USER_IO8
USER_IO9
USER_IO10
USER_IO11
USER_IO12
USER_IO16
USER_IO17
USER_IO18
USER_IO19
USER_IO20
USER_IO21
USER_IO22
USER_IO23
USER_IO24
USER_IO25
USER_IO26
USER_IO27
USER_IO28
GND2
500mA 240-2390-2
MI0805K601R-10
5VCC
6 MHz GND2
GND2
SW3
B3S-1000
GND2
5VCC
USER_IO13
GND2
4.7KR24
4.7K
R23
5VCC
1
2
3
SW1
EG1218
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
DNM
USER_IO
H1
CR1
0.033 uF
C4
0.033 uF
C7
5VIN
UPLOAD
R22
10K
R40
0R
1
2
3
4
5
6
7
8
9
DNM
USER IN
H2
GND2
MCLK
MDAT
VDD2
5VCC
USER_IO0
USER_IN0
3V3X
0RR18
0RR19
0RR20
1
2
3
4
5
6
7
8
J5
Heade
r socket 1x8 RA
D-
D+
GND 5
ID 4
D+ 3
D- 2
Vbus 1
Shi el d
SH
C
N1
ZX62D-AB-5P8(30)
D
G
S
Q2
IRLML6402
RUBBER
FOOTER
RF1
RUBBER
FOOTER
RF2
RUBBER
FOOTER
RF3
RUBBER
FOOTER
RF4

Broadcom ACPL-C740-EvalKit-UG100
14
ACPL-C740 Evaluation Kit Board User Guide Isolated Sigma-Delta Modulator
Figure 14: FPGA-EVBD Schematic Diagram (Part 2)
IO_L01P_3
2
IO_L01N_3
3
IO_L02P_3
4
IO_L02N_3/VREF_3
5
IO/D5
52
IP ****
10
IO_L04N_2/D6/GCLK13
51
IP/VREF_3
12
IP
6
IP_L06P_2/RDWR_B/GCLK0
56
IO_L04N_3/LHCLK1
15
IO_L05P_3/LHCLK2
16
IO_L05N_3/LHCLK3
17
IP
18
IO_L07P_3/LHCLK6
22
IO_L07N_3/LHCLK7
23
IO_L06n_3/LHCLK5
21
IO_L01P_1/A16
74
IP
24
IO_L08P_3
25
IO_L08N_3
26
IP ****
29
IO_L08P_1/A2
96
IO_L09P_3
32
IO_L09N_3
33
IO_L10P_3
34
IO_L10N_3
35
IP
36
IO_L07N_2/D1/GCLK3
59
IP
38
IP
41
IO_L03P_3
7
IO_L02P_2/DOUT/BUSY
43
IP_L03P_2
47
IP_L03N_2/VREF_2
48
IO_L04P_3/LHCLK0
14
IO_L04P_2/D7/GCLK12
50
IO_L03P_1/A12
81
IO_L05P_1/A8/RHCLK2
87
IO_L07P_1/A4/RHCLK6
93
IO_L05P_2/D4/GCLK14
53
IO_L05N_2/D3/GCLK15
54
IP_L06N_2/M2/GCL K1
57
IO_L07P_2/D2/GCLK2
58
IO_L10N_2/CCLK
71
IO_L01P_2/CSO_B
39
IO_L02N_2/MOSI/CSI_B
44
IO_L08N_2/DIN/D0
63
IO/VREF_2 ****
66
IO_L09P_2/VS2/A19
67
IO_L09N_2/VS1/A18
68
IP
69
IO_L10P_2/VS0/A17
70
IO_L08P_2/M 0
62
VCCO_0
138
VCCO_0
121
VCCO_1
79
VCCO_1
100
VCCO_2
42
VCCO_2
64
VCCO_2
49
VCCO_3
13
VCCO_3
28
VCCINT
115
VCCINT
45
VCCINT
80
VCCINT
9
VCCAUX
65
VCCAUX
137
VCCAUX
102
VCCAUX
30
JT A G_T CK 110
JT A G_T M S 108
JT A G_T DI 144
JT A G_T DO 109
JTA G_ P ROG_B 1
JT A G_D ONE 72
IO_L01N_2/INIT_B 40
IO_L08N_0/VREF_0 135
IP 136
IO_L08P_0 134
IO 132
IO_L07N_0/GCLK11 131
IO_L07P_0/GCLK10 130
IP_L06N_0/GCLK9 129
IP_L06P_0/GCLK8 128
IO_L05N_0/GCLK7 126
IO_L05P_0/GCLK6 125
IO/VREF_0 124
IO_L04N_0/GCLK5 123
IO_L04P_0/GCLK4 122
IP_L03N_0 120
IP_L03P_0 119
IO_L02N_0 117
IO_L02P_0 116
IP 114
IO_L01N_0 113
IO_L01P_0 112
IP 111
IO/VREF_3 **** 31
IO_L06P_3/LHCLK4 20
IO_L02P_1/A14 76
IO_L02N_1/A13 77
IO_L03N_3 8
IO_L10N_0/HSWAP 143
IO_L01N_1/A15 75
IP 107
IO_L10N_1/ LDC2 106
IO_L10P_1/LDC1 105
IO_L09N_1/ LDC0 104
IO_L09P_1/HDC 103
IP 101
IO_L10P_0 142
IP 141
IO_L09N_0 140
IO_L09P_0 139
IO_L03N_1/A11 82
IO_L08N_1/A1 97
IO/A0 98
IP/VREF_1 95
IO_L07N_1/A3/RHCL K7 94
IO_L06N_1/A5/RHCL K5 92
IO_L06P_1/A6/RHCLK4 91
IP 89
IO_L05N_1/A7/RHCL K3 88
IO_L04N_1/A9/RHCL K1 86
IO_L04P_1/A 10 /RHCL K 0 85
IP 84
IO/VREF_1 83
IP 78
IO/M1 60
GND 99
GND 90
GND 55
GND 46
GND 27
GND 73
GND 37
GND 11
GND 19
GND 133
GND 61
GND 118
GND 127
U5
XC3S250E GND2
FTDI_D2
FTDI_D3
FTDI_D4
FTDI_D6
FTDI_D7
FTDI_RD
USER_IO3
FTDI_WR
USER_IO5
FTDI_D1
USER_IO26
USER_IO27
USER_IO28
USER_IO6
USER_IO7
USER_IO8
USER_IO9
USER_IN3
USER_IO10
USER_IO11
USER_IO12
USER_IO13
USER_IO16
USER_IO17
USER_IO18
USER_IO19
USER_IO20
FPGA_RESET
USER_IO21
USER_IO22
USER_IO23
USER_IO24
USER_IO25
SPI_INIT
LEDG_DONE
SPI_PROG
JT A G_D OUT
JT A G_D I N
JT A G_T M S
JT A G_T CK
1
2
DNM
JP1
GND2
4.7KR29
4.7KR21
2V5 3V3X
1
2
3
4
5
6
DNM
Traditional JTAG
J2
2V5
GND2
JT A G_T CK
JT A G_D OUT
JT A G_D I N
JT A G_T M S
USER_IN0
USER_IN1
FTDI_RXF
6MHz
FTDI_SI
LEDR_HEARTB
FTDI_TXE
USER_IN2
USER_IO4
USER_IN4
USER_IO1
USER_IN5
USER_IN6
USER_IN7
USER_IN8
FTDI_D0
FTDI_D5
USER_IO2
USER_IO0
SPI_CLK
SPI_CSO_B
SPI_MOSI
SPI_DIN
3V3X
GND2
0.1 uF
C27
GND2
0.1 uF
C44
GND2
0.1 uF
C43
GND2
0.01 uF
C41
GND2
0.01 uF
C37
GND2
0
.01 uF
C
21
GND2
0
.01 uF
C
28
GND2
0.1 uF
C31
GND2
0.1 uF
C30
GND2
3V3X
0.1 uF
C36
GND2
0.01 uF
C35
GND2
0.01 uF
C32
GND2
0.1 uF
C24
GND2
1V2
0.1 uF
C40
GND2
0.01 uF
C29
GND2
0.01 uF
C38
GND2
0.1 uF
C45
GND2
2V5
PROM TYPE SEL
3V3X
360R26LEDR_HEARTB
DONE
GND2
LEDG_DONE
330R31
2V5
IN
1
GND
2
EN
3
OUT 5
BYPASS 4
U6
TPS79333DBVRQ1
0.01 uF
C17
GND2
3V3X
GND2
0.1 uF
C18
GND2
2.2 uF
C19
GND2
200 m A Maximum
0.01 uF
C14
GND2
2V5
GND2
GND2
2.5V R
3.3V REGULATOR
EGULATOR
200 m A Maximum
2.2 uF
C15
IN
1
GND
2
EN
3
OUT 5
BYPASS 4
U7
TPS79325DBVR
VIN_SW
4
VIN_A
5
NC
6
GND
2
SW 3
FB 1
U8
ST1S03 D FN6
VCCSW
4.7 uF
C23
GND2 GND2
1.2V REGULATOR
1.5A Maximum
D1
BAT54CT
GND2
49.9K 1%
R15
24.9K 1%
R14
GND2
+
C22
GND2
0.1 uF
C20
GND2
0.1 uF
C42
1V
2
100
R30
220K
R12
1
2
3
4
5
6
DNM
Xilinx Parellel Cable Header
J3 3V3X
GND2
SPI_MOSI
SPI_DIN
SPI_CSO_B
SPI_CLK
GND2
3V3X
TDI
TDO
TMS
TCK
4.7K
R11
4.7K
R9
3V3X
GND2
4.7KR33
4.7KR8
4.7KR10
3V3X
SPI
Flash
GND2
GND2
GND2
GND2
EN/Disable
1
VCC
4
GND 2
OUT PUT 3
Y1
GND2
3V3X
DNM
0.01uF
C51
GND2
T1
SRAM _A0
SRAM _A1
SRAM _A2
SRAM _A3
SRAM _D1
SRAM _D0
SRAM _A7
SRAM _A8
SRAM _A9
SRAM _D7
USER_INB
USER_INA
SRAM _A5
SRAM _A6
SRAM _A10
SRAM _A11
SRAM _A12
SRAM _A13
SRAM _A14
SRAM _A15
SRAM _A16
SRAM _D2
SRAM _D3
SRAM _D4
SRAM _D5
SRAM _D6
SRAM _OE
SRAM_WE
SRAM _A4 L1
3.3 uH
LED1
GREEN
LED2
GREEN
LED3
GREEN
LED4
GREEN
HB
GREEN
T2
GND2
3V3X
>Di n
5
<Dout
2
C
6
S
1
W
3
HOLD
7
VCC 8
VSS
4
U4
VDFPN
T3
GND2
3V3X
USER_IN10
USER_IN9
T4
GND2
3V3X
820RR41
820RR42
820RR43
820RR44
T2 shorted to GND2
T4 shorted to 3V3X
D
G
S
Q3
IRLML6401

Broadcom ACPL-C740-EvalKit-UG100
15
ACPL-C740 Evaluation Kit Board User Guide Isolated Sigma-Delta Modulator
FPGA-EVBD PCB Layout
Figure 15: FPGA-EVBD PCB Top Layer
Figure 16: FPGA-EVBD PCB Second Layer

Broadcom ACPL-C740-EvalKit-UG100
16
ACPL-C740 Evaluation Kit Board User Guide Isolated Sigma-Delta Modulator
Figure 17: FPGA-EVBD PCB Third Layer
Figure 18: FPGA-EVBD PCB Bottom Layer

Broadcom, the pulse logo, Connecting everything, Avago Technologies, Avago, and the A logo are among the trademarks
of Broadcom and/or its affiliates in the United States, certain other countries, and/or the EU.
Copyright © 2019 Broadcom. All Rights Reserved.
The term “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. For more information, please visit www.broadcom.com.
Broadcom reserves the right to make changes without further notice to any products or data herein to improve reliability,
function, or design. Information furnished by Broadcom is believed to be accurate and reliable. However, Broadcom does
not assume any liability arising out of the application or use of this information, nor the application or use of any product or
circuit described herein, neither does it convey any license under its patent rights nor the rights of others.
Table of contents
Other Broadcom Control Unit manuals

Broadcom
Broadcom BCM7405 Configuration guide

Broadcom
Broadcom BCM2046 User manual

Broadcom
Broadcom CVPM02 User manual

Broadcom
Broadcom SDGOB-0991 User manual

Broadcom
Broadcom BRCM1033 User manual

Broadcom
Broadcom CVPM02 User manual

Broadcom
Broadcom SDGOB-1392 User manual

Broadcom
Broadcom SDGOB-1091 User manual

Broadcom
Broadcom BCM20732S User manual
Popular Control Unit manuals by other brands

M-system
M-system R3Y-SS8 instruction manual

ElMod
ElMod ThinkTank Tank Module ECO Flex Instructions for Assembly and Handling

Comelit
Comelit Simplebus2 Ultra UT2020 Technical manual

WATANABE
WATANABE WSPA-F2AL operating instructions

Bosch
Bosch Rexroth IndraControl VCP 25.2 Project planning manual

Festo
Festo CPX-AP-I-8DI-M12-5P Instructions & Operating