Bryan Mumford MicroSet User manual

Page 1
Learning to Use MicroSet .................................................................... 2
Features ....................................................................................... 2
Quick Start .......................................................................................... 4
Measure beat error ...................................................................... 4
Measure the rate .......................................................................... 4
Using MicroSet .................................................................................... 7
Watch sensors .............................................................................. 8
The Beat Error Mode .................................................................... 9
The Time Mode ............................................................................ 12
Select the beat count ............................................................ 12
Read the results .................................................................... 12
Beep on completion .............................................................. 13
Blanking window ................................................................... 13
Time Mode Options ...................................................................... 14
Show error per day .............................................................. 14
Running Average ................................................................. 15
Speaker On/Off .................................................................... 16
Data Capture ........................................................................ 16
Dumping captured data ........................................................ 18
Paper tape output ................................................................ 19
The Accutron Mode....................................................................... 22
The Tick Mode............................................................................... 23
Balance Wheel Amplitude ............................................................. 24
The Computer interface ............................................................... 25
Conguration ....................................................................................... 26
Beep On/Off .................................................................................. 26
Time Mode beat count .................................................................. 26
Blanking Window size ................................................................... 26
Time Mode display format ............................................................ 27
Oscillator calibration ..................................................................... 27
Technical Functions.............................................................................. 28
Technical Notes.................................................................................... 29
Accessories ......................................................................................... 30
Hardware Options ............................................................................... 30
Sample paper tape plots ..................................................................... 31
Summary of operations ....................................................................... 32
MicroSet Watch Timer
Table of Contents
——————————————————––——————————————————

Page 2
Learning to Use the MicroSet Timer
——————————————————––——————————————————
How this booklet is organized
The Quick Start section will provide very simplied step-by-step instructions for the basic
operations of the MicroSet Watch Timer to help you get started.
After this, a description of each function with more detail about some of the background
issues will be presented. We strongly recommend that you read this section, at least a
little at a time, to understand the full features of the timer.
Following this a Technical Reference section will explain some of the ne points to
consider if you’re interested.
A short summary of each command will be found inside the back cover. A ow chart of
operations will be found on the back cover.
If you have a question about some aspect of MicroSet, rst look to the Table of Contents.
You should also feel free to call or email us at Mumford Micro Systems to ask questions
about issues that are not clear to you.
Phone: (805) 687-5116
Email: [email protected]
Features
The MicroSet Watch Timer incorporates many unique features. These include:
• MicroSet is a small, portable, battery-operated unit that takes up little room on the
workbench and can be easily taken in the eld.
• It has a resolution of one part per million which means an accuracy of one second per
week. A temperature compensated timebase (TCXO) is available as an option.
• It will display watch rate as “Beats Per Hour”, “Seconds Per Beat”, or seconds of
error per day and is not limited to a programmed set of train times.
• The most common watch rates are automatically recognized.
• A special Running Average feature will display the total accumulated rate of a watch
for as long as you let it run. This produces rate readings that are remarkably
stable and much more accurate.
• A “Blanking Window” feature allows MicroSet to ignore sounds that occur at intervals
other than the expected beat time. This greatly reduces false readings.
• The Beat Error Mode displays beat error to a tenth of a millisecond..
• The Accutron Mode will measure the rate of tuning fork watches as frequency of
oscillation or error per day (optional sensor required).
• MicroSet will produce paper tape charts of watch performance when used with an
inexpensive label printer (printer is optional).
• An optional interface to personal computers is available for more sophisticated
analysis of watch performance, including balance wheel amplitude. This allows
you to see how a watch rate varies over time, and to evaluate trends in these
uctuations that can help you diagnose problems and understand erratic behavior.
The software will also simulate a traditional paper tape printer on the computer
screen.
• An optional Balance Wheel Amplitude modication can be added that displays
an oscillogram of each tick on the computer screen and calculates the balance
wheel amplitude much more accurately.
• A variety of optional sensors are available for clocks and watches.

Page 3
• An optional memory module can be added to capture watch data “in the eld” for
later analysis on a personal computer.
• Optional temperature and barometric sensors allow you to analyze compensation
in watches.

Page 4
Quick Start
————————————–––————————————————————————
For people who want to get started, and don’t want to bother with explanations or
background, we will start with a simple description of how to use MicroSet.
First, measure the beat error
The Beat Error Mode is used to get the watch adjusted so both halves of the beat are
of equal duration.
Plug your watch sensor into the
jack labeled “Sensor In” at
the top end of the timer.
If you have the clip-on sensor,
clip the alligator clip onto the
winding stem or bow of the
watch. Note: this sensor is
not ideal for watches. Better
results will be obtained
with one of the other watch
sensors.
If you have the Simple Watch Sensor, set your watch on top of the brass tube.
If you have the Clamping Watch Sensor, mount the watch between the sliding arm
and the metal tube.
Turn MicroSet on with the LEVEL control. The LCD screen will say:
MicroSet Watch Timer
Set the Level Control to the 9 o’clock position.
Press the MODE button once. The screen says “Beat Error...”
If the LED on MicroSet is not blinking, turn the Level control up until the LED blinks
once on each beat.
Press the BEGIN button.
The LED should now be blinking with each beat.
The LCD screen should now display the beat error of the watch. The readings should
be consistent, but they may not be identical every time. For example, it might say
“Error: 8.5”. This means the beat error was 8.5 milliseconds.
If the beat error varies wildly, the Level control may not be set to the optimum level.
Slowly turn the Level control up to nd a setting where the beat error readings
are the most stable.
It’s beyond the scope of these instructions to tell you how to adjust the beat error in
the watch. MicroSet’s job is just to measure it.
Measure the rate
Once you have measured the beat error and set the Level control, use the Time Mode
to get see what rate the watch is running at. MicroSet will measure a number of beats,
then tell you the average rate for each beat.
Assuming MicroSet is still measuring beat error, press the MODE button once. The
LCD screen should say:
Beat Error ...
Press the MODE button a second time. The LCD screen should say something
similar to:
Time 10...
The LEVEL control should already be correctly adjusted from the Beat Error
mode.
You can now choose how many beats of the watch to average before you get an
Sensor In
jack

Page 5
answer. The default setting is 10 beats. To change this, press the PLUS or MINUS
buttons, or hold them down, until the number of beats you want to average is
shown on the LCD screen. A value of “10” will get you a quick answer. The best
number to use is twice the number of teeth on the escape wheel.
The LCD screen now says “Time 10...” (or the number you set)
Press the BEGIN button.
The LCD screen says “Rate:” and the LED blinks each time the watch ticks. MicroSet
will measure the watch for the number of beats you specied. At the end of this
time, MicroSet will give you the average rate of the watch. For example, it might
say “Rate: 18001.10”. This means the average rate was 18010.10 Beats Per
Hour. It might also say something like “Rate: .200010”. This means the average
rate was .200010 Seconds Per Beat. You can congure MicroSet to display
answers in either Beats Per Hour or Seconds Per Beat. Refer to the section titled
“Conguration - Display mode” for more details on these two choices.
You can also set MicroSet to display how fast or slow the watch is in seconds per
day. To do this, press the BEGIN button while MicroSet is measuring the rate.
The LCD screen will say:
Show error/day?
To say “Yes” (you want to see error per day) press the PLUS key.
MicroSet will now show you what it thinks the “Target Rate” is for this watch. In other
words, MicroSet will guess what the correct rate is supposed to be. You must
know what the correct rate for this watch is. If MicroSet has guessed correctly,
press the BEGIN key again.
If MicroSet did not guess correctly, you can manually set the correct “Target” rate.
To do this, press the MINUS key. MicroSet will now display the last reading that
it made on the watch. Use the PLUS and MINUS keys to adjust the proposed
value until it is the correct rate for this watch. Then press BEGIN.
MicroSet now measures the rate of the watch and shows you how many seconds
per day it is fast or slow.
Blanking Window
MicroSet uses an important technique to reduce interference and make more accurate
readings. This is called the “Blanking Window”. It causes MicroSet to stop listening to
the watch for a short while after each tick. By not listening until the next tick is due,
MicroSet can ignore noise that’s not a real tick. But if MicroSet waits too long, it can
miss a real tick. So the Blanking Window should be set to a correct value for the watch
you’re using. If you’re measuring a fast beat watch (28,800 or 36,000 BPH) and MicroSet
reads the rate as near 14,400 or 18,000 BPH, the Blanking Window is too long. Refer
to the section titled “Conguration - Blanking Window” for more details on setting the
Blanking Window.
Running Average
There is a very useful feature built into MicroSet. It will keep a running average of all
readings. This reduces the uctuation between individual readings and gives you a more
accurate average rate for the watch. To turn on the running average display, press the
BEGIN button while MicroSet is measuring the rate. The LCD screen will say:
Show error/day?
We don’t care about this now, so press BEGIN again. The LCD screen will say:
Average: Off
To turn on the Average function, press the PLUS key. The LCD screen will say:
Average: On
Press MODE to begin measuring the watch again.
Now the watch rate will be displayed as the accumulated average. The number at the

Page 6
left edge of the display indicates how many readings have been incorporated in the
current average. The rate readings will be much more stable because small variations
will be a small fraction of the total.

Page 7
Using MicroSet
——————————————————————————————————————
The following instructions document the operations of the MicroSet timer in greater
detail. We strongly encourage you to read these descriptions to learn the details of
each function.
The keypad
In general, you use the MODE button to select the various functions of MicroSet. If you
press the MODE button over and over, MicroSet will cycle through the functions that
are available in your timer. If you go past the function you want, keep pressing MODE
and you’ll come back to it.
When the mode you want is displayed on the LCD screen, press the BEGIN button to
enter that mode. After you enter a mode you can usually press the MODE button again
to get out of it.
The PLUS and MINUS keys are used to enter numbers and make other choices. One
press will advance the count by one. If you hold down the PLUS or MINUS buttons they
will “repeat” after a short while and make entries very quickly. In places where there are
“Yes/No” questions, use PLUS for “Yes” and MINUS for “No”.
A ow chart of the MicroSet functions can be found on the back cover of this instruction
book.
Power source
MicroSet will operate on a 9 volt battery or an AC wall adaptor. The battery is contained
inside a door on the bottom of the unit. The AC adaptor plugs into a jack on the top end.
AC operation is recommended when you have easy access to it. You can leave the
battery in when the unit is plugged in to the AC adaptor and, if the AC goes off, MicroSet
will keep running on the battery. If you lose your AC adaptor you can use any one that
provides 7 to 15 volts DC at 1000 milliamps. The plug is a 2.1 mm coaxial barrel plug,
with center positive polarity.
Turning it on
The round knob in the center of the keypad is the power switch and sensitivity control.
Turn it clockwise to turn it on. MicroSet should beep twice to indicate it is waking up. It
will then display “MicroSet Watch Timer on the LCD screen. If this does not happen as
expected (or any time you want to re-initialize MicroSet) press the red RESET button.
Sensor In
jack
AC adaptor
jack
Computer interface jack

Page 8
Watch sensors
There are several different sensors you could
use with the MicroSet Watch Timer. The acoustic
sensor that’s included with MicroSet clock timers
will attach to a watch with an alligator clip. This
sensor may work on pocket watches (clip to the
bow), but it’s not the best choice for watches.
It’s not as sensitive as the other watch sensors,
and it might scratch the watch.
The “Simple Watch Sensor” we offer is more
sensitive than the clip-on. It’s a small box with a
brass tube sticking out of the top. Set the watch
on top of this tube. This sensor is able to hear the
component sounds of a tick for the Tick Mode
or Balance Wheel Amplitude measurements.
It’s very modestly priced and is an economical
watch sensor.
The “Clamping Watch
Sensor” is the best watch
sensor we make. Its spring-
loaded arm will hold the
watch in place against the
sensor insuring good contact
for tick transmission. Also, it
has six at sides so you can
take measurements of the
watch in different positions.
This sensor is the best choice
for serious watchmakers.
The watch sensor made by
Witschi in Switzerland is very
good, and has the advantage
that you can rotate the watch
to various positions without
picking it up. It has the
disadvantage of being very expensive. If you wish to use the Witschi watch holder we
can probably get one for you and provide an interface to adapt it to MicroSet. Contact
Mumford Micro for more information.
You may have a watch sensor from an earlier watch timer, like Vibrograph or Tick-O-
Print. These sensors cannot be used with MicroSet. However, we may be able to update
your old sensor with a new cable and sensing element to be compatible with MicroSet.
Contact Mumford Micro for more information.
Simple Watch Sensor
Clamping Watch Sensor

Page 9
The Beat Error Mode
—————————–––———————————————————————————
The rst mode in MicroSet is the Beat Error Mode. It will measure, in milliseconds, the
difference between the even and odd beats of a watch. If the watch were perfectly in
beat, the beat error would be 0.0 milliseconds.
Plug your watch sensor into the jack labeled “Sensor In” at the top end of the timer. If
you have the clip-on sensor, clip the alligator clip onto the winding stem or bow of the
watch. If you have the Simple Watch Sensor, set your watch on top of the brass tube.
If you have the Clamping Watch Sensor, mount the watch between the sliding arm and
the metal tube.
Turn MicroSet on with the LEVEL control. The LCD screen will say:
MicroSet Watch Timer
Set the Level Control to the 9 o’clock position. Press the MODE button once. The screen
says
Beat Error...
If the LED on MicroSet is not blinking, turn the Level control up until the LED blinks once
on each beat. Then press the BEGIN button. The LED should now blink twice and then
pause, twice and pause, etc.
The LCD screen should now display the beat error of the watch. The readings should
be consistent, but they may not be identical every time. If the beat error varies wildly,
the Level control may not be set to the optimum level. Slowly turn the Level control up
to nd a setting where the beat error readings are the most stable.
The Beat Error Mode is the best way to set
the Level control to the optimum position.
Getting the Level control set correctly is
critical to getting accurate readings. The
graph here shows what a watch tick looks
like on an oscilloscope. The tick is made
up of several component sounds. To get
accurate readings with a watch timer, it
must trigger on the same component of
the watch tick on every beat. If it doesn’t,
the readings will jump around as the timer
measures different intervals on different
beats.
Another way to get the Level control set
properly is to use the MicroSet Windows
Interface Software. This computer program is a big asset in watch timing. Among other
things, it allows you to see changes in rate over time, and evaluate what those changes
mean. If you congure MicroSet to measure every single beat of a watch, the numbers
change too quickly on the built-in LCD screen to make sense of them. But if these
readings are plotted on a computer screen, you can quickly see when the readings are
measuring each beat accurately. Accurate readings will alternate between a tall one and
a short one. The differences will be very consistent.
The graph below shows a watch that’s measuring accurately. Notice how each reading
alternates consistently. This setup will produce accurate readings on the MicroSet LCD
screen.
A watch tick

Page 10
The Level control is set correctly
The next graph shows a watch with the Level control set too low. The readings are
irregular because some beats are measured at different parts of the tick sound. This
setup will produce jumpy, inaccurate readings in MicroSet.
The Level control is set too low
Even when the Level control is set correctly the Beat Error value may not be the same
every time. There will often be some variation. But the variation should be small if the
Level control is set properly. Of course aws in the watch will also produce erratic beat

Page 11
error readings. And the beat error will change if the watch is measured in different
positions.
To terminate the Beat Error Mode you can hold down the MODE button or press the
RESET button.

Page 12
The Time Mode
——————————————————————————————————————
The second mode in the MicroSet Watch Timer is the Time Mode. It’s used to measure
the rate of the watch. Press the MODE button until the LCD screen says:
Time 10...
This means MicroSet is in the mode to measure beat times, and is set to measure 10
beats.
We will assume your watch is still mounted in the sensor after the Beat Error Mode. If
you have not yet measured the beat error of the watch, do that rst because the Beat
Error Mode is used to properly set the Level control.
Select the beat count
You can set the number of beats MicroSet will measure before giving you the rate. Press
the PLUS button to increase the beat count. Press the MINUS button to decrease the
beat count. The beat count is displayed on the LCD screen. For example, when set to
measure 20 beats, the display will show:
Time 20...
If you hold the PLUS or MINUS buttons down continuously, the beat count will increase
or decrease rapidly.
If you measure a small number of beats you’ll get a reading more quickly. But you’ll get
more accurate readings by measuring more beats. The ideal number of beats to measure
is twice the number of teeth on the escape wheel. You may prefer to read fewer beats at
rst to get quick answers, and more beats later to get more accurate answers.
But you should always read an even number of beats. If you were to “Time” 11 beats,
or 21, you would incorporate the beat error into the reading and get erratic results. The
one possible exception to this rule is when you might want to read just one beat (Time:
1), to display beat error on the computer screen.
Reading the results
When you have the Time Mode congured with the beat count you want to use, press
the BEGIN button to start measuring the watch. MicroSet will say:
Rate:
as it measures the rst period. The beat LED should blink and, after the selected number
of beats have occurred, MicroSet will divide the total amount of time that has elapsed
by the number of beats you selected and display the average length of each beat in
one of two possible formats: Beats Per Hour or Seconds Per Beat. The format shown
depends on how your timer is presently congured. For example, you might see one
(not both) of the following displays:
Rate: .200015
Rate: 18010.34
The rst line is the average beat time displayed in Seconds Per Beat. The second line is
the rate of the watch displayed in Beats Per Hour. You can select which format MicroSet
will use. See the “Conguration - Display mode” section in these instructions to change
the current setting and for an explanation of the differences.
You can also display rates as seconds of error per day. This feature is explained under
“Time Mode Options”.
To restart the Time Mode you can press the MODE button, or press the RESET button
to reset the timer.

Page 13
Beep on completion
If the total period being measured is longer than about 10 seconds, you can instruct
MicroSet to produce an audible beep whenever a reading is complete. This way the
display doesn’t need to be watched constantly to see when a new reading is ready.
See the “Conguration - Beep tone” section in these instructions to turn the beep on
or off.
Blanking Window
MicroSet will ignore any sounds that occur at a time that is outside a “window” of when
the correct beat is likely to occur. This reduces false triggering on noisy watches. It can
also prevent a false reading if you drop a screwdriver on the table or the sensor cable
gets bumped. The Blanking Window can greatly reduce these sources of inaccurate
readings and is an important feature that you should become familiar with.
The Blanking Window has a default value that’s specied in the Conguration Mode.
The setting of the Blanking Window should be matched to the watch you’re working
on. If the window is too long, MicroSet will not be able to measure fast beat watches
because it will ignore every other beat. If it’s shorter than it needs to be, MicroSet will
be more susceptible to noise.
For measuring watches with a beat time of 18,000 BPH to 21,600 BPH, a Blanking
Window of “8” is appropriate. If you’re working on watches with beat times of 28,800 to
36,000 BPH, set the Blanking Window to “4”.
You can tell if the Blanking Window is set correctly for the watch you’re working on.
The red LED on the front of MicroSet blinks on every beat. The LED is on while the
Blanking Window is active, and goes off when MicroSet begins to listen for the next tick.
The feature will be most effective if the LED is off for a very short time before it comes
on again. This indicates that MicroSet is ignoring sound most of the time, then begins
to listen just before the next tick arrives. If the LED seems to blink half as fast as the
watch beats, it’s an indication that the Blanking Window is too big and you’re missing
every other beat.
To program a default value for the Blanking Window, see “Conguration - Minimum
blanking” for details.
You can also change the size of the Blanking Window “on the y” as you measure a
watch. Every time MicroSet nishes a reading, if the PLUS key is down, the Blanking
Window gets longer by one count. If the MINUS key is held down, the Blanking Window
gets shorter by one count.
If you hold down the PLUS key while MicroSet is measuring a watch, you’ll see that the
LED stays on for an increasingly longer time and blinks off for a shorter time. If you set
MicroSet to “time” a short beat count, like “Time: 4”, the change will happen more quickly.
In this way you can increase the Blanking Window to the optimum value for the watch
you’re working on. You can probably reach a point where the LED doesn’t seem to go
off at all. This is the maximum setting. If you pass this point, the LED will begin to blink
half as fast as the watch ticks because you’re skipping every other beat. If this happens,
hold down the MINUS key to reduce the Blanking Window by one or more counts.
MicroSet will keep this value of the Blanking Window until you turn it off or press the
RESET key. Then it will revert to the default value that was specied with the Conguration
Mode.

Page 14
Time Mode Options
Once MicroSet is running in the Time Mode you can access several Time Mode Options.
These are additional functions that are related to the measurement of rate. Some of them
are extra cost options. If you wish to add an option you don’t have, give us a call.
To access the Time Mode Options in your MicroSet, press the BEGIN button while the
Time Mode is running. You can step through the different Time Mode Options that may
be in your timer by pressing BEGIN several times.
Show Error Per Day
The rst Time Mode Option allows MicroSet to display rate readings as seconds of error
per day rather than as Beats Per Hour or Seconds Per Beat.
To activate the Error Per Day option you should be running in the Time Mode. You should
have already displayed one or more rate readings, and the reading should be close to
the correct rate for the watch you’re working on. If the reading is not close to the correct
rate, the error will be too great to display as seconds per day.
Enter the Time Mode Options by pressing BEGIN. The LCD screen will say:
Show error/day?
To answer “Yes”, press the PLUS key. If you wish to answer “No”, press the Minus key.
Assuming you answered “yes”, MicroSet will then guess the correct rate for the watch
based on the last reading that was taken. MicroSet is programmed to recognize the
most common watch rates. For example, MicroSet might say:
Target: 18000.00
This means that MicroSet has guessed that the correct rate (the “target” rate) for this
watch is 18000 BPH. If this is correct, just hit the BEGIN key and MicroSet will return to
measuring the rate of the watch, but now the rate will be displayed as seconds of error
per day. In other words, MicroSet will now tell you how fast or slow the watch is. If the
value shown is positive, the watch is fast. If the value is negative, the watch is slow.
If the rate MicroSet guesses is not correct for the watch, you can manually adjust the
target rate. To do this, press the MINUS key (for “No”) when MicroSet guesses the wrong
rate. MicroSet will then show you the last reading it made on your watch.
Let’s say you were working on a watch, and the last reading taken in the Time Mode was
20946.55 Beats Per Hour. MicroSet would show this value on the LCD screen:
Target: 20946.55
MicroSet needs to know the correct rate for the watch before it can calculate the error
between the correct rate and the current rate. You need to know the correct rate for
the watch. In this case, the correct rate might be 20944.44 BPH. You can adjust the
proposed number with the PLUS and MINUS keys. To make the value larger, press (or
hold) the PLUS key. To make it smaller, press (or hold) the MINUS key. When you press
PLUS or MINUS the proposed rate will change by a small amount. If you hold the key
down, the value will change rapidly. If you hold the key down even longer, the value will
change even more quickly.
Use the PLUS and MINUS keys to change the proposed Target rate from 20946.55 to
20944.44. The LCD screen will say:
Target: 20944.44
To enter this value and begin timing the watch again, press the BEGIN key. MicroSet will
now show you the rate of the watch in terms of seconds per day of error.

Page 15
As you enter the target rate in this way, if MicroSet has been displaying the rate as
Beats Per Hour, the PLUS and MINUS keys will change the proposed rate by an
odd value (.09 BPH). This is normal. If you cannot get MicroSet to display the exact
rate you want, choose the closest value. The rate that MicroSet gives you will still
be more accurate than a tenth of a second per day.
If you want to turn off the Error Per Day display mode, press the BEGIN key to
access the Time Mode Options. Press BEGIN until the LCD screen says:
Show error/day?
To answer “No”, press the MINUS key. MicroSet will return to the previous display
mode, whether it was Seconds Per Beat or Beats Per Hour.
Running Average
The Running Average option is one of the most useful functions of MicroSet. When
the Running Average function is turned on, MicroSet will accumulate a running
average of every rate reading it has taken and display the average rate of the
watch over any length of time you wish to let it run. It will cause rate readings to
settle down to very stable and accurate values that change only in small fractions
after just a few minutes.
To activate the Running Average option you should be running in the Time Mode.
Press the BEGIN key to access the Time Mode Options. Press BEGIN again until
the LCD screen says:
Average: Off
To turn on the Running Average function, press the PLUS key. The LCD screen
will say:
Average: On
Now hit the MODE button to return to the Time Mode. As new readings are shown
on the LCD screen, they will appear in the following format:
1: 18000.00
The rst digit is the number of samples that have been taken. The number after
the colon is the Running Average rate. In the example shown, the rate is displayed
as Beats Per Hour, but the Running Average function works if you have MicroSet
congured to show Seconds Per Beat or Error Per Day.
Each time a new reading comes in, the number to the left of the colon will increase
by one to show you how many readings have been taken and the average rate will
be calculated and displayed. The difference between subsequent readings will get
smaller and smaller. As time goes on you get an increasingly accurate reading of
the average rate of the watch.
To turn off the Running Average mode, enter the Time Mode Options and press
BEGIN until the LCD screen says:
Average: On
Press the MINUS button to change it to “Average: Off” and then press MODE to
return to the Time Mode.
If you wish to reset the running average value, enter the Time Mode Options and
press BEGIN until the LCD screen says:
Average: On
Press PLUS and then MODE to return to the Time Mode. The running average
value will be reset and a new average will be calculated.

Page 16
If you’re using the Running Average feature and a bad beat comes in, it will throw off the
whole average because the bad value becomes incorporated with every reading. For
this reason, take special care to get clean readings in the Running Average mode. In
typical operation, the Running Average rate shown will become more and more stable
over time. The readings might grow and shrink a little, but the amount of change should
get smaller and smaller with each reading. If you notice that the rate just keeps getting
bigger and bigger, or smaller and smaller, it may mean you have a bad sample that
has thrown off the running average. In this case you may wish to re-enter the Running
Average mode to reset the average and start over.
Normally we recommend using a relatively large number of beats for the Time Mode.
For example, if you set MicroSet to “Time: 2”, you’ll get less accurate and more erratic
answers than if you set it to “Time: 30”. This seems to be much less important with the
Running Average mode. You can get accurate readings with smaller beat counts with
the Running Average and get answers more quickly.
Speaker On/Off
If you bought the optional beat amplier for your timer, you turn it on and off with a Time
Mode Option. If you didn’t buy the internal beat amplier, this option will not appear in
your timer.
If you have the amplier, you turn it on by pressing BEGIN while the Time Mode is
running. Press BEGIN until the LCD screen says:
Speaker: Off
Press the PLUS key to turn the speaker on. If it’s already on, press the MINUS key to
turn it off. You can now return to the Time Mode by pressing MODE and the speaker
will stay as you set it.
The volume of the speaker is controlled by the existing LEVEL control. To make it louder,
turn the LEVEL control clockwise.
MicroSet will continue to take readings while the speaker is on. You may notice that
there is a slight hissing sound when MicroSet displays a new value on the LCD screen.
This sound is not a aw in the watch, it’s an amplication of the LCD screen working.
Also, if you have MicroSet plugged into a personal computer, you may hear an extra
sound when data is sent to the computer. Don’t be fooled by these sounds and think
they’re coming from your watch. If they bother you, reenter the Time Mode Options by
pressing the BEGIN key. This will stop MicroSet from taking readings and you’ll only
hear the watch.
The speaker is mounted to the back of MicroSet, where it faces the work table. The
rubber feet on MicroSet hold the timer off the table and let the sound out. In fact, the
speaker is louder when MicroSet is sitting on a work table than it is if you turn it over
and face the speaker towards you. However, the speaker will be loudest when sitting
on a hard, reective surface. The sound will be mufed if you set it on a padded or
carpeted surface.
Data Capture
The next Time Mode Option is Data Capture. This is an extra cost option. If you didn’t
purchase Data Capture, the option will not be available. When Data Capture is turned
on, rate readings taken by the timer are stored in memory within the timer as they are
displayed on the LCD screen. At some later time you can connect MicroSet to a personal
computer and “dump” the data that has been captured into the Windows Interface
Program. This allows you to capture data for the computer even though the watch you’re

Page 17
working on is not near a computer.
This feature will be useful if you have a computer in your ofce but not in the shop. Or
perhaps there is a watch you’re interested in buying at a local shop, and you’d like to
examine its performance before you commit to purchase. Assuming the shop keeper
will allow it, you can capture the behavior of the watch in the shop and examine it later
on your computer. Even if you have a computer handy to use with MicroSet, you don’t
need to tie it up with monitoring a watch. The computer can be free for other things and
MicroSet can monitor the watch all by itself.
To use Data Capture, MicroSet must be in the Time Mode and taking readings. Press
the BEGIN key to access the Time Mode Options. Press BEGIN until the LCD screen
says:
Capture: Off
The default condition is for Data Capture to be off. To begin capturing your readings, you
must turn it on. Do this by pressing the PLUS key. The LCD screen will then say:
Capture: 1
The number “1” means that MicroSet will capture every reading in memory. You can press
the PLUS key again and the number “1” can be increased up to 250. The number that
you select is the number of readings that will occur before one is stored in the Capture
memory. For example, if you set the LCD screen to show:
Capture: 10
MicroSet will store one reading for every ten that occur.
When we say “readings” we don’t mean “beats”. If MicroSet is congured to measure
30 beats with “Time: 30”, each reading of 30 beats is the “reading” that’s captured with
Data Capture.
The reason for saving fewer than every reading is that the Capture memory can hold no
more than 8,125 readings. This is quite a lot, but there may be times when you would
prefer to capture over a longer period of time. By skipping some readings your Capture
time is increased.
After setting the Data Capture count value, you can go back to the Time Mode and begin
capturing readings. Do this by pressing the MODE key.
MicroSet will now resume taking readings from the watch under study. Every new reading
that’s displayed on the LCD screen will be followed by the letter “C”, to indicate that
they are being captured. The readings will be stored in memory inside the timer until
the memory storage is lled. If you ll the Capture memory, the Capture function will be
turned off and the letter “C” will no longer appear after each rate reading.
Here are some typical kinds of measurements and the length of time you can capture
with a Capture count of “1”. If you enter a number larger than “1”, multiply the duration
shown by the number you entered for the Capture count:
• Pocket watch, “Time: 60” (one reading every 12 seconds)
Will capture for 27 hours
• Pocket watch, “Time: 1” (capture every beat)
Will capture for 27 minutes
When you have captured all the data you want, you should turn off the Capture function.
Press the BEGIN key to access the Time Mode Options. Press BEGIN again until the
LCD screen shows:
Capture: 1 (or some other number)

Page 18
Press the MINUS button until the LCD screen says:
Capture: Off
This indicates that the Capture function has been turned off and new readings will no
longer be stored.
When you turn Capture off, MicroSet stores a marker in the data to indicate where the
end is. This allows you to turn the timer off and still be able to Dump the data at a later
date. The data is stored in nonvolatile memory, and you can leave MicroSet off for an
hour, or a month, and still get the data out. However, if you turn Data Capture “On” again,
it will start a new data session and any previous data will be erased.
You can capture more than one “session” of data with the Capture function. You can stop
the Time Mode (or use any other function of MicroSet), or set up on a different watch,
and then Capture more data. If you wish to do this, do NOT turn the Data Capture off.
As long as Data Capture is left on, the data will go into memory and it can be dumped
to a PC later. If you turn off the Capture function you cannot add any more data.
Dumping captured data
When you’re ready to transfer your captured data to the PC, plug MicroSet into the serial
port of your Windows computer with the cable provided. To Dump the data, put MicroSet
in the Time Mode and press the BEGIN button to access the Time Mode Options. Press
BEGIN until the LCD screen says:
Dump?
Be sure the Windows Interface Program is ready to accept data (the “Plot: On” button
is selected) and press PLUS on the timer. This will start the data dump. Every reading
stored in the timer will come ying out of MicroSet. The numbers will appear on the LCD
screen so fast that they will be illegible. New data points will appear on the computer
screen as fast as your computer is able to display them. When the dump is complete,
the timer will return to the start of the Time Mode. You can dump the data as many times
as you like; it will stay in memory until you turn Data Capture “On” again, which resets
the storage area and begins a new capture.
Here are some things to keep in mind about the Capture process.
1) You can use Data Capture whether MicroSet is congured to display Seconds
Per Beat or Beats Per Hour. But the data captured will always be saved as
Seconds Per Beat. When you dump the data to the PC, even though MicroSet
may have been displaying Beats Per Hour, you will dump Seconds Per Beat.
You can see Beats Per Hour on the computer screen if you congure it to show
Beats Per Hour.
2) Normally, when you capture readings from the timer on the computer, the computer
stores the time of day that each reading was taken. When you examine the
data on the PC screen, you can tell when each sample was taken because it
has a “time stamp”. When you dump data from the timer’s Capture function, it
all comes in very quickly, even though it may have taken days to collect it. The
time stamp associated with each sample will be the instant it transferred to the
computer, not the actual time it was captured. The Windows Interface Program
has a command to correct the time stamps. It’s called “Change timestamps”
and can be found under the Operations menu. To correct the timestamps you
must know the time that the rst reading was captured and the number of beats
between each captured reading. For example, if MicroSet was set to Time 30
beats, there were 30 beats between each reading. But if you set the Capture
count to “Capture: 10”, there would be 300 beats between each captured reading.

Page 19
If you wish to correct the timestamps, you must make a note of the start time and
counter values of your capture data when you start Data Capture.
3) That data will be saved in the timer for as long as you like, but if you turn Capture
“On”, any stored data will be lost. If you wish to capture more than one watch,
you must do so without turning off the timer and without turning off the Capture
function between watches.
4) Remember to “close” the Data Capture by turning “Off” the Capture function when
you are through. If you turn off the timer without turning off the Capture function,
the timer will not know where the end of the data is when you Dump it. However,
as long as you do not turn off the timer, you can Dump the data without “closing”
the Data Capture. The Dump command keeps track of the current end of data
as long as the timer is left on. This allows you to Dump the data in the middle of
a capture and then continue to capture more.
Paper tape output
The last Time Mode Option is Paper Tape. It allows MicroSet to print traditional paper
tape charts (like a Vibrograph or Tickoprint produces) on an inexpensive label printer.
The paper tape printer is an optional accessory. Call or write for price and availability.
We prefer to use the Windows Interface Software to display a simulation of a paper tape
printer instead of using an actual paper tape printer. The simulation allows additional
features a real printer can’t reproduce, and requires no paper.
To use the paper tape printer, plug the special data cable (available from us) into the
MicroSet Data Out jack at the end of the timer. This is the jack normally used by the
computer interface. MicroSet must be in the Time Mode and generating readings. Press
the BEGIN key to access the Time Mode Options, and press BEGIN as many times as
necessary to reach the Paper Tape option. The LCD screen will say:
Paper tape?
Answer “Yes” by pressing the PLUS button. MicroSet will then display the last reading
that was taken in the Time Mode. MicroSet must know the correct rate for the watch
in order to calculate the paper tape data. MicroSet will guess the correct rate, just as
it does when you set MicroSet to display Error Per Day. If the proposed rate is correct
you can accept it by pressing the BEGIN button, or manually adjust it by pressing the
MINUS button. For more detail on selecting the Target rate, refer to the instructions for
conguring Error Per Day earlier in these instructions.
When the proposed Target rate is correct, press the BEGIN key. The LCD screen will
then say:
Paper tape: 1x
and the printer should begin to print. To stop printing, press the MODE button. A short
sample of the paper tape is shown below.

Page 20
Paper tape strip
As the tape runs, a black dot will be printed on the tape for each beat of the watch. The
position of the dot depends on the rate and beat error of the watch. If the watch is fast,
the lines will wander off the top of the tape. If the watch is slow, the lines will wander off
the bottom. If the watch is running at exactly the correct rate, the lines will be straight.
After 100 beats, MicroSet will print the current rate of the watch at the top of the tape. In
this example, it printed “+25 Sec”, which means the watch is 25 seconds per day fast.
In the strip above, there are two lines. This is because the watch is not in perfect beat.
The difference between these two times is the “beat error”. Larger beat errors appear
as more separation between the two lines. Every 100 beats MicroSet prints the last
beat error at the top of the tape, after the current rate. In this example, the beat error
was 6.6 milliseconds.
If you do not see two clean rows of dots like the sample shown, your watch may be very
dirty or the level may not be set correctly. Start with the level control of MicroSet set
to maximum. Adjust it downward if you don’t get clean results. It will also help to use a
good watch sensor.
While the tape is running you can rotate the watch to different positions to evaluate the
effect. It is beyond the scope of these instructions to teach you how to read the many
possible variations in the printed pattern, and what they all mean. Much has been written
on this subject, and many people have learned how to read the output of Vibrograph,
Tickoprint, and WatchMaster timers. A listing of several common faults and the tapes
they produce can be seen at the end of these instructions.
There are several controls on the paper tape display that exceed the abilities of the
original paper tape timers. MicroSet will allow you to magnify the beat error to see ner
detail. To do this, press the PLUS button while MicroSet is printing a tape. The LCD
screen will say:
Paper tape: 2x
and the printed tape will be magnied two times. The beat error will appear twice as
large in the pattern of dots, but the value printed at the tape edge will be correct. You
can press the PLUS button again for a scale of “4x”, and a third time for a scale of “8x”.
To return to lesser magnications, press the MINUS key. The LCD screen will always
tell you what magnication is in use.
Table of contents