Canberra 2016 User manual

Model 2016
Amplifier/TCA
User’s Manual
9231145C 7/01

Copyright 2001, Canberra Industries, Inc. All rights reserved.
The material in this manual, including all information, pictures,
graphics and text, is the property of Canberra Industries, Inc. and
is protected by U.S. copyright laws and international copyright
conventions. No material in this manual may be reproduced,
published, translated, distributed or displayed by any means
without written permission from Canberra Industries.
Theinformationinthismanualdescribestheproductasaccurately
as possible, but is subject to change without notice.
Printed in the United States of America.
Canberra Industries, 800 Research Parkway, Meriden, CT 06450
Tel: 203-238-2351 FAX: 203-235-1347 http://www.canberra.com

Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Amplifier Function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Pulse Height Analyzer Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Multiplexer Function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
ICB Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2. Controls and Connectors . . . . . . . . . . . . . . . . . . . . . . 3
Front Panel Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Rear Panel Connectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Internal Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Amplifier Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
TCA Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3. Amplifier Operation . . . . . . . . . . . . . . . . . . . . . . . . . 7
Hardware Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Preventive Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Amplifier Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Preamp Fall Time Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4. Operation With ADC and MCA. . . . . . . . . . . . . . . . . . . 10
ADC Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Spectroscopy Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5. Using the Genie-VMS Software . . . . . . . . . . . . . . . . . . 12
Calibration Procedure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Gain Normalization Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
TCA Window Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
View Setup Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Download Setup Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

6. Using the Genie-PC/Genie-2000 Software . . . . . . . . . . . . 18
Calibration Procedure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Gain Normalization Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
TCA Window Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
View Setup Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Download Setup Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7. Circuit Description . . . . . . . . . . . . . . . . . . . . . . . . . 25
Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Input Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Differentiator and Gain Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Gain Stage Stabilizer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Active Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Unipolar Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Baseline Restorer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Restorer Gate, Auto Threshold and Auto Rate. . . . . . . . . . . . . . . . . . . . . . . . . 27
Fast Discriminator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Bipolar Amplifier and Crossover Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Inhibit Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Triple Channel Analyzer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Computer Controlled Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
SCA Front End . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
SCA Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Pileup Rejector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
SCA Output Drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
A. Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Indicators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Pileup Rejector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Internal Jumpers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Manual Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Computer Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
ii

Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Power Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Physical. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Environmental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Ordering Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
B. Performance Adjustments . . . . . . . . . . . . . . . . . . . . . 37
Pole/Zero Matching Using an Ultra LEGe Detector and 55Fe.. . . . . . . . . . . . . . . . . . . 37
Pole/Zero Matching Using a Square Wave Generator . . . . . . . . . . . . . . . . . . . . . . . 39
Baseline Restorer Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Amplifier Shaping Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Operation With Reset Preamps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
P/Z Compensation With Reset Preamps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Using the Reset Preamp Inhibit Signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Triangular Shaping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
ICR Threshold Adjustment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Optimizing the Discriminator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
ADC Peak Detect Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44
Calibration and Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
C. VMS Software Installation . . . . . . . . . . . . . . . . . . . . . 47
Defining the Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
D. PC Software Installation . . . . . . . . . . . . . . . . . . . . . . 49
Defining the Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
E. Installation Considerations . . . . . . . . . . . . . . . . . . . . 51
iii

1. Introduction
The 2016 Amplifier-TCA provides the basic signal processing function for x-ray de-
tectors used in high-rate applications such as EXAFS (Extended X-ray Absorption
Fine Structure). The Amplifier provides gain, filtering, baseline restoration and ICR
pulse discrimination. The TCA provides three computer controlled pulse height (en-
ergy) analyzers with selectable pileup rejector and different pulse output options suit-
able for counting. In addition the 2016 has a built-in multiplexing function which,
under computer control, selects the amplifier output and SCA output from each of up
to thirty-two 2016’s in a system for routing to an MCA (multichannel analyzer) for
window set up. All of this capability is in a single-wide NIM allowing large scale sys-
tems to be built compactly.
Amplifier Function
The 2016 amplifier is based on the Canberra Model 2025-2026 series of amplifiers
which have been used extensively in x-ray and gamma-ray spectroscopy. The shaping
time constants have been selected to enhance the throughput rate. The 2016A offers
higher throughput rate while the 2016B has longer time constants needed for high res-
olution at lower rates and for low energy (<1 keV) applications.
Version Shaping (µs)
2016A 1/8, 1/4, ½, 1, 2, 3
2016B 1/4, ½, 1, 2, 4, 6
Pulse Height Analyzer Function
The SCA function comprises three independently computer-controlled, single-channel
analyzers each of which provides a logic pulse output for each input pulse falling
within its preset energy window. Window settings are set using computer control over
an Ethernet link to an Acquisition Interface Module (AIM). The AIM to 2016 module
interface is accomplished through Canberra’s Instrument Control Bus (ICB) for com-
plete control of SCA settings and multiplexed output as described below. For conve-
nience, the window is set symmetrically around a centroid voltage (energy) level. The
module’s pileup rejector, when enabled by computer, inhibits SCA outputs resulting
from input signals that are distorted due to pile-up.

Multiplexer Function
The AIM also provides the Multichannel Analyzer function for set-up purposes when
connected to an Analog to Digital Converter (ADC). The 2016’s multiplexer function
provides signal routing for set-up of each SCA window and normalization of signal
levels (gain) using a multichannel analyzer. Typically the “SELECTED AMP” outputs
are daisy chained to an ADC signal input and the “SELECTED SCA” outputs are
daisy chained to the ADC GATE input. Then, depending on the gate mode chosen, the
MCA will either accumulate or exclude only those events falling within the selected
SCA window.
ICB Control
Control of SCA settings and selection of multiplexed outputs are accomplished via the
ICB from an AIM. The ICB can address up to 16 slave devices from a single AIM
which acts as a master. Thus, a typical 13-element detector array system will use a sin-
gle AIM to address the HVPS, ADC and the required thirteen 2016 TCAs. Implemen-
tation of larger systems can be accomplished by adding more AIMs (i.e. a 30-element
array will require two AIMs, 30 TCAs, one ADC and one HVPS).
Software to control the setup of the 2016 and other ICB NIM modules is available un-
der Canberra’s Genie-2000/Genie-PC and Genie-VMS software packages. Software
setup is provided to control the SCA’s centroid window on all three SCAs, SCA Polar-
ity Invert, automatic or manual ICR Threshold, SCA select and PUR enable for each
SCA. Additionally, the software verifies the instrument serial number and model num-
ber each time the input is opened for use.
2
Introduction

2. Controls and Connectors
Front Panel Controls
This is a brief description of the front panel controls and connectors. For more detailed
information, refer to Appendix A, Specifications.
3
Front Panel Controls
Figure 1 Front Panel Controls and Connectors

Rear Panel Connectors
This is a brief description of the rear panel connectors. For more detailed information,
refer to Appendix A, Specifications.
4
Controls and Connectors
Figure 2 Rear Panel Connectors

Internal Controls
Amplifier Board
This is a brief description of the jumper controls on the Amplifier board; the jumpers
are shown in their factory default positions. For more detailed information, refer to
Appendix A, Specifications.
5
Internal Controls
Figure 3 Amplifier Board Jumpers

TCA Board
The proper DAC voltage range is set at the factory with a jumper in position JP5 or
position JP6. For proper operation of this unit, this voltage range jumper must not be
moved.
There should be no jumpers installed in positions JP1, JP2, JP3 and JP4; these posi-
tions are for factory testing only.
6
Controls and Connectors
Figure 4 TCA Board Jumpers

3. Amplifier Operation
This section outlines the operation of the Model 2016 Amplifier-TCA amplifier sec-
tion. Following these procedures will make you familiar enough with the instrument to
be able to use it effectively in any situation.
Hardware Installation
The Canberra Model 2100 Bin and Power Supply, or other bin and power supply sys-
tems conforming to the mechanical and electrical standards set by DOE/ER-00457T
will accommodate the Model 2016; the module requires ±24 V, ±12 V and 6 V from
the power supply. The right side cover acts as a guide for inserting the instrument. The
module is secured in place by turning the two front panel captive screws clockwise un-
til finger tight. It is recommended that the NIM Bin Power switch be OFF whenever
the module is installed or removed.
The Model 2016 can be safely operated where the ambient air temperature is between
0°C and +50 °C (+120 °F max). Perforations in the top and bottom sides permit cool-
ing air to circulate through the module. When relay rack mounted along with other
heat generating equipment, adequate clearance should be provided to allow for suffi-
cient air flow through both the perforated top and bottom covers of the NIM Bin.
The standard cable sent with the Model 556 AIM for ICB is the C1560, which allows a
total of 11 ICB modules to be controlled by the AIM within one NIM Bin. With array
systems, it is desirable to control as many of the 2016 TCAs as possible with each
AIM.
With a C1562 cable, the AIM can control up to 16 ICB modules, 11 in one Bin and
five in a second Bin. This can be a combination of different modules or all 16 can be
2016 TCAs.
Caution Only 2016 modules are designed to operate properly in the
extendedBin.AnyModel 96xxICBorModel 554RPImustbe
installedinthesameBinas theModel556AIM(ICBMaster).
Preventive Maintenance
Preventative maintenance is not required for this unit.
7
Hardware Installation

When needed, the front panel of the unit may be cleaned. Remove power from the unit
before cleaning. Use only a soft cloth dampened with warm water and make sure the
unit is fully dry before restoring power. Because of access holes in the NIM wrap, do
not use any liquids to clean the wrap, side or rear panels.
Amplifier Setup
Before installing the 2016 in a NIM Bin, its internal controls should be set to their de-
sired positions. When multiple 2016 TCA modules are being used, each must have a
different ICB address. Figure 2.4 shows the location of SW1, which sets the module’s
ICB address.
For a single AIM system, the module’s software address (channel number) and hard-
ware ICB address (determined by SW1) are:
(channel number)10
&
=(ICB)16 + 1
or
1→16
&
=0→F + 1
When more than 16 modules are required, two AIMs are needed. The addresses from
the first AIM which would also include other non-Amplifier/TCA modules, such as an
ADC or HVPS, are still in the range of 1 →16, corresponding to the ICB switch posi-
tions of 0 →F. Any non-ICB ADC (such as the Model 8715), must also be connected
to the first AIM. All Amplifier/TCAs on the second AIM’s Control Bus are channel
numbered 17 →32, corresponding to ICB switch positions 0 →F.
1. Insert the Model 2016 into a standard NIM Bin. Allow the total system to
warm up and stabilize for approximately 15 minutes.
2. Set the Model 2016 controls as follows:
SHAPING TIME · · · · 0.5 µs
MODE · · · · · · · · · Gaussian
COARSE GAIN · · · · 1K
FINE GAIN· · · · · · · 10
3. This will give approximately an 8 volt output when using a preamp with a
gain of 100 mV/MeV and a 55Fe radioactive source.
8
Amplifier Operation

Preamp Fall Time Matching
Pole/zero compensation is critical when using resistive feedback preamplifiers.
Pole/zero compensation must be readjusted whenever the shaping time is changed or
when the 2016 is connected to a different detector. Refer to “Pole/Zero Matching” on
pages 37 and 39 for instructions on adjusting the pole/zero compensation.
When a reset type preamp is used, pole/zero compensation is not required and the con-
trol must be set fully counterclockwise (infinity).
9
Preamp Fall Time Matching

4. Operation With ADC and MCA
Figure 5 shows a typical array detector system configured for 2016 Amplifier/TCA
calibration and operation. Each Preamp output is connected to a 2016 Amp Input. SCA
parameters are computer controlled through the Model 556 AIM, utilizing Canberra’s
Instrument Control Bus (ICB). All 2016 Selected SCA Outputs are connected to an
ADC Gate Input. The 2016 Selected Amp Output is connected to an ADC Input. With
the ADC configured for Delayed Peak Detect, the 2016 Selected SCA controls ADC
conversion, allowing calibration of each 2016 Amplifier/TCA. When calibrating each
2016 Amplifier/TCA module, its SCA energy window is set up and SCA count analy-
sis can begin.
10
Operation With ADC and MCA
Figure 5 Typical 13-Element Array Detector System

ADC Setup
Please refer to your ADC user’s manual for specific ADC operating instructions.
Set the ADC’s GAIN and RANGE equal to the MCA memory group size. For in-
stance, set the GAIN and RANGE to 4096 for an MCA with a 4096 channel memory
size.
Set the ADC controls to:
LLD· · · · · · · · · · · 0.02 V (fully counterclockwise)
ULD· · · · · · · · · · · 10.5 V (fully clockwise)
Digital Offset · · · · · · All Off
Peak Detect · · · · · · · Delayed
With a low count rate, use the ADC’s Inspect test point to set the ADC’s Peak Detect
Delay to be greater than the SCA’s Output pulse. Refer to “ADC Peak Detect
Adjustment” on page 44 for the procedure to be followed.
Spectroscopy Operation
Please refer to your MCA user’s manual for specific MCA operating instructions.
Start acquiring data in the MCA using the 55Fe radioactive source previously placed
near the detector. A spectrum should begin to appear on the MCA’s display.
Adjust the Amplifier’s GAIN so that spectrum is positioned conveniently on the dis-
play.
Use the Amplifier’s Super Fine Gain (SFG) when matching gains of other detectors, or
when establishing a specific gain (energy per channel). This control provides 100
times more resolution than the Fine Gain Control.
11
ADC Setup

5. Using the Genie-VMS Software
This chapter describes 2016 Amp/TCA calibration, normalization and setup using the
Genie-VMS software. VMS software installation and setup is covered in “VMS Soft-
ware Installation” on page 47.
Conventions
1. Each 2016 defined in the system is assigned a number, from 1 to n (this
number is referred to as a channel).
2. Up to sixteen 2016 modules may be connected to each AIM.
3. 2016 numbers 1 through 16 are connected to the first AIM, 17-32 to the
second AIM.
4. The ICB address of a 2016 is the 2016 number minus 1 (for example, 2016
number 1 is at ICB address 0).
5. The software is designed to accommodate a maximum of thirty-two 2016
modules per system configuration.
Starting the Genie-VMS Software
The 2016’s software is started from the Spectroscopy Assistant’s pulldown menu.
Calibration Procedure
The calibration procedure ensures that the amplifier gain and SCA windows are set so
the SCA settings read directly in energy (keV). For example, the 5.9 keV x-ray peak
from 55Fe will be located at the centroid of an SCA window set to 5.9 keV.
It also ensures that the MCA energy calibration corresponds to the SCA. For example,
MCA cursor located at 5.9 keV will be centered on an SCA window with that setting.
Performing the Calibration
1. When the detector datasources have been defined (page 48), select 2016
Amp/TCA Software from the Spectroscopy Assistant’s Applications menu.
2. Select Calibration from the next menu, as shown in Figure 6.
12
Using the Genie-VMS Software

3. Now you’ll see the screen shown in Figure 7, which allows you to select the
channel (that is, the specific 2016) that is to be calibrated.
4. Press OK to enable the selected channel, default enable the first SCA on the
selected channel, display the correct detector datasource in an MCA View
Control window, reset the calibration information for the detector input, clear
it and start acquisition. Now the screen shown in Figure 8 will be displayed.
Adjust the selected 2016’s gain until the energies of interest are displayed in
the selected SCA windows (Figure 8). The RDY LED on the selected module
will start blinking.
13
Calibration Procedure
Figure 6 Starting the Calibration Procedure
Figure 7 Selecting the 2016 to Calibrate

5. Enter values (4 significant digit value between 0 and selected energy range
for centroid, energy value for width) in the edit fields, then press Ok.
Normally only the “primary SCA” (SCA number 1) needs to be used during
Amplifier/TCA calibration. The dialog will disappear; the value(s) will be
written to the selected 2016 and MCA memory cleared. If the Apply to all
Amp/TCAs check box was selected, the Amp/TCA and SCA parameter
adjustments will be applied to all channels (2016’s).
Adjust or Calibrate
When you press Ok, you’ll see a screen asking if you need to make more
adjustments or if you’d rather begin the calibration process.
If ADJUST is pressed, you’ll be returned to the screen shown in Figure 8 to
enter more adjustments.
If CALIBRATE is pressed, the values will be permanently stored in a setup
file. You’ll now be presented with the screen in Figure 9, allowing you to
choose the SCA to be used for calibration.
At this time, the software will calculate the energy calibration equation, store
it into the corresponding detector input, and ask you to verify the gain
normalization by looking at the MCA View Control window. Pressing OK
will bring you back to the amplifier selection dialog shown in Figure 7,
allowing you to select another channel (2016).
14
Using the Genie-VMS Software
Figure 8 Calibrating the Selected 2016's SCAs

6. The TCA window(s) are set for the peak energy of the calibration source (or
x-ray lines). You’ll manually adjust the amplifier gain until the peak of
interest is in the window. Once an initial channel is calibrated, subsequent
channels can simply be gain normalized (unless amplifier settings such as
shaping time or energy range are different).
Gain Normalization Procedure
The gain normalization procedure provides for gain adjustments to ensure that the am-
plifier outputs from all channels are matched. Once this is done, SCA window settings
can be changed by entering new values and using the “apply to all” check box to select
different energies.
Performing the Gain Normalization
1. When at least one channel has been calibrated, you’ll need to select the Gain
Normalization procedure from the 2016 Amp/TCA Software main menu.
2. The procedure starts with the screen in Figure 7, which lets you select a
channel to be gain normalized. Pressing Ok brings up the screen in Figure 10,
which asks you to select a previously calibrated channel to use as the
reference.
15
Gain Normalization Procedure
Figure 9 Choosing the SCA to Calibrate
This manual suits for next models
2
Table of contents
Other Canberra Amplifier manuals
Popular Amplifier manuals by other brands

Speaka Professional
Speaka Professional 2176714 operating instructions

Tavish Design
Tavish Design Minotaur Quick-start guide and owner's manual

L-Acoustics
L-Acoustics LA 24 owner's manual

Sapling
Sapling SMA 4000 Series installation manual

Ponovo
Ponovo PA460Bi-C user manual

FMR Audio
FMR Audio RNLA7239 quick start guide