Globaltronics D1-3 Technical manual

User Guide & Warranty
SCIENTIFIC CALCULATOR D1-3
08/09
AFTER SALES SUPPORT
UK / N.IRELAND HELPLINE NO 0800 328 6020
REP. IRELAND HELPLINE NO 00800 4467 5888
E-MAIL SUPPORT [email protected]
MODEL NUMBER: D1-3

2 3
KEY FIELD
GENERAL FUNCTION KEYS
KEY Functions Page
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
"On/off switch"
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
Data entry 16
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
Basic calculation types 16
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
Clear memory 6, 8
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
Clear/clear error 14
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
Change sign 16
MEMORY KEYS
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
Independent memory recall 15
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
Independent memory entry 18
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
Exchange display amount and
memory content "M" 18
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
Memory addition 18
SPECIAL KEYS
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
Inverse function 9
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
Mode 8
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
Bracket 16
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
Exponent 13
KEY FIELD
KEY Functions Page
π
DRG
FIX
FLO
SCI
DRG
DEG
X Y
DMS
–
AF
HEX
AND
OR
XOR
NOT
NEG
OCT
BIN
XNOR
DEC
ENG
π 32
π
DRG
FIX
FLO
SCI
DRG
DEG
X Y
DMS
–
AF
HEX
AND
OR
XOR
NOT
NEG
OCT
BIN
XNOR
DEC
ENG
Conversion - Sexagesimal
notation/decimal notation 30
π
DRG
FIX
FLO
SCI
DRG
DEG
X Y
DMS
–
AF
HEX
AND
OR
XOR
NOT
NEG
OCT
BIN
XNOR
DEC
ENG
Trigonometric function mode
DEGpRADpGRADpDEG 30
π
DRG
FIX
FLO
SCI
DRG
DEG
X Y
DMS
–
AF
HEX
AND
OR
XOR
NOT
NEG
OCT
BIN
XNOR
DEC
ENG
Trigonometri function conversion
DEGpRADpGRADpDEG 31
π
DRG
FIX
FLO
SCI
DRG
DEG
X Y
DMS
–
AF
HEX
AND
OR
XOR
NOT
NEG
OCT
BIN
XNOR
DEC
ENG
Coordinate change 35
π
DRG
FIX
FLO
SCI
DRG
DEG
X Y
DMS
–
AF
HEX
AND
OR
XOR
NOT
NEG
OCT
BIN
XNOR
DEC
ENG
Clear the last entry value 14
π
DRG
FIX
FLO
SCI
DRG
DEG
X Y
DMS
–
AF
HEX
AND
OR
XOR
NOT
NEG
OCT
BIN
XNOR
DEC
ENG
Setting the decimal position display 34
π
DRG
FIX
FLO
SCI
DRG
DEG
X Y
DMS
–
AF
HEX
AND
OR
XOR
NOT
NEG
OCT
BIN
XNOR
DEC
ENG
Flow comma display 34
π
DRG
FIX
FLO
SCI
DRG
DEG
X Y
DMS
–
AF
HEX
AND
OR
XOR
NOT
NEG
OCT
BIN
XNOR
DEC
ENG
Scientific notation 34
π
DRG
FIX
FLO
SCI
DRG
DEG
X Y
DMS
–
AF
HEX
AND
OR
XOR
NOT
NEG
OCT
BIN
XNOR
DEC
ENG
Engineering not ation 35
BASIC-N KEYS
π
DRG
FIX
FLO
SCI
DRG
DEG
X Y
DMS
–
AF
HEX
AND
OR
XOR
NOT
NEG
OCT
BIN
XNOR
DEC
ENG
Decimal mode 22
π
DRG
FIX
FLO
SCI
DRG
DEG
X Y
DMS
–
AF
HEX
AND
OR
XOR
NOT
NEG
OCT
BIN
XNOR
DEC
ENG
Binary mode 22
π
DRG
FIX
FLO
SCI
DRG
DEG
X Y
DMS
–
AF
HEX
AND
OR
XOR
NOT
NEG
OCT
BIN
XNOR
DEC
ENG
Hexadecimal mode 22
π
DRG
FIX
FLO
SCI
DRG
DEG
X Y
DMS
–
AF
HEX
AND
OR
XOR
NOT
NEG
OCT
BIN
XNOR
DEC
ENG
Octal mode 22
π
DRG
FIX
FLO
SCI
DRG
DEG
X Y
DMS
–
AF
HEX
AND
OR
XOR
NOT
NEG
OCT
BIN
XNOR
DEC
ENG
Hexadecimal number entry 22
π
DRG
FIX
FLO
SCI
DRG
DEG
X Y
DMS
–
AF
HEX
AND
OR
XOR
NOT
NEG
OCT
BIN
XNOR
DEC
ENG
And 28
π
DRG
FIX
FLO
SCI
DRG
DEG
X Y
DMS
–
AF
HEX
AND
OR
XOR
NOT
NEG
OCT
BIN
XNOR
DEC
ENG
Or 28
π
DRG
FIX
FLO
SCI
DRG
DEG
X Y
DMS
–
AF
HEX
AND
OR
XOR
NOT
NEG
OCT
BIN
XNOR
DEC
ENG
Exclusive OR 28
π
DRG
FIX
FLO
SCI
DRG
DEG
X Y
DMS
–
AF
HEX
AND
OR
XOR
NOT
NEG
OCT
BIN
XNOR
DEC
ENG
Exclusive NOT OR 28
π
DRG
FIX
FLO
SCI
DRG
DEG
X Y
DMS
–
AF
HEX
AND
OR
XOR
NOT
NEG
OCT
BIN
XNOR
DEC
ENG
Not 29
π
DRG
FIX
FLO
SCI
DRG
DEG
X Y
DMS
–
AF
HEX
AND
OR
XOR
NOT
NEG
OCT
BIN
XNOR
DEC
ENG
Negative 25

4 5
KEY FIELD
FUNCTION KEYS
KEY Functions Page
AB/C
D/C
sin
cos
tan
sin
-1
cos
-1
tan
-1
10
x
e
x
x
2
y
x
HYP
log
In
1/x
n!
%
,
3
xy
R P
P R
Sine 31
AB/C
D/C
sin
cos
tan
sin
-1
cos
-1
tan
-1
10
x
e
x
x
2
y
x
HYP
log
In
1/x
n!
%
,
3
xy
R P
P R
Cosine 31
AB/C
D/C
sin
cos
tan
sin
-1
cos
-1
tan
-1
10
x
e
x
x
2
y
x
HYP
log
In
1/x
n!
%
,
3
xy
R P
P R
Tangent 31
AB/C
D/C
sin
cos
tan
sin
-1
cos
-1
tan
-1
10
x
e
x
x
2
y
x
HYP
log
In
1/x
n!
%
,
3
xy
R P
P R
Arc sine 32
AB/C
D/C
sin
cos
tan
sin
-1
cos
-1
tan
-1
10
x
e
x
x
2
y
x
HYP
log
In
1/x
n!
%
,
3
xy
R P
P R
Arc cosine 32
AB/C
D/C
sin
cos
tan
sin
-1
cos
-1
tan
-1
10
x
e
x
x
2
y
x
HYP
log
In
1/x
n!
%
,
3
xy
R P
P R
Arc tangent 32
AB/C
D/C
sin
cos
tan
sin
-1
cos
-1
tan
-1
10
x
e
x
x
2
y
x
HYP
log
In
1/x
n!
%
,
3
xy
R P
P R
Hyperbole function 32
AB/C
D/C
sin
cos
tan
sin
-1
cos
-1
tan
-1
10
x
e
x
x
2
y
x
HYP
log
In
1/x
n!
%
,
3
xy
R P
P R
Log 10 33
AB/C
D/C
sin
cos
tan
sin
-1
cos
-1
tan
-1
10
x
e
x
x
2
y
x
HYP
log
In
1/x
n!
%
,
3
xy
R P
P R
Power of ten 33
AB/C
D/C
sin
cos
tan
sin
-1
cos
-1
tan
-1
10
x
e
x
x
2
y
x
HYP
log
In
1/x
n!
%
,
3
xy
R P
P R
Natural logarithm 33
AB/C
D/C
sin
cos
tan
sin
-1
cos
-1
tan
-1
10
x
e
x
x
2
y
x
HYP
log
In
1/x
n!
%
,
3
xy
R P
P R
Natural antilogarithm 33
AB/C
D/C
sin
cos
tan
sin
-1
cos
-1
tan
-1
10
x
e
x
x
2
y
x
HYP
log
In
1/x
n!
%
,
3
xy
R P
P R
Square root 34
AB/C
D/C
sin
cos
tan
sin
-1
cos
-1
tan
-1
10
x
e
x
x
2
y
x
HYP
log
In
1/x
n!
%
,
3
xy
R P
P R
Square function 34
AB/C
D/C
sin
cos
tan
sin
-1
cos
-1
tan
-1
10
x
e
x
x
2
y
x
HYP
log
In
1/x
n!
%
,
3
xy
R P
P R
Fractions 19
AB/C
D/C
sin
cos
tan
sin
-1
cos
-1
tan
-1
10
x
e
x
x
2
y
x
HYP
log
In
1/x
n!
%
,
3
xy
R P
P R
Cubic root 34
AB/C
D/C
sin
cos
tan
sin
-1
cos
-1
tan
-1
10
x
e
x
x
2
y
x
HYP
log
In
1/x
n!
%
,
3
xy
R P
P R
Inverse function 31
AB/C
D/C
sin
cos
tan
sin
-1
cos
-1
tan
-1
10
x
e
x
x
2
y
x
HYP
log
In
1/x
n!
%
,
3
xy
R P
P R
Factorial 34
AB/C
D/C
sin
cos
tan
sin
-1
cos
-1
tan
-1
10
x
e
x
x
2
y
x
HYP
log
In
1/x
n!
%
,
3
xy
R P
P R
Power function 33
AB/C
D/C
sin
cos
tan
sin
-1
cos
-1
tan
-1
10
x
e
x
x
2
y
x
HYP
log
In
1/x
n!
%
,
3
xy
R P
P R
(x) Root (y) 33
AB/C
D/C
sin
cos
tan
sin
-1
cos
-1
tan
-1
10
x
e
x
x
2
y
x
HYP
log
In
1/x
n!
%
,
3
xy
R P
P R
Convert cartesian coordinates
into polar coodinates 36
AB/C
D/C
sin
cos
tan
sin
-1
cos
-1
tan
-1
10
x
e
x
x
2
y
x
HYP
log
In
1/x
n!
%
,
3
xy
R P
P R
Convert polar coordinates into
cartesian coordinates 35
AB/C
D/C
sin
cos
tan
sin
-1
cos
-1
tan
-1
10
x
e
x
x
2
y
x
HYP
log
In
1/x
n!
%
,
3
xy
R P
P R
Percent 20
KEY FIELD
STATISTICAL FUNCTION KEYS
KEY Functions Page
DATA
SD
DEL
Ó
n
Ó
n-1
x
n
x
x2
Statistical data mode 37
DATA
SD
DEL
Ó
n
Ó
n-1
x
n
x
x2
Value entry 37
DATA
SD
DEL
Ó
n
Ó
n-1
x
n
x
x2
Value Clear 38
Mean standard deviation 37
Standard deviation of the
random sample 37
DATA
SD
DEL
Ó
n
Ó
n-1
x
n
x
x2
Arithmetic mean 37
DATA
SD
DEL
Ó
n
Ó
n-1
x
n
x
x2
Number of values 37
DATA
SD
DEL
Ó
n
Ó
n-1
x
n
x
x2
Sum value 37
DATA
SD
DEL
Ó
n
Ó
n-1
x
n
x
x2
Squared sum value 37

6 7
1. GENERAL INFORMATION / SCOPE OF DELIVERY _____ 8-10
2. SAFETY INSTRUCTIONS ________________________ 11
3. CALCULATION STEPS AND HIERARCHY ___________ 12
4. CALCULATION AREA AND SCIENTIFIC NOTATION____ 13
5. CORRECTIONS _______________________________ 14
6. DISPLAY OVERRUN AND ERROR DISPLAY __________ 15
7. ENTRY OF CALCULATIONS ______________________ 16-21
8. CALCULATIONS IN THE BINARY/OCTAL/
DECIMAL SYSTEM_____________________________ 22-29
9. CALCULATIONS WITH FUNCTIONS _______________ 30-36
10. STATISTICAL CALCULATIONS ____________________ 37-39
11. TECHNICAL DATA _____________________________ 40-43
12. BATTERY CHANGE ____________________________ 44-46
13. DISPOSAL ___________________________________ 47
14. CONFORMITY DECLARATION____________________ 47
WARRANTY __________________________________ 48
WARRANTY CARD_____________________________ 49
Dear customer,
Thank you for purchasing this calculator.
In order to make use of the features of this device, you do not
require any special training, however we recommend that you
read through these operating instructions carefully. In order to
ensure a long service life for the device, you should not open
the device, avoid intense impact and only use the keys with
moderate pressure. Extreme cold (below 0°C or 32°F), heat (over
40°C or 104°F) and moisture can also affect the functioning of
the device. Never use liquid solvents, e.g. thinners, petrol, etc.
for cleaning the device.
Contact your nearest specialist dealer, if servicing needs to be
carried out on the device. Before you start a calculation, you
should ensure that“0” appears in the display by pressing .
Particularly ensure that you do not damage the device by
bending or dropping it. Do not carry the device in your back
pocket.
SCOPE OF DELIVERY
Scientific school calculator D1-3
Sliding lid
1 x battery (button cell, type LR43, already inserted)
User Guide & Warranty
CONTENT

8 9
1.2) The display
Diagram of the LCD display
In the display, the entry values, interim results and results of
your calculations appear. The display range for mantissa values
has 10 display digits. The display range for exponents is ±99.
-E- Error indicator (See Page 15)
INV You are using INV
MThe temporary memory contains entries
(See Page 18)
HYP You are using HYP (See Page 32)
BIN, OCT, HEX BASE N mode (See Page 22)
SD Statistical calculations (See Page 37)
DEG, RAD, GRAD Radian measurement units (See Page 31)
FIX Decimal position display is being set
(See Page 34)
SCI Converts the display value into exponential
notation (See Page 34)
1.1) Operating modes
Press , followed by , , , or , in
order to switch the device to the required operating mode.
, , , or are secondary assignments on
the 4, 6, 5, 7 or 8 numerical keys
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
π
DRG
FIX
FLO
SCI
DRG
DEG
X Y
DMS
–
AF
HEX
AND
OR
XOR
NOT
NEG
OCT
BIN
XNOR
DEC
ENG
“BIN” appears in the display. Calculations and con-
versions are carried out in binary format (Base-2)
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
π
DRG
FIX
FLO
SCI
DRG
DEG
X Y
DMS
–
AF
HEX
AND
OR
XOR
NOT
NEG
OCT
BIN
XNOR
DEC
ENG
“OCT” appears. Calculations are displayed in the
octal system (Base-8).
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
π
DRG
FIX
FLO
SCI
DRG
DEG
X Y
DMS
–
AF
HEX
AND
OR
XOR
NOT
NEG
OCT
BIN
XNOR
DEC
ENG
Calculations and conversions are carried out in
the decimal system (Base-10).
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
π
DRG
FIX
FLO
SCI
DRG
DEG
X Y
DMS
–
AF
HEX
AND
OR
XOR
NOT
NEG
OCT
BIN
XNOR
DEC
ENG
“HEX” appears. Calculations and conversions are
carried out in the hexadecimal system (Base-16).
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
DATA
SD
DEL
Ó
n
Ó
n-1
x
n
x
x2
“SD”appears. The statistical mode of the calculator
is activated.
Use , in order to clear the memory and the display at any
time and in order to switch back to the decimal display mode
(Base-10) and the trigonometric display mode with DEG units.
1. GENERAL INFORMATION1. GENERAL INFORMATION
– 1 . 2 3 4 5 6 7 8 9 0 -99
INV HYP BI N OCT HEX SD DEG RAD GRAD
( )
ExponentMantissa
M
E

10 11
Please read the following instructions carefully before using the
calculator. Please keep the operating instructions in a safe place
in order to have them quickly at hand, if questions should arise
regarding operation. If, at any time, you pass on this calculator
to another person, then please ensure that these Operating
Instructions are included.
Avoid storage or use of the calculator in areas where it is
exposed to extreme temperatures. Extreme cold (below 0ºC)
or heat (above 40ºC) affect the functioning of the device.
Avoid use or storage of the calculator in areas where it is
exposed to intense moisture or dust.
Do not drop the calculator and do not allow it to be sub-
jected to intense impact.
The calculator must not be bent or folded.
Never try to dismantle the calculator.
Never push the keys of the calculator with a pen or other
sharp object.
Use a soft, dry cloth for cleaning the outside of the calculator.
Do not use any strong detergents.
ENG Converts the display value into exponential
notation, with the exponent as a multiple of
“3“ and the mantissa between 0 - 999
(See Page 35)
FLO Converts "SCI" and "ENG" display into the
decimal position display (See Page 34)
45_12_I 123 45 (See Page 19)
12.°34‘56“7 12°34‘56.7“ (See Page 30)
Exponential display
The display can only show results up to a size of 10 digits. If an
interim or final result is greater than 10 digits, the calculator
automatically converts this into exponential notation. Values
above 9,999,999,999 are always displayed exponentially.
1.3) Multiple occupied keys
Some function- and number keys are multifunctional:
Blue marked functions will be activated by former pushing
of the blue key.
Grey marked functions will be activated by former pushing
of the grey key.
Yellow marked functions are only activated in logic mode
and when entering hexadecimal numbers.
2. SAFETY INSTRUCTIONS1. GENERAL INFORMATION
12
23

12 13
If the result of a calculation exceeds the capacity of the display,
this is automatically represented in "scientific" notation; with
this, the mantissa can be up to 10 positions long and the expo-
nential range is 10 to ±99.
1. The minus symbol (-) for the mantissa.
2. The mantissa
3. The minus symbol (-) for the exponent.
4. The exponent to base 10
The display appears as follows: -1.234567891 x 10-99
Entries can be carried out in scientific notation by pressing
the key after entering the mantissa.
EXAMPLE PROCDURE DISPLAY
-1.234567891 x 10 ·3 (= -0.001234567891)
1·234567891
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
-1.234567891
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
-1.234567891 00
3
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
-1.234567891 -03
Calculations are carried out with the following priorities:
1. Functions 4. +, -
2. yx, xy, RpP, PpR 5. AND BASE N mode
3. x, ÷ 6. OR, XOR, XNOR
Procedures with the same priority are carried out from left
to right, whereby functions in brackets are carried out first. If
brackets are nested, the calculations in the innermost brackets
are carried out first.
4. CALCULATION AREA AND
SCIENTIFIC NOTIATION
3. CALCULATION STEPS AND HIERARCHY

14 15
Display overrun and errors are displayed with "E" and the calcu-
lation is not continued.
Display overruns or errors occur under the following circum-
stances:
a) If a final or interim result of the content of the temporary
memory exceeds the amount of 1 x10100 ("E" appears).
b) If calculations are carried out with functions that exceed the
entry range ("E" appears).
c) If the admissible range for entry in the BASE-N number
systems is exceeded ("E" appears).
d) If non-admissible operations are carried out in the statistical
mode ("E" appears).
e) If the total number of explicit or implicit calculation levels
(including additionsubtraction, multiplication-division,
and ) in brackets exceeds "6", or if more than 15 pairs of
brackets are used.
Example: You have pressed the key 16 times before carrying
out the entry
2 + 3 x
.
Press , in order to release the display again.
Memory protection
The content of the temporary memory is protected from over-
run. The memory sum can be recalled using , after you
have released the display again using .
If you determine an error during entry of the values, you can
clear the last number entered with .
If you determine an entry error prior to pressing an arithmetic
function key, you can clear this value using and re-enter it.
In a calculation sequence, you can correct errors in interim
results, by carrying it out again using the correct values and
then continuing the sequence of calculations where you left off.
If you should make errors with the entry of , , , ,
or , , you can simply correct these by pressing
the correct key. In this case, the last entered function is carried
out, however the priority of the original entry is maintained.
6. DISPLAY OVERRUN AND
ERROR DISPLAY
5. CORRECTIONS

16 17
7.2) Constant calculationsCalculations can be entered in formula notation (e.g. in algebraic
logic).
You can enter up to 15 brackets on 6 calculation levels.
7.1) Four basis types of calculation
(including bracket calculations)
EXAMPLE PROCDURE DISPLAY
The key must not be used prior to the key.
7. ENTRY OF CALCULATIONS7. ENTRY OF CALCULATIONS

18 19
7.4) Fractions
The values for numerators and denominators are not per-
mitted to exceed 10 display positions (including separation
symbols).
A fraction can be entered into the temporary memory.
When recalling a fraction value from the temporary memory,
this is displayed as a decimal value.
A fraction is converted into a decimal by pressing the
key after the key.
During the calculation of a fraction, this is converted into the
shortest representation, after you press the function keys
(
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
,
2 + 3 x
,
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
or
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
) or
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
, provided that the fraction can
be abbreviated.
7.3) Memory calculations using the independent temporary
memory
If a new entry should take place in the independent tem-
porary memory using , the previously saved value is
automatically cleared and the new value stored in the inde-
pendent temporary memory.
The "M" symbol appears in the display if a value is contained
in the independent temporary memory. Clear the content of
the temporary memory using
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
.
You can exchange the content of the temporary memory “M“
and the display using the key.
7. ENTRY OF CALCULATIONS7. ENTRY OF CALCULATIONS

20 21
You earned £ 80 last week. This week you earn £100.
How much do you now earn in percent, in relation to the
income of the previous week?
100
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
80
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
AB/C
D/C
sin
cos
tan
sin
-1
cos
-1
tan
-1
10
x
e
x
x
2
y
x
HYP
log
In
1/x
n!
%
,
3
xy
R P
P R
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
125.
%
12% of 1200 12
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
AB/C
D/C
sin
cos
tan
sin
-1
cos
-1
tan
-1
10
x
e
x
x
2
y
x
HYP
log
In
1/x
n!
%
,
3
xy
R P
P R
2 + 3 x
1200
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
144.
18% of 1200 18
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
AB/C
D/C
sin
cos
tan
sin
-1
cos
-1
tan
-1
10
x
e
x
x
2
y
x
HYP
log
In
1/x
n!
%
,
3
xy
R P
P R
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
216.
23% of 1200 23
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
AB/C
D/C
sin
cos
tan
sin
-1
cos
-1
tan
-1
10
x
e
x
x
2
y
x
HYP
log
In
1/x
n!
%
,
3
xy
R P
P R
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
276.
26% of 2200 2200
2 + 3 x
26
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
AB/C
D/C
sin
cos
tan
sin
-1
cos
-1
tan
-1
10
x
e
x
x
2
y
x
HYP
log
In
1/x
n!
%
,
3
xy
R P
P R
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
572.
26% of 3300 3300
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
858.
26% of 3800 3800
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
988.
What percentage is 30 of 192
30
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
192
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
AB/C
D/C
sin
cos
tan
sin
-1
cos
-1
tan
-1
10
x
e
x
x
2
y
x
HYP
log
In
1/x
n!
%
,
3
xy
R P
P R
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
15.625
What percentage is 156 of 192 156
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
81.25
What percentage are 138 grams of 150 grams?
What percentage are 129 grams of 150 grams?
138
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
150
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
AB/C
D/C
sin
cos
tan
sin
-1
cos
-1
tan
-1
10
x
e
x
x
2
y
x
HYP
log
In
1/x
n!
%
,
3
xy
R P
P R
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
92.
129
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
86.
By continued pressing of , the display value is
converted into a fraction.
The result of a calculation with a fraction and a decimal value
is represented as a decimal figure.
7.5) Percentage calculations
12% of 1500 1500
2 + 3 x
12
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
AB/C
D/C
sin
cos
tan
sin
-1
cos
-1
tan
-1
10
x
e
x
x
2
y
x
HYP
log
In
1/x
n!
%
,
3
xy
R P
P R
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
180.
How many percent are 660 von 880
660
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
880
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
AB/C
D/C
sin
cos
tan
sin
-1
cos
-1
tan
-1
10
x
e
x
x
2
y
x
HYP
log
In
1/x
n!
%
,
3
xy
R P
P R
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
75.
15% premium on 2500
2500
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
15
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
AB/C
D/C
sin
cos
tan
sin
-1
cos
-1
tan
-1
10
x
e
x
x
2
y
x
HYP
log
In
1/x
n!
%
,
3
xy
R P
P R
375.
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
2875.
25% discount on 3500
3500
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
25
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
AB/C
D/C
sin
cos
tan
sin
-1
cos
-1
tan
-1
10
x
e
x
x
2
y
x
HYP
log
In
1/x
n!
%
,
3
xy
R P
P R
875.
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
2625.
7. ENTRY OF CALCULATIONS7. ENTRY OF CALCULATIONS

22 23
Valid values
BASE VALUE
Binary: 0, 1
Octal: 0, 1, 2, 3, 4, 5, 6, 7
Decimal: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
Hexadecimal: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
Only the values shown above can be entered while the
respective base mode is activated. The letters "B" and "D" are
displayed as lowercase letters with hexadecimal values.
You can not enter any trigonometric values (degree, radians,
gradients) or change the display format (FIX, SCI), while the
calculator is operating in "BASE-N" mode.
You must first leave the “BASE-N” mode in order to carry out
these settings.
8. CALCULATIONS IN THE BINARY / OCTAL /
DECIMAL SYSTEM
8. CALCULATIONS IN THE BINARY / OCTAL /
DECIMAL SYSTEM
Calculations in the binary / octal / decimal / hexadecimal
systems, as well as conversions, are carried out in "BASE-N"
mode.
The base values can be determined using the following keys:
KEY BASE
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
π
DRG
FIX
FLO
SCI
DRG
DEG
X Y
DMS
–
AF
HEX
AND
OR
XOR
NOT
NEG
OCT
BIN
XNOR
DEC
ENG
Decimal
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
π
DRG
FIX
FLO
SCI
DRG
DEG
X Y
DMS
–
AF
HEX
AND
OR
XOR
NOT
NEG
OCT
BIN
XNOR
DEC
ENG
Hexadecimal
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
π
DRG
FIX
FLO
SCI
DRG
DEG
X Y
DMS
–
AF
HEX
AND
OR
XOR
NOT
NEG
OCT
BIN
XNOR
DEC
ENG
Binary
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
π
DRG
FIX
FLO
SCI
DRG
DEG
X Y
DMS
–
AF
HEX
AND
OR
XOR
NOT
NEG
OCT
BIN
XNOR
DEC
ENG
Octal
Calculation range after the conversion
BASE DISPLAY AREA
Binary 10 positions Positive 0 ≤ x ≤ 111111111
Negative: 1000000000 ≤ x ≤
1111111111
Octal 10 positions Positive 0 ≤ x ≤ 3777777777
Negative: 4000000000 ≤ x ≤
7777777777
Decimal 10 positions Positive 0 ≤ x ≤ 9999999999
Negative: -9999999999 ≤ x < 0
Hexadecimal 10 positions Positive 0 ≤ x ≤ 2540BE3FF
Negative: FDABF41 C01 ≤ x ≤
FFFFFFFFFF

24 25
8.2) Negative values
Negative values can be entered using the key. The
second component is used for the conversion of binary,
octal, decimal and hexadecimal values.
Negative value 10102
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
π
DRG
FIX
FLO
SCI
DRG
DEG
X Y
DMS
–
AF
HEX
AND
OR
XOR
NOT
NEG
OCT
BIN
XNOR
DEC
ENG
1010
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
π
DRG
FIX
FLO
SCI
DRG
DEG
X Y
DMS
–
AF
HEX
AND
OR
XOR
NOT
NEG
OCT
BIN
XNOR
DEC
ENG
BIN 1111110110.
Conversion to decimal value
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
π
DRG
FIX
FLO
SCI
DRG
DEG
X Y
DMS
–
AF
HEX
AND
OR
XOR
NOT
NEG
OCT
BIN
XNOR
DEC
ENG
-10.
Negative value of 12
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
π
DRG
FIX
FLO
SCI
DRG
DEG
X Y
DMS
–
AF
HEX
AND
OR
XOR
NOT
NEG
OCT
BIN
XNOR
DEC
ENG
1
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
π
DRG
FIX
FLO
SCI
DRG
DEG
X Y
DMS
–
AF
HEX
AND
OR
XOR
NOT
NEG
OCT
BIN
XNOR
DEC
ENG
BIN 1111111111.
Negative value of 28
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
π
DRG
FIX
FLO
SCI
DRG
DEG
X Y
DMS
–
AF
HEX
AND
OR
XOR
NOT
NEG
OCT
BIN
XNOR
DEC
ENG
2
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
π
DRG
FIX
FLO
SCI
DRG
DEG
X Y
DMS
–
AF
HEX
AND
OR
XOR
NOT
NEG
OCT
BIN
XNOR
DEC
ENG
OCT 7777777776.
Negative value of 3416
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
π
DRG
FIX
FLO
SCI
DRG
DEG
X Y
DMS
–
AF
HEX
AND
OR
XOR
NOT
NEG
OCT
BIN
XNOR
DEC
ENG
34
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
π
DRG
FIX
FLO
SCI
DRG
DEG
X Y
DMS
–
AF
HEX
AND
OR
XOR
NOT
NEG
OCT
BIN
XNOR
DEC
ENG
HEX FFFFFFFFCC.
8. CALCULATIONS IN THE BINARY / OCTAL /
DECIMAL SYSTEM
8. CALCULATIONS IN THE BINARY / OCTAL /
DECIMAL SYSTEM
8.1) Binary / Octal / Decimal / Hexadecimal Conversions
Conversion of 2210 into the binary format
22 BIN 10110.
Conversion of 2210 into the octal format
OCT 26.
Conversion of 2210 into the hexadecimal format
HEX 16.
Conversion of 51310 into the binary format
E
BIN 0.
The conversion is sometimes not possible, if the display
range for the result exceeds the capacity of the display.
Conversion of 7FFFFFFF16 into the decimal format
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
π
DRG
FIX
FLO
SCI
DRG
DEG
X Y
DMS
–
AF
HEX
AND
OR
XOR
NOT
NEG
OCT
BIN
XNOR
DEC
ENG
7FFFFFFF
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
π
DRG
FIX
FLO
SCI
DRG
DEG
X Y
DMS
–
AF
HEX
AND
OR
XOR
NOT
NEG
OCT
BIN
XNOR
DEC
ENG
2147483647.
Conversion of 40000000008into the decimal format
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
π
DRG
FIX
FLO
SCI
DRG
DEG
X Y
DMS
–
AF
HEX
AND
OR
XOR
NOT
NEG
OCT
BIN
XNOR
DEC
ENG
4000000000
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
π
DRG
FIX
FLO
SCI
DRG
DEG
X Y
DMS
–
AF
HEX
AND
OR
XOR
NOT
NEG
OCT
BIN
XNOR
DEC
ENG
-536870912.
Conversion of 12345610 into the octal format
123456
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
π
DRG
FIX
FLO
SCI
DRG
DEG
X Y
DMS
–
AF
HEX
AND
OR
XOR
NOT
NEG
OCT
BIN
XNOR
DEC
ENG
OCT 361100.
Conversion of 11001102into the decimal format
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
π
DRG
FIX
FLO
SCI
DRG
DEG
X Y
DMS
–
AF
HEX
AND
OR
XOR
NOT
NEG
OCT
BIN
XNOR
DEC
ENG
1100110
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
π
DRG
FIX
FLO
SCI
DRG
DEG
X Y
DMS
–
AF
HEX
AND
OR
XOR
NOT
NEG
OCT
BIN
XNOR
DEC
ENG
102.

26 27
The uneven components of calculation results are abbreviated.
1102+ 4568x 7810 ÷ 1A16
= 39016
= 91210
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
π
DRG
FIX
FLO
SCI
DRG
DEG
X Y
DMS
–
AF
HEX
AND
OR
XOR
NOT
NEG
OCT
BIN
XNOR
DEC
ENG
110
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
π
DRG
FIX
FLO
SCI
DRG
DEG
X Y
DMS
–
AF
HEX
AND
OR
XOR
NOT
NEG
OCT
BIN
XNOR
DEC
ENG
456
2 + 3 x
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
π
DRG
FIX
FLO
SCI
DRG
DEG
X Y
DMS
–
AF
HEX
AND
OR
XOR
NOT
NEG
OCT
BIN
XNOR
DEC
ENG
78
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
π
DRG
FIX
FLO
SCI
DRG
DEG
X Y
DMS
–
AF
HEX
AND
OR
XOR
NOT
NEG
OCT
BIN
XNOR
DEC
ENG
1A
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
HEX 390.
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
π
DRG
FIX
FLO
SCI
DRG
DEG
X Y
DMS
–
AF
HEX
AND
OR
XOR
NOT
NEG
OCT
BIN
XNOR
DEC
ENG
912.
Multiplication and division take priority over addition and
subtraction in mixed calculations.
BC16 x (1410 + 6910) = 1560410
= 3CF416
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
π
DRG
FIX
FLO
SCI
DRG
DEG
X Y
DMS
–
AF
HEX
AND
OR
XOR
NOT
NEG
OCT
BIN
XNOR
DEC
ENG
BC
2 + 3 x
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
π
DRG
FIX
FLO
SCI
DRG
DEG
X Y
DMS
–
AF
HEX
AND
OR
XOR
NOT
NEG
OCT
BIN
XNOR
DEC
ENG
14
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
69
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
15604.
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
π
DRG
FIX
FLO
SCI
DRG
DEG
X Y
DMS
–
AF
HEX
AND
OR
XOR
NOT
NEG
OCT
BIN
XNOR
DEC
ENG
HEX 3CF4.
238+ 96310 = 98210
23 963 M982.
238+ 1010112= 1111102
M
101011 BIN 111110.
2A5616 x 238= 3246216
M
2A56 32462.
8. CALCULATIONS IN THE BINARY / OCTAL /
DECIMAL SYSTEM
8. CALCULATIONS IN THE BINARY / OCTAL /
DECIMAL SYSTEM
8.3) Calculations with binary / octal / decimal / hexadecimal
values
Interim memory calculations and brackets are admissible for
calculations in the binary, octal, decimal and hexadecimal
number systems.
101112+ 110102= 1100012
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
π
DRG
FIX
FLO
SCI
DRG
DEG
X Y
DMS
–
AF
HEX
AND
OR
XOR
NOT
NEG
OCT
BIN
XNOR
DEC
ENG
10111
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
11010
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
BIN 110001.
1238x ABC16
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
π
DRG
FIX
FLO
SCI
DRG
DEG
X Y
DMS
–
AF
HEX
AND
OR
XOR
NOT
NEG
OCT
BIN
XNOR
DEC
ENG
123
2 + 3 x
= 37AF416
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
π
DRG
FIX
FLO
SCI
DRG
DEG
X Y
DMS
–
AF
HEX
AND
OR
XOR
NOT
NEG
OCT
BIN
XNOR
DEC
ENG
ABC
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
HEX 37AF4.
= 22808410
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
π
DRG
FIX
FLO
SCI
DRG
DEG
X Y
DMS
–
AF
HEX
AND
OR
XOR
NOT
NEG
OCT
BIN
XNOR
DEC
ENG
228084.
1F2D16 - 10010
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
π
DRG
FIX
FLO
SCI
DRG
DEG
X Y
DMS
–
AF
HEX
AND
OR
XOR
NOT
NEG
OCT
BIN
XNOR
DEC
ENG
1F2D
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
= 788110
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
π
DRG
FIX
FLO
SCI
DRG
DEG
X Y
DMS
–
AF
HEX
AND
OR
XOR
NOT
NEG
OCT
BIN
XNOR
DEC
ENG
100
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
7881.
= 1EC916
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
π
DRG
FIX
FLO
SCI
DRG
DEG
X Y
DMS
–
AF
HEX
AND
OR
XOR
NOT
NEG
OCT
BIN
XNOR
DEC
ENG
HEX 1EC9.
76548÷ 1210
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
π
DRG
FIX
FLO
SCI
DRG
DEG
X Y
DMS
–
AF
HEX
AND
OR
XOR
NOT
NEG
OCT
BIN
XNOR
DEC
ENG
7654
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
= 334.33....10
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
π
DRG
FIX
FLO
SCI
DRG
DEG
X Y
DMS
–
AF
HEX
AND
OR
XOR
NOT
NEG
OCT
BIN
XNOR
DEC
ENG
12
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
334.3333333
= 5168
09•
,
-
,
,
+–x
,=
÷
AC
C/CE
ON/OFF
+/-
X M
M+
RM
X M
(
)
MODE
INV
EXP
π
DRG
FIX
FLO
SCI
DRG
DEG
X Y
DMS
–
AF
HEX
AND
OR
XOR
NOT
NEG
OCT
BIN
XNOR
DEC
ENG
OCT 516.

28 29
10102AND (A16 OR 716) = 10102
1010 A
7 HEX A.
BIN 1010.
1A16 AND 2F16 = A16
1A 2F HEX A.
3B16 AND 2F16= 2B16 3B HEX 2B.
NOT of 10110210110 BIN1111101001.
NOT of 123481234 OCT7777776543.
NOT of 2FFFED16 2FFFED HEXFFFFd00012.
8. CALCULATIONS IN THE BINARY / OCTAL /
DECIMAL SYSTEM
8. CALCULATIONS IN THE BINARY / OCTAL /
DECIMAL SYSTEM
8.4) Logical Operations
The , , , , and keys can be used
in order to carry out the respective binary, octal, decimal and
hexadecimal logical functions.
1916 AND 1A16 = 1816
19 1A
HEX 18.
11102AND 368= 11102
1110 36 OCT 16.
BIN 1110.
238OR 618= 638
23 61 OCT 63.
12016 OR 11012=12D16
120 1101 BIN 100101101.
HEX 12d.
516XOR 316 = 616
5 3 HEX 6.
2A16 XNOR 5D16 = FFFFFFFF881 6
2A 5D HEX FFFFFFFF88.

30 31
In the DMS display format, the whole number part of the entry
is regarded as a degree component, the 2 positions following
the decimal point, as minute components and the 3rd and 4th
positions after the decimal point, as second components.
The following applies:
14°25‘36“ = 14.2536
14 . 25 36
Degree Minutes Seconds
9.2) Radian conversions
45°= 0.785398163 rad = 50 degrees
45 RAD 0.785398163
GRAD 50.
DEG 45.
9.3) Trigonometric functions / inverse functions
sin ( π
__
6rad) =„RAD” 6 RAD 0.5
cos 63°52‘41”=
“DEG” 63 5241 DEG 63.87805556
0.440283084
tan (- 35 gra) = “GRAD”35 GRAD-0.612800788
2 • sin45°xcos65°=
“DEG” 2 45 65 0.597672477
cot 30° = 1
tan 30° “DEG” 30 1.732050808
9. CALCULATIONS WITH FUNCTIONS9. CALCULATIONS WITH FUNCTIONS
The keys for scientific functions can be used as subroutines for
the four basic calculation types (including brackets).
This calculator utilises the values for π = 3.141592654 and
e= 2.718281828
With several scientific functions, the display fades briefly
while carrying out complicated formulae. During this time,
you should not attempt to enter new values or press the
function keys, before the result of the calculation is displayed.
You can not enter any radians (degrees, radians, gradients)
or change the display format (FIX, SCI) while the calculator is
operating in "BASE-N" mode.
You must first leave the "BASE-N" mode in order to carry out
these settings. Such settings can only be carried out after
you have exited the "BASE-N" mode by using the key.
Please see Page 41 for information regarding the value
ranges for the scientific functions.
9.1) Sexagesimal decimal conversion
The key converts sexagesimal values (degrees, minute
and second) in decimal values. Using , you can convert
the decimal notation into the sexagesimal notation.
14°25’36” = 14 2536 14.42666667
14.°25’36”

32 33
9.5) Log 10 & natural logarithms/ exponents (log 10, natural
logarithms, exponential and root functions)
log 1.23 (=log10 1.23) = 1 23 0.089905111
Solution 4x = 64
x = log 64
log4 = 64 4 3.
In 90 (= loge90) = 90 4.49980967
log 456 ÷ In 456 =
456 M0.434294481
100.4 + 5 • e-3 = 4 5 3
2.760821773
5.62.3 = 5 6 2 3 52.58143837
1231/7 (= 7123 ) = 123 7 1.988647795
(78 - 23)-12 =
78 23 12 1.305111829- 21
312 + e10 = 3 12 10 553467.4658
log sin 40° + log cos 35°
40 35 - 0.278567983
151/5 + 251/6 + 351/7 =
15 5 25
6 35 7 5.090557037
9. CALCULATIONS WITH FUNCTIONS9. CALCULATIONS WITH FUNCTIONS
sec ( π
3rad) =
“RAD” 30 3 RAD 2.
cosec 30° = 1
sin 30°
= “DEG” 30 2.
cos-1 2
2 =
“RAD” 2 2 0.785398163
tan-10.6104 = “DEG” 6104 31.39989118
31°23’59”6
9.4) Hyperbole functions and hyperbole inverse functions
sinh 3.6 = 3 6 18.28545536
tanh 2.5 = 2 5 0.986614298
cosh 1.5 - sinh 1.5 =
1 5 M2.352409615
M0.22313016
M-1.5
sinh-1 30 = 30 4.094622224
Solution tanh 4x = 0.88
x = tanh-1 0.88
4=
88 4 0.343941914
1
π
cos ( __rad )
3

34 35
123m x 456 = 56088m 123 456 56088
= 56.088km 56.088 03
7.8g ÷ 96 = 0.08125g
7 8 96 0.08125
= 81.25mg 81.25 - 03
9.8) Conversion of polar coordinates into in right angle
coordinates
Formula: x = r • cosθ y = r • sinθ
Example: Find the x and y coordinates for the point P in the
polar coordinate system q = 60° and radius r = 2
„DEG“ 2 60 1.
(x)
1.732050808
(y)
1.
(x)
9. CALCULATIONS WITH FUNCTIONS9. CALCULATIONS WITH FUNCTIONS
9.6) Square roots, cubic roots, squaring funciton & factorial
2 + 3 x 5 =
2 3 5
5.287196909
35+ 3 -27 =
5 27 -1.290024053
123 + 302= 123 30 1023.
1
1 -1
3 4
= 3 4 12.
8! (= 1 x 2 x 3 x .... x 7 x 8) = 8 40320.
9.7) Different functions (FIX, SCI, ENG, FLO)
1.234 +1.234 =
„FIX2“ ( 2) 1 234 1.23
1 234 2.47
2.468
1÷3 + 1÷3 =
„FIX2“ ( 2) 1 3 0.33
3.33-01
1 3 6.67-01
0.67
0.666666666

36 37
Access the statistical mode using ; "SD" appears in
the display.
Example: Find σn-1, σn, x, n, Σx und Σx2on the basis of the
data 55, 54, 51, 55, 53, 53, 54, 52.
SD 8.
(Standard deviation of the random sample)
SD 1.407885953
(Mean value of the standard deviation)
SD 1.316956719
(Arithmetic mean)
SD 53.375
(Number of random samples)
SD 8.
(Sum value)
SD 427.
(Squared sum value)
SD 22805.
Note: The standard deviation of the random sample σn-1 is
defined as follows:
The mean value of the standard deviation σnis defined as follows:
10. STATISTICAL CALCULATIONS9. CALCULATIONS WITH FUNCTIONS
9.9) Converting right angle coordinates into polar
coordinates
Formula: r = x2+ y2
θ = tan-1y ( -180° θ 180°)
x
Example: Find the radius (r) and the angle θ for the point (P) x =
1 and y = 3 in the right angle coordinate system
„RAD“ 1 3 2.
(r)
1.047197551
(θ as radian)
2.
(r)

38 39
(4) (Error) 1 4 SD 1.4
(4) (Correct) SD 0.
1 3 3 SD 12.
8 SD 0.8
(4) (Error) 6 SD 18.
(5) (Correct) 8 6 SD 12.
8 5 SD 17.
SD 17.
SD 0.635294117
SD 0.95390066
10. STATISTICAL CALCULATIONS10. STATISTICAL CALCULATIONS
The arithmetic mean x is defined as follows:
You do not , , , , , , need to use
in the sequence indicated.
Example: Find n, x & σn-1 on the basis of the following data: 1.2,
- 0.9 , -1.5, 2.7, -0.6, 0.5, 0.5, 0.5, 0.5, 1.3, 1.3, 1.3, 0.8, 0.8, 0.8, 0.8,
0.8.
1 2
9 SD 2.
(1) (Error) 2 5 SD -2.5
(1) (Correct) SD 0.
1 5 SD 3.
2 7 SD 4.
(2) (Error) SD 5.
(3) (Error) 1 6 SD 6.
(3) (Correct) 1 6 SD 5.
6 SD 6.
(2) (Correct) 4 SD 5.
5 SD 0.5
4 SD 9.
Σx
n
Table of contents