HopeRF CMT2310A User manual

Features
Frequency range: 113 – 960 MHz
Modulation/demodulation: OOK, 2 (G)FSK, 4 (G)FSK
Data rate: 0.1 - 1000 kbps
Sensitivity: 2 FSK, -122 dBm DR=2.4 kbps, 433.92 MHz
4 FSK, -88 dBm DR=1 Mbps,433.92 MHz
OOK, -94 dBm DR= 300 kbps, 433.92 MHz
Adjacent channel rejection : 62 dBc, BW = 4.8 kHz,
Channel space = 12.5 kHz
Blocking: 76 dBc , ±1 MHz offset, BW = 4.8 kHz
Operating voltage range: 1.8 - 3.6 V
Tx current: 30 mA @ 13 dBm, 433.92 MHz, FSK
82 mA @ 20 dBm, 433.92 MHz, FSK
Rx current: 9.6 mA (DCDC) @433.92 MHz, FSK
No extra RF switching components required in single antenna mode
Multiple super-low power (SLP) Rx modes available
Sleep current
400 nA, Duty Cycle = OFF
800 nA, Duty Cycle = ON
Special features:
Quick and stable automatic frequency control (AFC)
3 varied clock data recovery systems (CDR)
Quick and accurate valid signal detection (PJD, RSSI)
Super-low power (SLP) and Duty Cycle receiving
Fast Tx or Rx frequency hopping
Carrier sense multiple access (CSMA)
Automatic ACK and re-sending
Antenna diversity
4-wire SPI interface
Supporting both direct and packet modes, with configurable
packet handler and 128-Byte FIFO
NRZ format, Manchester, whiten data coding, FEC
Application
Automatic meter reading
Home security and building automation
ISM-band data communication
Industrial monitoring and control
Remote control and security system
Remote key entry
Wireless sensor node
Tag reader and writer
Ordering Information
Product Model Frequency Package
Minimum
Order
CMT2310A-EQR 113 - 960 MHz QFN24 3,000 pcs
Refer to Table 22 for more ordering information.
Description
The CMT2310A is an ultra-low power, high-performance, OOK /
2(G)FSK / 4(G)FSK based RF transceiver, applicable to various
applications within the 113 - 960 MHz frequency band. The product
is part of the CMOSTEK NextGenRFTM product family which covers
a complete product line consisting of transmitters, receivers and
transceivers. The high-density integration of CMT2310A simplifies
the required BOM in system design. With Tx power reaching +20
dBm and sensitivity reaching -122 dBm, it can achieve optimized
performance of application RF links. Through providing multiple
data packet formats and code methods, this product ensures the
flexible supporting of various applications. Besides, the CMT2310A
provides functions such as 128-byte Tx/Rx FIFO, multiple GPIO
and interrupt configurations, Duty-Cycle mode, LBT (listen before
talk), high-precision RSSI, LBD, power on reset, low-frequency
clock output, quick frequency hopping, squelch, etc., which allows
more flexible application design and gains more product
differentiation capability.
High-performance Sub-1GHz RF Transceiver
CMT2310A Top View
Copyright © By HOPERF
QF24 (4X4)
CMT2310A

Table of Contents
1Electrical Specifications ........................................................................................................................................................................... 4
1.1 Recommended Operating Conditions .................................................................................................................................................. 4
1.2 Absolute Maximum Ratings ................................................................................................................................................................. 4
1.3 RF Power Consumption........................................................................................................................................................................ 4
1.4 Receiver ............................................................................................................................................................................................... 5
1.5 Transmitter .......................................................................................................................................................................................... 7
1.6 RF Frequency Synthesizer .................................................................................................................................................................... 8
1.7 Settling Time ........................................................................................................................................................................................ 8
1.8 Crystal Oscillator .................................................................................................................................................................................. 9
1.9 Low-frequency Oscillator ..................................................................................................................................................................... 9
1.10 Low Battery Detection ....................................................................................................................................................................... 10
1.11 Digital Interface.................................................................................................................................................................................. 10
1.12 Typical Parameter Chart..................................................................................................................................................................... 10
1.12.1 Rx Current Vs. Data rate ............................................................................................................................................................ 10
1.12.2 Rx Sensitivity Vs. Data rate ........................................................................................................................................................ 11
1.12.3 Tx Power Vs. Supply Power Voltage........................................................................................................................................... 11
1.12.4 Tx Phase Noise .......................................................................................................................................................................... 12
2Pin Descriptions..................................................................................................................................................................................... 13
3Typical Application Schematic................................................................................................................................................................ 14
3.1 Direct Tie Schematic Diagram ............................................................................................................................................................ 14
4Function Description ............................................................................................................................................................................. 17
4.1 Transmitter ........................................................................................................................................................................................ 18
4.2 Receiver ............................................................................................................................................................................................. 18
4.3 Additional Functions .......................................................................................................................................................................... 18
4.3.1 Power-On Reset (POR) .............................................................................................................................................................. 18
4.3.2 Crystal Oscillator ....................................................................................................................................................................... 19
4.3.3 Temperature Compensated Crystal Oscillator (TCXO)................................................................................................................... 19
4.3.4 Sleep Timer.................................................................................................................................................................................... 20
4.3.5 Low Battery Detection................................................................................................................................................................... 20
4.3.6 Received Signal Strength Indicator (RSSI) ...................................................................................................................................... 20
4.3.7 Phase Jump Detector (PJD)............................................................................................................................................................ 20
4.3.8 Automatic Frequency Control (AFC) .............................................................................................................................................. 21
4.3.9 Clock Data Recovery (CDR) ............................................................................................................................................................ 21
4.3.10 Fast Frequency Hopping ............................................................................................................................................................... 21
5Chip Operation ...................................................................................................................................................................................... 21
5.1 SPI Interface....................................................................................................................................................................................... 21
5.1.1 Read/Write Register.................................................................................................................................................................. 21
5.1.2 Read/Write Register in Batch Mode (BURST) ............................................................................................................................ 23
5.2 FIFO.................................................................................................................................................................................................... 24
5.2.1 FIFO Read Operation ..................................................................................................................................................................... 25
5.2.2 FIFO Associated Interrupt.............................................................................................................................................................. 25
5.3 Operation State, Timing and Power Consumption............................................................................................................................. 27

5.3.1 Startup Timing............................................................................................................................................................................... 27
5.3.2 Operation State ............................................................................................................................................................................. 27
5.4 GPIO and Interrupt ............................................................................................................................................................................ 30
6Data Packet and Packet Handler ............................................................................................................................................................ 33
6.1 Direct Rx Mode .................................................................................................................................................................................. 33
6.2 Packet Mode ...................................................................................................................................................................................... 33
6.2.1 Rx processing ............................................................................................................................................................................ 34
6.2.2 Tx processing............................................................................................................................................................................. 34
7Low Power Operating ............................................................................................................................................................................ 35
7.1 Duty Cycle Operating Mode............................................................................................................................................................... 35
7.2 Super-low Power (SLP) Rx Mode........................................................................................................................................................ 35
7.3 Rx Automatic Frequency Hopping (RX AUTO HOP) ............................................................................................................................ 37
7.4 TX Automatic Frequency Hopping (TX AUTO HOP) ............................................................................................................................ 38
7.5 Automatically Re-sending (TX AUTO RESEND) ................................................................................................................................... 39
7.6 Carrier Sensing Multi-path Accessing (CSMA).................................................................................................................................... 39
7.7 Antenna Diversity .............................................................................................................................................................................. 41
8User Register ......................................................................................................................................................................................... 43
9Ordering Information............................................................................................................................................................................. 44
10 Packaging Information...................................................................................................................................................................... 45
11 Top Marking ..................................................................................................................................................................................... 46
12 Revise History................................................................................................................................................................................... 47
13 Contacts ........................................................................................................................................................................................... 49

1 Electrical Specifications
The measurement conditions are: VDD= 3.3 V,TOP= 25 °C,FRF = 433.92 MHz, sensitivity is measured by receiving a PN9 sequence,
matching to 50 Ω impedance and 0.1% BER if nothing else stated. All measurement results are obtained using the evaluation board
CMT2310A-EM if nothing else stated.
1.1Recommended Operating Conditions
Table 1. Recommended Operating Conditions
Parameter Symbol Condition Min. Typ. Max. Unit
Operating supply voltage
VDD
1.8
3.6 V
Operating temperature
TOP
-40
85 ℃
Supply voltage slope
1
mV/us
1.2Absolute Maximum Ratings
Table 2. Absolute Maximum Ratings[1]
Parameter Symbol Condition Min. Typ. Max.
Supply voltage VDD
-0.3 3.6 V
Interface voltage VIN
-0.3 3.6 V
Junction temperature TJ
-40 125 ℃
Storage temperature TSTG
-50 150 ℃
Soldering temperature TSDR
Last for at least 30 seconds
Human body model (HBM)
255 ℃
ESD rating[2]
Human body model (HBM) -2 2 kV
Latch-up current
@ 85 ℃-100 100 mA
Notes:
[1]. Exceeding the Absolute Maximum Ratings may cause permanent damage to the equipment. This value is a pressure
rating and does not imply that the function of the equipment is affected under this pressure condition, but if it is exposed to
absolute maximum ratings for extended periods of time, it may affect equipment reliability.
[2]. The CMT2310A is a high performance RF integrated circuit. The operation and assembly of this chip should only be
performed on a workbench with good ESD protection.
1.3RF Power Consumption
Table 3. RF Power Consumption
Parameter Symbol Condition
Typ.
(Disable DCDC)
Typ.
(Enable DCDC)
Unit
Sleep current[1] ISLEEP
In sleep mode with sleep timer disabled 400 nA
In sleep mode with sleep timer enabled 800 nA
Ready current[1] IReady 2.1 1.9 mA
RFS current
[1]
IRFS
315 MHz
7.5
5.2
mA
Caution! ESD sensitive device.Precaution should be used when handlingthe device in order to
prevent performance degradation or loss of functionality.

Parameter Symbol Condition
Typ.
(Disable DCDC)
Typ.
(Enable DCDC)
Unit
433 MHz
7.8
5.6
mA
868 MHz
8.4
5.9
mA
915 MHz
8.5
5.9
mA
TFS current[1] ITFS
315 MHz
7.5
5.2
mA
433 MHz
7.8
5.6
mA
868 MHz
8.4
5.9
mA
915 MHz
8.5
5.9
mA
RX current [1] IRx DR = 10 kbps
Dev =10 kHz
315 MHz
13.5
8.8
mA
433 MHz
13.6
9.4
mA
868 MHz
14.3
9.9
mA
915 MHz
14.3
9.9
mA
TX current [1] ITx
20 dBm[2]
315 MHz
74
/
mA
433 MHz
82
81
mA
868 MHz
88
87
mA
915 MHz
88
87
mA
13 dBm [3]
315 MHz
26.7
/
mA
433 MHz
30
29
mA
868 MHz
33
32
mA
915 MHz
34
33
mA
10 dBm [3]
315 MHz
21
15
mA
433 MHz
25
24
mA
868 MHz
27
26
mA
915 MHz
27
26
mA
-10 dBm [3]
315 MHz
10.3
7
mA
433 MHz
11
10
mA
868 MHz
12
11
mA
915 MHz
12
11
mA
Notes:
[1]. 2FSK, DR = 10 kbps, FDEV = 5 kHz, Vbat = 3.3 V.
[2]. Apply 20 dBm matching network.
[3]. Apply 13 dBm matching network.
1.4Receiver
Table 4. Receiver Specifications
Parameter Symbol Condition Min. Typ. Max. Unit
Data rate DR
OOK 0.1 300 kbps
2 (G)FSK
0.1
500
kbps
4(GFSK 0.1 1000
kbps
Deviation (RX)
FDEV
(G)FSK, 4(G)FSK
[1]
0.5
350
kHz
Sensitivity
@ 433 MHz
(direct
tiematching
network)
S433
FSK[2]
DR = 2.4 kbps, FDEV = 1.2 kHz,BW= 4.8kHz -122
dBm
DR = 10 kbps,FDEV = 5 kHz -114
dBm
DR = 20 kbps, FDEV = 10 kHz -112
dBm
DR = 50 kbps, FDEV = 25 kHz
-109
dBm
DR =100 kbps, FDEV = 50 kHz -106
dBm
DR =200 kbps, FDEV = 100 kHz -104
dBm
DR =500 kbps, FDEV = 250 kHz
-98
dBm
OOK[2]
5 kbps -110
dBm
50 kbps -101 dBm
100 kbps
-97
dBm
200 kbps -95
dBm

Parameter
Symbol
Condition
Min.
Typ.
Max.
Unit
300 kbps -94
dBm
4FSK[2]
DR = 10 kbps, FDEV
[3]
= 10kHz
-109
dBm
DR = 100 kbps, FDEV[3] =100kHz -99
dBm
DR = 1 Mbps, FDEV[3] = 250 kHz -88 dBm
Sensitivity
@ 868 MHz
(direct tie
matching
network)
S868
FSK[2]
DR = 2.4 kbps, FDEV = 1.2 kHz, BW=4.8kHz
-120
dBm
DR = 10 kbps,FDEV = 5 kHz -111
dBm
DR = 20 kbps, FDEV = 10 kHz -110 dBm
DR = 50 kbps, FDEV = 25 kHz
-107
dBm
DR =100 kbps, FDEV = 50 kHz -104
dBm
DR =200 kbps, FDEV = 100 kHz -102 dBm
DR =500 kbps, FDEV = 250 kHz -96
dBm
OOK[2]
5 kbps -106
dBm
50 kbps
-98
dBm
100 kbps
-94
dBm
200 kbps -93
dBm
300 kbps
-92
dBm
4FSK[2]
DR = 10 kbps, FDEV[3] = 10kHz -106
dBm
DR = 100 kbps, FDEV[3] = 100kHz -96
dBm
DR = 1 Mbps, FDEV
[3]
= 250 kHz
-85
dBm
Notes:
[1]. BT = 0.5 by default for Gaussian modulation.
[2]. In case of unspecified BW value, a crystal of 10 ppm is used and the BW value is automatically calculated by RFPDK.
[3]. For 4 FSK, FDEV represents the frequency difference between the frequency points at the far ends (left and right) and the
centered frequency point.
Receiver
channel
bandwidth
BW Receiver channel bandwidth 1.3 1168 kHz
Saturation input
signal level PLVL 20 dBm
RSSI range RSSI By a step of 1 dB -127 20 dBm
Co-channel
rejection
@ 433 MHz,
868 MHz
CCR DR = 2.4 kbps; FDEV = 1.2 kHz;
BW=4.8 kHz
CW interference, BER<0.1% -7 dBc
Adjacent
channel
rejection
@ 433 MHz
ACR-
I433
DR = 2.4 kbps; FDEV = 1.2 kHz;
BW= 4.8 kHz, Channel Space = 12.5 kHz,
CW interference, BER<0.1% 62 dBc
Adjacent
channel
rejection
@ 868 MHz
ACR-
I868
DR = 2.4 kbps;FDEV = 1.2 kHz;
BW= 4.8 kHz, Channel Space = 12.5 kHz,
CW interference, BER<0.1% 56 dBc
Blocking
@ 433 MHz BI433 DR = 2.4 kbps; FDEV = 1.2 kHz;
BW=4.8 kHz,
CW interference, BER<0.1%
±1 MHz offset 76 dBc
±2 MHz offset 80 dBc
±10 MHz offset 84 dBc
Blocking
@ 868 MHz BI868 DR = 2.4 kbps; FDEV = 1.2 kHz;
BW=4.8 kHz,
CW interference, BER<0.1%
±1 MHz offset 66 dBc
±2 MHz offset 76 dBc
±10 MHz offset 83 dBc

Parameter
Symbol
Condition
Min.
Typ.
Max.
Unit
Image Rejection
@ 433 MHz IMR433 DR = 2.4 kbps; FDEV = 1.2 kHz;
BW=4.8 kHz
CW interference, BER<0.1%
Before calibration 30 dBc
After calibration 56 dBc
Image Rejection
@ 868 MHz IMR868 DR = 2.4 kbps; FDEV = 1.2 kHz;
BW=4.8 kHz
CW interference, BER<0.1%
Before calibration 26 dBc
After calibration 51 dBc
Input 3rd order
intercept point
@ 433 MHz
IIP3433 DR = 2.4 kbps; FDEV = 1.2 kHz;
two-tone test with 10 MHz and 20 MHz deviations. -13 dBm
Input 3rd order
intercept point
@ 868 MHz
IIP3868 DR = 2.4 kbps; FDEV = 1.2 kHz;
two-tone test with 10 MHz and 20 MHz deviations. -12 dBm
Receiver input
impedance Zin RXP and RXN
Differential input impedance
433MHz 150Ω// 0.8pF
868MHz 134Ω// 1.0pF
1.5Transmitter
Table 5. Transmitter Specifications
Parameter
Symbol
Condition
Min.
Typ.
Max.
Unit
Output power POUT Specific peripheral components are
required according to different frequency
bands.
-10 +20 dBm
Output power step PSTEP 1 dB
GFSK Gaussian filter
coefficient
BT 0.3 0.5 1.0 -
Output power change in
differenttemperature
POUT-TOP Temperature range: -40 to +85 °C 1 dB
Spurious emissions POUT = +13 dBm,433 MHz, FRF<1 GHz -54 dBm
1 GHz to 12.75 GHz, including Harmonic -36 dBm
Harmonic output[1]
for FRF= 315 MHz
H2315 2ndharmonic, +20 dBm POUT -57 dBm
H3315 3rd harmonic,+20 dBm POUT -75 dBm
Harmonic output[1]
for FRF= 433 MHz
H2433 2nd harmonic, +20 dBm POUT -56 dBm
H3433 3rd harmonic,+20 dBm POUT -71 dBm
Harmonic output[1]
for FRF= 868 MHz
H2868 2nd harmonic,+20 dBm POUT -47 dBm
H3868 3rd harmonic, +20 dBm POUT -72 dBm
Harmonic output[1]
for FRF= 915 MHz
H2915 2ndharmonic,+20 dBm POUT -47 dBm
H3915 3rd harmonic,+20 dBm POUT -73 dBm
Harmonic output[1]
for FRF= 315 MHz
H2315 2nd harmonic, +13 dBm POUT -51 dBm
H3315 3rd harmonic,+13 dBm POUT -72 dBm
Harmonic output[1]
for FRF= 433 MHz
H2433 2nd harmonic, +13 dBm POUT -44 dBm
H3433 3rd harmonic, +13 dBm POUT -58 dBm
Harmonic output[1]
for FRF= 868 MHz
H2868 2ndharmonic, +13 dBm POUT -50 dBm
H3868 3rd harmonic,+13 dBm POUT -71 dBm
Harmonic output[1]
for FRF= 915 MHz
H2915 2nd harmonic, +13 dBm POUT -54 dBm
H3915 3rd harmonic,+13 dBm POUT -73 dBm

Parameter Symbol Condition Min. Typ. Max. Unit
Notes:
[1]. The harmonic levelmainly depends on the quality of matching network. The parameters a
bove are measured based on
CMT2310A-EM.
1.6RF Frequency Synthesizer
Table 6. RF Frequency Synthesizer
Parameter Symbol Condition Min. Typ. Max. Unit
Frequency range FRF Require different matching networks.
675 960 MHz
338 640 MHz
113 320 MHz
Frequency deviation
range FDEV_RNG
[1]
675 ~ 960 MHz 600 kHz
450 ~ 640 MHz 400 kHz
338 ~ 450 MHz 300 kHz
225 ~ 320 MHz 200 kHz
169 ~ 225 MHz 150 kHz
135 ~ 169 MHz 120 kHz
113 ~ 135 MHz 100 kHz
Frequency resolution FRES 60 Hz
Frequency tuning time tTUNE 60 us
Phase noise
@ 433 MHz PN433
10 kHz Frequency Offset -101 dBc/Hz
100 kHz Frequency Offset -114 dBc/Hz
1MHz Frequency Offset -129 dBc/Hz
10 MHz Frequency Offset -134 dBc/Hz
Phase noise
@ 868 MHz PN868
10 kHz Frequency Offset -100 dBc/Hz
100 kHzFrequency Offset -109 dBc/Hz
1MHz Frequency Offset -126 dBc/Hz
10 MHz Frequency Offset -129 dBc/Hz
Notes:
[1]. For 2FSK and 4FSK, FDEV represents the frequency difference between the frequency points at the far ends (left and
right) and the centered frequency point.
1.7Settling Time
Table 7. Settling Time
Parameter
Symbol
Condition
Min.
Typ.
Max.
Unit
Settling time
TSLP-RX From Sleep to RX 660 us
TSLP-TX From Sleep to TX 660 us
TSTB-RX From Standby to RX 160
us
TSTB-TX From Standby to TX 160 us
TRFS-RX From RFS to RX 16 us
TTFS-RX From TFS to TX 16 us
TTX-RX From TX to RX
(Ramp down requires 2Tsymbol time)
2Tsymbol
+168
us

Parameter
Symbol
Condition
Min.
Typ.
Max.
Unit
TRX-TX From RX to TX 220 us
Notes:
[1]. TSLP-RX and TSLP-TX mainly depend on crystal oscillating, which is largely related to crystal itself.
1.8Crystal Oscillator
Table 8. Crystal Specification
Parameter Symbol Condition Min. Typ. Max. Unit
Crystal frequency
[1]
FXTAL
32
MHz
Crystal frequency precision
[2]
ppm_XTAL
0
20
100
ppm
Load resistance CLOAD_XTAL 15 pF
Crystal equivalent resistance
RmXTAL
60
Ω
Crystal startup time
[3]
tXTAL
200
us
Notes:
[1]. The CMT2310A can utilize external reference clock to directly drive XIN pin through the coupling capacitor. The peak-to-
peak value of external clock signal is required between 0.3 and 0.7 V.
[2]. It involves:(1) initial tolerance, (2) crystal loading, (3) aging, and (4) temperature changing. The acceptable crystal
frequency tolerance is subject to the bandwidth of the receiver and the RF tolerance between the receiver and its paired
transmitter.
[3]. This parameter is to a large degree crystal dependent.
1.9Low-frequency Oscillator
Table 9.Low-frequencyOscillatorSpecifications
Parameter
Symbol
Condition
Min.
Typ.
Max.
Unit
Calibration frequency
[1]
FLPOSC 32 kHz
Frequency accuracy
After calibration
±1
%
Temperature coefficient
[2]
-0.02 %/°C
Supply voltage coefficient
[3]
+0.5 %/V
Initial calibration time
tLPOSC-CAL
4
ms
Notes:
[1].The low-frequency oscillator is automatically calibrated to the crystal oscillator frequency at the PUP stage.
[2].After calibration,the frequency will drift with temperature.
[3].After calibration,the frequency will drift with the change of the supply voltage.

1.10 Low Battery Detection
Table10. Low Battery Detection Specifications
Parameter
Symbol
Condition
Min.
Typ.
Max.
Unit
Detection accuracy
LBDRES
50
mV
1.11 Digital Interface
Table 11. Digital Interface Specifications
Parameter
Symbol
Condition
Min.
Typ.
Max.
Unit
Digital input high level
V
IH
Vdd-0.4
V
DD
Digital input low level
VIL
0.2
VDD
Digital output high level
V
OH
@I
OH
= -0.5 mA
Vdd-0.4
V
Digital output low level
V
OL
@I
OL
= 0.5 mA
0.4
V
SCLK frequency
FSCL
10
MHz
SCLK high time
T
CH
50
ns
SCLK low time
T
CL
50
ns
SCLK rising edge time
TCR
10
ns
SCLK falling edge time
T
CF
10
ns
1.12 Typical Parameter Chart
1.12.1 Rx Current Vs. Data rate
Test condition: Freq = 434 MHz, ppm = 10.
0
5
10
15
20
25
30
2.4 4.8 10 20 50 100 200 300 400 500
mA
2 FSK : Current VS Data Rate
kbps

1.12.2 Rx Sensitivity Vs. Data rate
Test condition: Freq = 434 MHz, ppm = 10, BER <=0.1%
1.12.3 Tx Power Vs. Supply Power Voltage
Test condition: Freq = 434 MHz, 20 dBm matching network, Tx power with 3.3 V and 20 dBm
-130
-120
-110
-100
-90
-80
-70
2.4 4.8 10 20 50 100 200 300 400 500
dBm
2 FSK : Sensitivity VS Data Rate
kbps
0
5
10
15
20
25
1.8 1.9 22.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 33.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8
dBm
2 FSK : TX Power VS Vdd
V

1.12.4 Tx Phase Noise
-70
-60
-50
-40
-30
-20
-10
0
10
20
30
431.94
432.061
432.182
432.303
432.424
432.545
432.666
432.787
432.908
433.029
433.15
433.271
433.392
433.513
433.634
433.755
433.876
433.997
434.118
434.239
434.36
434.481
434.602
434.723
434.844
434.965
435.086
435.207
435.328
435.449
435.57
435.691
435.812
dBm
Center = 433.92 MHz
434 MHz TX
span = 4 MHz, rbw = 1 kHz
-70
-60
-50
-40
-30
-20
-10
0
10
20
30
866.05
866.172
866.294
866.416
866.538
866.66
866.782
866.904
867.026
867.148
867.27
867.392
867.514
867.636
867.758
867.88
868.002
868.124
868.246
868.368
868.49
868.612
868.734
868.856
868.978
869.1
869.222
869.344
869.466
869.588
869.71
869.832
869.954
dBm
Center = 868 MHz
868 MHz TX
span = 4 MHz, rbw = 1 kHz

2 Pin Descriptions
25
GND
GPIO0
AGND
RXP
19
20
23
24
1
2
5
6
710 11 12
13
14
17
18
3
415
16
21
22
89
RXN
NC
TX
PA_VDD
VIO
NSEL
SDI
SDO
SCLK
GPIO2
GPIO3
NIRQ
GPIO1
XI
XO
GPIO5_RST
GPIO4
AVDD
DVDD
VBAT
DC_VSW
Figure 1. CMT2310A Pin Arrangement
Table 12. CMT2310A Pin Description
Pin #
Pin Name
I/O
Description
1 RXP I RF signal positive input
2 RXN I RF signal negative input
3 NC O Floating, not connected
4 TX O Tx output
5 PA_VDD IO PA VDD
6 VIO IO IO VDD
7 GPIO4 IO Configurable, see Table 17 CMT2310A GPIO for more details.
8 GPIO5_RST IO Configurable, see Table 17 CMT2310A GPIO for more details.
9 DVDD I Digital VDD
10 AVDD I Analog VDD
11 DC_VSW I DCDC
12 VBAT I Analog VDD
13 GPIO3 IO Configurable, see Table 18 CMT2310A GPIO for more details.
14 GPIO2 IO Configurable, see Table 18 CMT2310A GPIO for more details.
15 SCLK I SPI clock.
16 SDO O SPI data output.
17 SDI I SPI data input.
18 CSB I Chip select bar
19 XI I 32M Crystal circuit input.
20 XO O 32M Crystal circuit output.
21 NIRQ I Configurable, see Table 17 CMT2310A GPIO for more details.
22 GPIO1 IO Configurable, see Table 17 CMT2310A GPIO for more details.
23 GPIO0 IO Configurable, see Table 17 CMT2310A GPIO for more details.

24 AGND I Analog GND.
25 GND I GND
3 Typical Application Schematic
3.1Direct Tie Schematic Diagram
U1
CMT2310A_QFN24_T
AGND
RXP
RXN
TX
PA_VDD
NC
VIO
CSB
SDI
SCLK
GPIO2
SDO
GPIO3
GPIO0
GPIO1
NIRQ
XO
XI
GPIO4
GPIO5_RST
DVDD
AVDD
DC_VSW
VBAT
18
16
17
15
CSB
SDI
SDO
SCLK
24
22
23
21
C13
C14
32MHz
X1
20
19
7
8
9
10
11
12
C9
C1L4 L3
L5 L2
C2
C3
P1
L6
C7
C6
L7 L8
C12 C11 C10
VBAT
L1
1
2
3
4
5
6
VBAT
GPIO0
GPIO1
NIRQ
25
VBAT
C8
L10
C17
C4
C5
L9
14
13
GPIO2
GPIO3
Figure 2. Direct Tie Application Schematic Diagram (DCDC enabled)
U1
CMT2310A_QFN24_T
AGND
RXP
RXN
TX
PA_VDD
NC
VIO
CSB
SDI
SCLK
GPIO2
SDO
GPIO3
GPIO0
GPIO1
NIRQ
XO
XI
GPIO4
GPIO5_RST
DVDD
AVDD
DC_VSW
VBAT
18
16
17
15
CSB
SDI
SDO
SCLK
24
22
23
21
C13
C14
32MHzX1
20
19
7
8
9
10
11
12
C9
C1L4 L3
L5 L2
C2
C3
P1
L6
C7
C6
L7 L8
C12 C11 C10
VBAT
L1
1
2
3
4
5
6
VBAT
GPIO0
GPIO1
NIRQ
25
VBAT
C4
C5
L9
14
13
GPIO2
GPIO3
Figure3. Direct Tie Application Schematic Diagram (DCDC disabled)
CMT2310A_QFN24_T

Table 3-1. 20 dBm Direct Tie Application BOM
No. Descriptions
Component Values
Unit Supplier
315 MHz
+20 dBm
433 MHz
+20 dBm
868 MHz
+20 dBm
915 MHz
+20 dBm
C1 ±5%, 0402 NP0, 50 V
22
12 12 12
pF
C2 ±5%, 0402 NP0, 50 V
6.8
5.6 3.3 3.3
pF
C3 ±5%, 0402 NP0, 50 V
8.2
6.2 3.3 3.0 pF
C4 ±5%, 0402 NP0, 50 V
8.2
NC NC NC
pF
C5
±5%, 0402 NP0, 50 V
NC
NC
NC
NC
pF
C6 ±5%, 0402 NP0, 50 V
5.6
3.9
1.8
1.8
pF
C7 ±5%, 0402 NP0, 50 V
5.6
3.9
1.8
1.8
pF
C8 ±5%, 0603 NP0, 50 V
2.2
uF
C9 ±5%, 0402 NP0, 50 V
1
uF
C10 ±5%, 0402 NP0, 50 V
220
pF
C11 ±5%, 0402 NP0, 50 V
100
nF
C12
±5%, 0603 NP0, 50 V
4.7
uF
C13 ±5%, 0402 NP0, 50 V
NC
pF
C14
±5%, 0402 NP0, 50 V
NC
pF
C17 ±5%, 0402 NP0, 50 V
100
nF
L1
±5%, 0603 Chip Ceramic Inductor
220
180
100
100
nH
Sunlord
SDCL
L2
±5%, 0603 Chip Ceramic Inductor
68
47
15
12
nH
Sunlord
SDCL
L3
±5%, 0603 Chip Ceramic Inductor
56
39 15 12
nH
Sunlord
SDCL
L4
±5%, 0603 Chip Ceramic Inductor
33
33 8.2 6.2
nH
Sunlord
SDCL
L5
±5%, 0603 Chip Ceramic Inductor
47
33 8.2 6.2
nH
Sunlord
SDCL
L6
±5%, 0603 Chip Ceramic Inductor
47
33 15 12
nH
Sunlord
SDCL
L7
±5%, 0603 Chip Ceramic Inductor
47
33
15
12
nH
Sunlord
SDCL
L8
±5%, 0603 Chip Ceramic Inductor
220
68 33 33
nH
Sunlord
SDCL
L9
±5%, 0603 Chip Ceramic Inductor
33
NC
NC
NC
nH
Sunlord
SDCL
L10
MPH252012C100MT,
10UH ±20%,
Package 2520,
DC Resistance 0.5Ω,
Saturation Current 0.5A 10 uH Sunlord
X1
±10 ppm, SMD
32
MHz
EPSON
U1 CMT2310A
RF receiver and
transmitter - CMOSTEK

Table 3-2. 13 dBm Direct Tie Application BOM
No. Descriptions
Component Values
Unit Supplier
315 MHz
+13 dBm
433 MHz
+13 dBm
868 MHz
+13 dBm
915 MHz
+13 dBm
C1
±5%, 0402 NP0, 50 V
8.2
18
15
15
pF
C2 ±5%, 0402 NP0, 50 V
3.9
5.6 3.9 4.3
pF
C3
±5%, 0402 NP0, 50 V
9.1
6.8
3.3
3.0
pF
C4 ±5%, 0402 NP0, 50 V
9.1
NC NC NC
pF
C5 ±5%, 0402 NP0, 50 V
NC
NC
NC
NC
pF
C6 ±5%, 0402 NP0, 50 V
5.6
3.9
1.8
1.8
pF
C7 ±5%, 0402 NP0, 50 V
5.6
3.9
1.8
1.8
pF
C8 ±5%, 0603 NP0, 50 V
2.2
uF
C9
±5%, 0402 NP0, 50 V
1
uF
C10 ±5%, 0402 NP0, 50 V
220
pF
C11
±5%, 0402 NP0, 50 V
100
nF
C12 ±5%, 0603 NP0, 50 V
4.7
uF
C13
±5%, 0402 NP0, 50 V
NC
pF
C14 ±5%, 0402 NP0, 50 V
NC
pF
C17
±5%, 0402 NP0, 50 V
100
nF
L1
±5%, 0603Chip Ceramic Inductor
220
180 100 100
nH
Sunlord
SDCL
L2
±5%, 0603Chip Ceramic Inductor
56
56 15 12
nH
Sunlord
SDCL
L3
±5%, 0603Chip Ceramic Inductor
10
47 15 12
nH
Sunlord
SDCL
L4
±5%, 0603Chip Ceramic Inductor
33
15 8.2 8.2
nH
Sunlord
SDCL
L5
±5%, 0603Chip Ceramic Inductor
56
15
8.2
8.2
nH
Sunlord
L6
±5%, 0603Chip Ceramic Inductor
47
33 15 12
nH
Sunlord
SDCL
L7
±5%, 0603Chip Ceramic Inductor
47
33 15 12 nH
Sunlord
SDCL
L8
±5%, 0603Chip Ceramic Inductor
220
68 33 33
nH
Sunlord
SDCL
L9
±5%, 0603Chip Ceramic Inductor
33
NC
NC
NC
nH
Sunlord
SDCL
L10
MPH252012C100MT,
10UH ±20%,
Package 2520,
DC Resistance 0.5Ω,
Saturation Current 0.5A 10 uH Sunlord
X1
±10 ppm, SMD
32
MHz
EPSON
U1 CMT2310A RF receiver and transmitter - CMOSTEK

4 Function Description
The CMT2310A is a high integrated mixed-signal transceiver, which employs a 32 MHz crystal to provide PLL reference frequency
and digital clock with supportingof OOK, 2-(G)FSK, 4(G)FSK modulation/demodulation as well as Direct and Packet Data processing
modes.
MODEM
Packet Handler
FIFO
AFC LOOP
AGC LOOP
LNA
PGA
SPI, FIFO
Interface
Registers
D-DIV
LOOP
FILTER CP PFD
M-DIV
Radio
Micro-controller
LDOs POR Band-
gap
LFOSC
32 Mhz
XO
VCO
SDI
SCL
CSB
VDD
GND
RXP
RXN
XIN XOUT
IO
Ctrl
GPIO 1
GPIO 2
GPIO 3
GPIO 4
PA
TX
TRX
Matching
Network
ANT
ADC
PGA ADC
nIRQ
GPIO 5 (RSTn)
GPIO 0
SDO
LFXO
Figure 2. Functional Block Diagram
In receiver part, the chip applies LNA+MXR+PGA+ADC+PLL low-IF architecture to achieve the Sub-GHz wireless receiving function.
In transmitter part, it applies PLL+PA architecture to achieve the Sub-1 GHz wireless transmitting function. The chip can achieve high-
performance RF transmission and receiving with no need of extra RF switch components,
In the receiver system, the analog circuit mixes the RF signal to IF and converts the signal from analog to digital through ADC module,
then outputs the two signal paths I/Q tothe digital circuit for digital demodulation.The digital circuit is responsible formixing the IF signal
to zero-frequency (baseband) and performing a series of filtering and decision processing, meanwhile it applies AFC and AGCto
control the analog circuit dynamically, and finally the original signal is demodulated. After demodulation, the signal is sent to the
decoder for decoding and then filled into FIFO, or output to GPIO directly.
In the transmitter system, the digital circuit encodes and packets the data then sends it to the modulator (or send data directly to
modulatorwithout encoding). Then modulatorwilldirectly controlthe PLL and PA tohave2(G)FSK, 4(G)FSK or OOKbased modulation
then transmit out the data.
The chip integrates a mini micro-controller (supporting supplier internal programming only), which controls and schedules various
functions and operations like auto-ACK, auto-frequency-hopping, DUTY-CYCLE based low-power Tx and Rx, CSMA function, etc.
The chip provides SPI communication port. The external MCU can access registers to have various function configures, to control the
chip or access FIFO.

4.1Transmitter
Thetransmitter of CMT2310Ais based on direct frequency synthesis technology. Its carrier is generated by a low-noise fractional-N
frequency synthesizer. The modulated data is transmitted by an efficient single-ended power amplifier (PA). The output power can be
read and written via the register, with configurable value ranging from -10 dBm to +20 dBm by a step of 1dB.
In OOK mode, when PA switches on and off quickly according to data transmitted, it will easily produce spectral spurs and glitches
near the target carrier. Through the PA Ramping mechanism, it can help to minimize the spurs and glitches. In FSK mode, the
transmitter supports to have Gaussian filtering on signals before transmission, namely GFSK, thus to make the transmitting spectrum
more concentrated.
Users can design a PA matching network based on specific application requirements to optimize the transmission efficiency at the
required output power. Typical application schematics and required BOMs are detailed in Section 3 Typical Application Schematic.
The transmitter can work in direct mode and packet mode respectively. In direct mode, data is sent to the chip directly through pin of
the chip then transmitted directly. In packet mode, data can be pre-loaded into the FIFO in STBY status and then transmitted along
with other packet elements. In 4FSK mode, it only supports data transmitting from FIFO.
4.2Receiver
An ultra-low-power, high-performance low-IF OOK/ FSK receiver is built in the CMT2310A. Its processing steps are as follows: 1) the
RF signal sensed by the antenna is amplified by the low-noise amplifier; 2) the signal is down-converted to the intermediate frequency
by the quadrature mixer; 3) the signal is further amplified by the programmable amplifier; 4) The signal is sent to the digital domain
through A/D convertor for digital demodulation processing. During power on reset (POR), each analog module is calibrated to the
internal reference voltage. This allows the chip to keep its bestperformance at different temperatures and voltages. Baseband filtering
and demodulation is accomplished by the digital demodulator. The AGC loop adjusts the system gain to optimize the performance
parameters such as system linearity, selectivity and sensitivity.
Leveraging CMOSTEK's low-power design technology, the receiver in always-on mode consumesonly a very low power. The periodic
operating mode and wake-up function can furtherreduce the average power consumption of the system to satisfy applications with
strict power consumption requirements.
Similar to the transmitter, the CMT2310Areceiver canoperate in direct mode and packet mode as well. In direct mode, the demodulator
output data can be directly output through the DOUT pin of the chip. DOUTcan be assigned to GPIO by configuration. In packet mode,
the demodulator data output is sent to the data packet handler, get decoded then is filled into the FIFO, then MCU can read the FIFO
through SPI interface.
4.3 Additional Functions
4.3.1 Power-On Reset (POR)
The power-on reset circuit detectsthe change ofthe VDD power supplyandgenerate resetsignalto resetthe entire CMT2310Asystem.
After the POR,the MCU must go through initialization process and re-configure the CMT2310A.There are two situations that will lead
to the generation of POR.
The first situation is a very short and sudden decrease of VDD. The corresponding POR triggering condition is that VDD dramatically
decreases by 0.9V+/- 20% (namely 0.72V – 1.08V) within less than 2 us. To be noticed, it detects a decreasing amplitude of the VDD
but not the absolute value of VDD as shown in the figure below.
VDD
0.9 V x (1 +/- 20%)
POR
< 0.2 us
Figure 3. Sudden Decrease of VDD Leading to Generation of POR

The second situation is a slow decrease of the VDD. The corresponding POR triggering condition is that VDD decreases to 1.45V +/-
20% (namely 1.16 ~ 1.74V) within a time more than or equal to 2 us. To be noticed, it detects an absolute value of VDD but not the
decreased amplitude as shown in the figure below.
VDD
1.45 V x (1 +/- 20%)
POR
> 0.2 us
Figure 4. Slow Decrease of VDD Leading to Generation of POR
4.3.2 Crystal Oscillator
The crystal oscillator provides the reference clock for PLL as well as the system clock for digital module. The value of load capacitance
depends on the CL parameter according crystal specification. The total load capacitance between XI and XO should be equal to CL, in
order to make the crystal accurately oscillate at 32 MHz.
=
+ _ +
Con chip is the on-chip load capacitor connected at both ends of the crystal with a adjustable value range of 23 - 29 pF by a step of about
190 fF. Coff chip is the external load capacitor connected at both ends of the crystal to ground, which is optional, i.e. it's up to user whether
to apply it. Cpar is the parasitic capacitor connected at both ends of the crystal to ground with a value of about 2 ~6pF. A crystal
oscillatorof 15 pF is recommended to collaborate with CMT2310A. Besides, the less the ppm value of the crystal, the better the
performance of the receiver.
4.3.3 Temperature Compensated Crystal Oscillator (TCXO)
U1
CMT2310A_QFN24_T
AGND
RXP
RXN
TX
PA_VDD
NC
VIO
CSB
SDI
SCLK
GPIO2
SDO
GPIO3
GPIO0
GPIO1
NIRQ
XO
XI
GPIO4
GPIO5_RST
DVDD
AVDD
DC_VSW
VBAT
18
16
17
15
CSB
SDI
SDO
SCLK
24
22
23
21
20
19
7
8
9
10
11
12
C9
C1L4 L3
L5 L2
C2
C3
P1
L6
C7
C6
L7 L8
C12 C11 C10
VBAT
L1
1
2
3
4
5
6
VBAT
GPIO0
GPIO1
NIRQ
25
VBAT
GND_tcxo
32 MHz TCXO
VDD_tcxo
C4
C5
L9
1uF
14
13
GPIO2
GPIO3
Figure 5. Application Schematic Diagram with TCXO

The CMT2310A allows users to apply external clock modules such as temperature compensated crystal oscillator (TCXO). The
application schematic diagram is shown in the above figure. The VDD pin of TCXO is powered by connecting the NIRQ pin of the
CMT2310A. By setting NIRQ_SEL as 4, setting Output Drive Capability as 4 mA on RFPDK, and adding a filter capacitor of 1 uF,
users can gain sound application effect. The 32 MHz clock of the TCXO is connected directly tothe XI pin. The TCXO is disabled by
the system in the IDLE and SLEEP states, and it's enabled in the other states.
The recommended peak-to-peak value range of this clock signal is 300 ~ 700 mV. Users can add both a capacitor to ground and a
DC-blocking capacitor connecting the XI pin. Through tuning the proportion of these two capacitors, users can adjust the amplitude
amount of the input clock. Applying TCXO will approximately cause a increase of the overall current by 1.5 ~2.0 mA. The more
precise clock (<2ppm) enables the CMT2310A to attain higher sensitivity and better capability against out-of-band interference while
operating in a narrower receiving bandwidth.
4.3.4 Sleep Timer
The 2310A integrates a sleep timer driven by 32 kHz low-power oscillator (LPOSC) or external 32.768 kHz low-frequency crystal
(LFXO).When this function is enabled, the timer wakes up the chip from sleep periodically.When the chip operates in periodic mode,
the sleep time can beconfiguredfrom 62.5us to 8585740.288 s. As thelow-poweroscillatorfrequencywillchangewith thetemperature
and voltage drift, thus it will be automatically calibrated during power-on and will be periodically calibrated since then. These
calibrations will keep the frequency tolerance of the oscillator within + 1%. The precision of the external low-frequency crystal depends
on specific crystal characteristics.
4.3.5 Low Battery Detection
The chip supports low battery detection function. When the chip istuned to a certain frequency, the detection will be performed once.
Frequency tuning happens when the chip jumps from the SLEEP/STBY state to the RFS/TFS/TX/RX state. The result can be read by
the LBD_VALUE register.
4.3.6 Received Signal Strength Indicator (RSSI)
RSSI is used to evaluate the signal strengthinside the channel with a detection range of -127 to 20 dBm. On RFPDK tool, users can
configure the parameter RSSI Detect Mode to choose whether output real-time RSSI value or latch the RSSI values in different data
packet processing states.
CMT2310A allows users to configure RSSI detection threshold through RFPDK parameter RSSI Compare TH. This threshold value
will be compared with the RSSI detection value. If the RSSI detection value is larger than the threshold it outputs logic 1, otherwise
outputs logic 0. The comparison result output can be used as a source of the RSSIVLD interrupt, or used to support internal super-
low power (SLP) mode operating.
4.3.7 Phase Jump Detector (PJD)
PJD is Phase Jump Detector.When the chip isin 2-FSK demodulation, it can automatically observethe phase jump characteristics of
the received signal to determine whether it isa noise or useful signal.
2
SYM
2
SYM
1
SYM
1
SYM
1
SYM
1
SYM
Figure 6. Received Signal Jump Diagram
ThePJDmechanismregardsinputsignalswitchingfrom0 to 1 or from 1 to0 asa phase jump. Users can configure PJD_WIN_SEL<1:0>
to determine the number of detected jumpsfor the PJD to identify a wanted signal.As shown in the figure above, in total 8 symbols
received, the phase jump appears only 6 times. Therefore, the number of jumps is not equal to the number of symbols received. Only
in the preamble receiving period they are equal. In general, the more jumps are used to identify the signal, the more reliable the result;
the less jumps are used, the faster the result is obtained. If the RX time is set to a relatively short period, it is necessary to reduce the
number of jumps to meet the timing requirements. Normally, 4 jumps allow pretty reliable result, namely the chip will not mistakenly
treat an incoming noise as a wanted signal, and will not treat a wanted signal as noise either.
The signal phase jump is used for detecting whether the signal has the expected data rate. Meanwhile, the PJD will also automatically
detect the signal deviation to see if it meets the valid signal value criteria, aswell as to see if the SNR is over 7 dB. Then by considering
data rate, deviation, and SNR detecting results, the PJD makes judgment. If a signalis judged as a reliable signal, it outputs logic 1,
This manual suits for next models
1
Table of contents
Other HopeRF Transceiver manuals
Popular Transceiver manuals by other brands

Crestron
Crestron CWD6660 Operation guide

Delta Electronics
Delta Electronics LCP-200A4HSR Specifications

Kenwood
Kenwood TM-261A instruction manual

Kenwood
Kenwood TM-401A instruction manual

Altronix
Altronix HubWay8D installation guide

Transition Networks
Transition Networks ETHERNET E-TBT-MC01(LC) user manual