LIMESA meters FG4000 User manual

FG4000 – Electromagnetic Flowmeter
Installation and Specifications
Contact informations:
LIMESA meters s.r.o.
Plk. Truhlare 1330
51 51 Lomnice nad Popelkou
Czech republic
Email: info@limesa.cz
http://www.limesa.cz
VATIN: CZ 8855159
Tel: +4 0 60 05606
Bank: Ceska sporitelna a.s.
SWIFT: GIBACZPX
IBAN: CZ07 0800 0000 003 8547 8369
Account no: 000000-3 85478369/0800


FG4000 – installations and specifications
FG4000 mtpa – rev. 01/2020
1. Content
1. Content ................................................................................................ 3
2. Electromagnetic flowmeter installation ............................................. 4
3. Contents of the measuring device supply ......................................... 4
4. Selecting size of and installing electromagnetic flowmeter ............. 4
4.1. Optimum liquid velocity in the flowmeter measuring tube ................................... 5
4.2. Conditions for steady flow inside of the flow sensor ........................................... 5
4.3. nsurance of the filling the entire cross section area of the flowtube .................. 5
4.4. The flowtube sensor direction ........................................................................... 5
4.5. nsurance of flooding sensor electrodes .......................................................... 5
4.6. Prevention before influence of bubbles in measured liquid................................. 5
4.7. Prevention before influence of sludge inside the measuring tube (electrodes) .... 6
4.8. The ambient conditions (temperature, humidity, vibrations) ............................... 6
4.9. Temperature and pressure of measured liquid. ................................................. 6
4.10. Installation of sensor cable by separate design. ................................................ 6
4.11. Reliable galvanic connection between the flowmeter and measured liquid. ........ 6
4.12. Mechanical installation of electromagnetic flowmeter end flow sensor. ............... 6
4.13. Mechanical installation of control head with the display. .................................... 7
4.14. Unflanged electromagnetic flowmeter dimensions ............................................. 8
4.15. Unflanged electromagnetic flowmeter gasket dimensions .................................. 8
4.16. Dimensions of unflanged electromagnetic flowmeter ......................................... 8
4.17. Flanged flowtube sensor dimensions ................................................................ 9
4.18. Dimensions of FG4000 electromagnetic flowmeter with threaded connection ..... 9
5. ptional temperature sensor location and installation ................... 10
5.1. Temperature sensor installation...................................................................... 10
5.2. Tube heat-insulation ...................................................................................... 10
5.3. Temperature sensor cables legth. .................................................................. 10
6. FG4000 electromagnetic flowmeter connection to power .............. 11
6.1. Power supply ................................................................................................. 11
6.2. Safety class ................................................................................................... 11
6.3. FG4000 electromagnetic flowmeter power supply fuse links. ........................... 11
6.4. liminating the most common problems arising during operation. .................... 11
7. Terminal bars, connectors and jumpers .......................................... 12
7.1. Terminal bars, connectors and jumpers .......................................................... 12
7.2. Connection of temperature sensors to optional thermometer module ............... 13
7.3. lectromagnetic flowmeter pulse outputs ........................................................ 14
7.4. pulse input.................................................................................................. 14
8. Interface modules and archiving module ........................................ 15
8.1. RS232 interface module ................................................................................. 15
8.2. 4- 20mA or 0- 10V analogue output modules with RS232 interface............... 15
8.3. RS485 interface module ................................................................................. 16
8.4. M-Bus interface module................................................................................. 16
8.5. RS232 interface module with two pulse inputs ................................................ 16
8.6. Archiving module ........................................................................................... 17
8.7. Communication protocols for data collection by FG4000 ................................. 18
9. Empty pipe detection ........................................................................ 21
9.1. Basic features ................................................................................................ 21
9.2. Settings of the detection ................................................................................. 21
10. Basic specification, display.............................................................. 22
10.1. FG4000 electromagnetic flow meter basic specifications ................................. 22
10.2. FG4000 flow meter display ............................................................................. 23
10.3. User counters in FG4000 flowmeter ............................................................... 25
10.4. FG4000 flowmeter operating modes ............................................................... 26
10.5. FG4000 firmware versions ............................................................................. 27
10.6. Setting menu structure ................................................................................... 27
11. rdering ............................................................................................ 31
12. Notes ................................................................................................. 32

FG4000 – installations and specifications
FG4000 mtpa – rev. 01/2020
2. Electromagnetic flowmeter installation
!"
!!
#!!
$"
%&""'(
)
3. Contents of the measuring device supply
) Fig.12 or 13&
"$*+($*+,(Fig. 14
) -"
$*+($* +,.
Fig.15
%,%+
&
&
4. Selecting si e of and installing electromagnetic flowmeter
"
"!(
"
"
1
·
+
,
300
200
500
3
100
50
20
1
0
30
2
1
5
3
2
5
·
+
5
3
·
+
2
·
+
1
·
+
12
10
5
3
2
1
0.,
0.
300
200
500
3
100
50
20
10
30
2
1
5
3
2
1
0
.
,
0.
0
.
/
0.
+
Q'0)
v/'0)
Q'0)
5
10

FG4000 – installations and specifications
FG4000 mtpa – rev. 01/2020 ,
4.1. Optimum liquid velocity in the flowmeter measuring tube
1!
""
!#!"$*2
+
"$*
""3
4.2. Conditions for steady flow inside of the flow sensor
(
"'
4,5)3//3/
*
.
6
+78&3
9!
: "" &"" ;
""-&3
% & & "
-"&Fig.14
"
6/</
4.3. Ensurance of the filling the entire cross section area of the flowtube
0(
'Fig. 3, 4, 5)
!
"
!Fig.23,
&
""
"'
")"
!
""
6
"
'Fig.3)
4.4. The flowtube sensor direction
="
+$
4.5. Ensurance of flooding sensor electrodes
""&
"
4.6. Prevention before influence of bubbles in measured liquid.
!"
"!
3
Fig. 4
5m
Fig.
2
Fig. 1
Fig.
3
Fig. 5
!

FG4000 – installations and specifications
FG4000 mtpa – rev. 01/2020 7
4.7. Prevention before influence of sludge inside the measuring tube (electrodes)
!!"
+"
"
"'Fig.3 or Fig.5)
4.8. The ambient conditions (temperature, humidity, vibrations)
3
8;>3,,8;
+,;,;>3"?5
&
"3
%"'
)
4.9. Temperature and pressure of measured liquid.
>3
6++
4.10. Installation of sensor cable by separate design.
"
3
!"
"
@
Fig. 23
4.11. Reliable galvanic connection between the flowmeter and measured liquid.
;
>,
&
4.12. Mechanical installation of electromagnetic flowmeter end flow sensor.
%&
&$*/$*+
;("
"
Fig.1
A0"
!"&
3.,
">,
9?++
')
@
B
A"
B
DN
[mm]
MC
D*E
+
+,
+,
+,
/ +,
/,
/
/
,
,
7,
,
0F
F
,
F
+
G
F
+,
?
F
Fig.
6
Fig.
8
Fig.
7
Fig.
9

FG4000 – installations and specifications
FG4000 mtpa – rev. 01/2020 G
"
Fig.6'+)
"$*/$*+3=
Fig.7
$*+$*/$*+,(%*/,
"
!
%H$*+$*/""
!$
" "A
"I&
& $*+$*+,
&(&
6&
!Fig.10
"3!>&
.
*&!$*/$*F
J&
""
Fig.10
4.13. Mechanical installation of control head with the display.
+,""1&
;>"
!""
Fig. 11a)
(
Fig. 11 b), c), d), e), f), g), and h)
Fig.
11
c)
d)
e)
f )
a)
b)
g)
h)
Fig.
10

FG4000 – installations and specifications
FG4000 mtpa – rev. 01/2020 F
4.14. Unflanged electromagnetic flowmeter dimensions
'Fig.12, Fig.13)Fig.12
DN D1 D2 D3 L M m [kg]
10 7 7 ++ +'77) ,
15 7 / +, +'77) ,
20 7 7 +? +'77) ,
25 G ,F /, + ,G
32 F 7K/ / + 7,
40 ? GK/ + 7G
50 +F ?L ,+ ++'+F)
G,
65 +/+ +/L 7 ++ F,
80 + ++,L F +7'+7)
, +,
100
+7F +,L +
+7'+7/)
+/,
125
+? ( +/
+? ( +
150
// ( +/
+? ( +F
Add .6 kg for wafer separate design (Fig. 13 with a 4m cable.
Mass of 1 meter of flowtube sensor cable is around 0.11 kg.
4.15. Unflanged electromagnetic flowmeter gasket dimensions
'+)
4.16. Dimensions of unflanged electromagnetic flowmeter
#>H69(Fig.15)
DN PN A B
C
D E F Clamping bolts
m [kg]
10 /, +'77) G, +,
/, G, G, >+/3+G 3
,
15 /, +'77) G, +,
/, G, G, >+/3+G 3
,
20 /, +'77) G, +,
+
+
>+/3+G 3
,
25 /, + F, ++,
, +/,
+/,
>+/3+G 3
,G
32 /, + +
+,
7 +7
+
>+73+G, 3
7,
40 /, + ++
+,
/ /
+/
>+73+G, 3
7G
50 /, ++'+F) +/,
+7
,+ /,
+,
>+73+G, 3
G,
65 /, ++ +,
+F
7 /,
+?,
>+73+?, 3
F,
80 /, +7'+7) +7
+?,
F
/
>+73+?, F3
+,
100
/, +7'+7/) +?
/
?7 ,
>/3/, F3
+/,
125
/, +? //
/G
++?
7/,
G,
>/3 F3
+
150
/, +? /,
+?
G,
,
>/3 F3
+F
DN PN Ø D Ø d T
10 /, 7 +/ +,
15 /, F +7 +,
20 /, , / +,
25 /, ,F /, +,
32 /, 7 +,
40 /, G / +,
50 /, ? , +,
65 /, +/ 7, +,
80 /, ++ F/ +,
100 /, +, +7 /
125 /, +? +/, /
150 +7 +? +,/ /
Fig.14
d
D
Fig.
13
6
Fig.12
;
Fig.15

FG4000 – installations and specifications
FG4000 mtpa – rev. 01/2020 ?
4.17. Flanged flowtube sensor dimensions
$$*
'Fig.16)
-'9*6-6;6*)0
-9
DN
PN
A
D
K
n
d
m
[kg]
10
++7
+,
?
7
+
,
15
++7
+,
?,
7,
+
,
20
++
7
+,
+,
G,
+
7,
25
++7
+,
++,
F,
+
7,
32
++7
+,
+
+
+F
G
40
++7
+,
+,
++
+F
G
50
++7
/
+7,
+/,
+F
F,
65
++7
/
+F,
+,
+F
+/
/
+F,
+,
F
+F
+/,
80
++7
/
/
+7
F
+F
+/,
/
/
+7
F
+F
+
100
++7
/,
//
+F
F
+F
+
/,
/,
+?
F
//
+7
125
++7
/,
/,
/+
F
+F
+?
/,
/G
//
F
/7
/+
150
++7
/F,
/
F
//
/
/,
F
/7
/G
200
+
,
/?,
F
//
?
+7
,
/?,
+/
//
?
250
+
?,
,
+/
//
,
+7
,
,,
+/
/7
,,
300
+
,
,
+/
//
7F
+7
,
7
+
+/
/7
G
350
+
,
,,
7
+7
//
?,
+7
,
,/
G
+7
/7
++
400
+
7
,7,
,+,
+7
/7
++,
+7
7
,F
,/,
+7
+
450
+
7
7+,
,7,
/
/7
+,
+7
7
7
,F,
/
+,,
500
+
7
7G
7/
/
/G
+,,
+7
7
G+
7,
/
+F
600
+
7
GF
G/,
/
+F,
+7
7
F
GG
/
7
/
4.18. Dimensions of FG4000 electromagnetic flowmeter with threaded connection
$* M # #+ $
+, +N ++ 77 F ,&
/ +ON ++ GF +F 7,&
Fig.17b
L
Z
D
L1
ø
12
190
135
L
Z
D
L1
70
Fig.17a
Fig. 16a
K
D
n
<
A
Fig. 16b
A

FG4000 – installations and specifications
FG4000 mtpa – rev. 01/2020 +
5. Optional temperature sensor location and installation
&
,+(,
5.1. Temperature sensor installation.
,
,8
Fig.18Fig.19A
"
5.2. Tube heat-insulation
%(
')
5.3. Temperature sensor cables legth.
""
""
((
Fig.24(
Fig.25(3B
9
J
"
>5
Fig. 18
G1/2“ well
weld
Fig. 19

FG4000 – installations and specifications
FG4000 mtpa – rev. 01/2020 ++
6. FG4000 electromagnetic flowmeter connection to power
6.1. Power supply
//(/P0,(7Q
++(+/P0,(7Q7P0,(
7Q/P$;"
+P9
33G,/+,
3Fig.21
3
6+9&
& 3
6.2. Safety class
H*7++(+
9!
"&"
""3"
"
6.3. FG4000 electromagnetic flowmeter power supply fuse links.
&'=,LF
,)"+9//(/P/,9
++(+/P
'%6
)
6.4. Eliminating the most common problems arising during operation.
="
3RR
""
3"
6+G++
'GF)
Fig
.
21
FG4000L
external flowmeter
junction box
1.5m , 30.75mm2
N
L
pulse input
Two more external
flowmeters, F and G, can be
connected (see para 8.5) if
using interface module with
two pulse inputs.
P

FG4000 – installations and specifications
FG4000 mtpa – rev. 01/2020 +/
7. Terminal bars, connectors and jumpers
7.1. Terminal bars, connectors and jumpers
'Fig.22) &"
F +,
/
3+
S;+.
G/?
S;/. ;->>+6F
S;. 3
S;0+. H*$'4,P
HS
4/P
HS
)
S;0 /S;0 7. S;/
'
;-> >+
)
F+(F,
S;0G. '+)
S;0F. '–)
S;0?. /'+)
S;0+. /'–)
S;0 ++. 3H'+)
S;0+/. 3H'–)
S;. 'B)
S;0+S;0/. 3
S;0.
S;0S;0,.
S;+/. "
Split flowtube sensor external wiring is shown in Fig.23. Do not disconnect wires connected to XC4
with electromagnetic flowmeter compact design as in Fig.12 (different colour coding !
electronic
board
serial
number
optional empty pipe
detection module or
module for external
PT500 temperature
sensors
pipe flange
ground
connection
XC4
white
brown
shielding
yellow
green
C1
C2
1
2
3
4
5

FG4000 – installations and specifications
FG4000 mtpa – rev. 01/2020 +
$ 'Fig.22)
S+. "
S/.
"
SS.
'Fig.29)
S,S7.
'Fig.30)
SFS?.
'Fig.31)
S++.
'Fig.31)
7.2. Connection of temperature sensors to optional thermometer module
!
S;+%,')
F+,/

FG4000 – installations and specifications
FG4000 mtpa – rev. 01/2020 +
7.3. Electromagnetic flowmeter pulse outputs
*%*
'4)'L)"
3"/FP
"I"
"+9
!
4,PHSLH*$"+F&T SS'Fig.29)S,S7
'Fig.30)4,PHS(H*$"I
a) Flow pulse output'Fig.29)
provides remote access to volumetric pulses and electromagnetic flowmeter
testing. The number of transmitted pulses is proportional to the measured
volume. At constant flow rate, the mark-to-space ratio of the pulses is 1:1
( tON = tO F F ). The pulse frequency is proportional to instantaneous flow rate:
U2 C07'QR0R0)
@C"3"
"I"$*.
$*'
)
/
/,
,
,
,
7
Q
max
'
0)
+7
/+/
,
+7
,
7F7G
FF
+//
Q
max
'
0)
//7F
,
/
,F
G
7?/
?
++,
++
/G
C
'0
)
/,
+7
+/,
+
G,
,
A'P6C9#)C"
".
+00/0+00/0+00/0+0.0./0.+0.0./0
.+0.0./0.+0.0./0.+0
23!"
+/0@
./5 23
%/G523
""
b) Flow pulse output 2'Fig.30)"""
?
7.4. E pulse input
'F,)
H3"
'")#H$
S;0++"//T
S;0+/'Fig.31)
,V',S++)ICH"
'0 )" "I
+0W0+'0)
G.A3
(".+0"&
.CHU+0'.+X+)U.+0
"SFS?
H3",PK/P,
/9"/FP
9"3IS;0++
S; 0+/"B
"'
)3
4,PHS(H*$",7TSFS?
$*') + +, / /, / , 7, F + +/, +,
Q
max
'
0)
?
G7
+7
/+
/
G
,
F
F
+
/+G
?
,
G7
Q
max
'
0)
,7,
+/G
//7
,
,G?
?
++
/FF
7+G
,7,
FF
+/G
/
C
'0
)
+7
G
/
+,
+
7
,
/,
+,
+
G
Fig. 29
Fig. 30
Fig. 31

FG4000 – installations and specifications
FG4000 mtpa – rev. 01/2020 +,
8. Interface modules and archiving module
-S;/';->>+)
A&S;/
I'Fig. 32)
HB
7+//F?7+?/
F@
?7@
%FG3
$;->>+@@
P 6 C9#"
%;
IP6C9#
"
*. 6"S;+/
"#(=6//
B
S;/""
6>%#H?7@
8.1. RS232 interface module
.S$
=S$*$=6 //;
4,PHS(H*$"
I
@>%;
"!=6 //"
&;.F+
+
%;?($(
+
8.2. 4-20mA or 0-10V analogue output modules with RS232 or RS485 interface
!+7($0 9"=6//
F+S;S;7
/'(/9)/'(+P)
X);"=6//
4/PHS
"I
H*$4,PHS=6//
9'")9'P)
/9'+P)!9P"
"!/9+P"23
G
9QQ3'")/9'+P)
'
P 6 C9#)/9+P""
23G
13H
P9'P)""
!/9'+P)""0
9
++
(/9
Fig.32
connector
PCB
modulu
1
20
RS485 module
address switch
8
1
Tab.1
S;
+ =6//L*$ ,
/ =6//L=S$
=6//LS$ /
(7
3
5
2
Tab.2a
S;
+ =6//L*$ X)
/ =6//L=S$ X)
=6//LS$ X)
L/9'4)
, L/9'L )
7
Tab.2b
S;
+ =6//L*$ X)
/ =6//L=S$ X)
=6//LS$ X)
, L+P'L )
7 L+P'4)

FG4000 – installations and specifications
FG4000 mtpa – rev. 01/2020 +7
8.3. RS485 interface module
(&
=6F,S;
S;7
"
",PHS(H*$"
I
I=6F,&
.-*U-U+
"Fig.32
+Q(9Q'+(/,)
8.4. M-Bus interface module
(&
>(@$
YS
4,P HS LH*$ "
">(@
I=6F,&
.-*U-U+
"Fig.32
+Q(9Q'+(/,)
8.5. RS232 interface module with two pulse inputs
=6//Q"
Y
S,
X)""=6//
"
"H
J'G)
/,
9"3IS;0S;0,
"B
0"I"S:+S:/0
S:/S: 'Fig.33, 34)H3"
,PK/P,(/9"/FP
"') S:+
S:0S:/S:4,PHS"
IH*$,PHS
=6//
IFAC
DI 232.
XJ2
XJ3
XJ1
module
connector
Fig.33 Fig.34
TLP181
560R
GN
+,PHS
XJ3
XJ2
XC 6/ 7
(+ )
220R
XC 6/ 8
(–)
IN1
')
GND
+,P
BAV99
TLP18
+,PHS
XJ1
XC 6/ 9
(+ )
IN2
')
GND
+5V
560R
220R
BAV99
Tab. 4
S;
/ >(@L$99
>(@L$99
(7
Tab.5
S;
+ =6//L*$X)
/ =6//L=S$X)
=6//LS$X)
'4)
, 'L)
7 "'4)
Tab.3
S;
+ H*$
/ =6F,L$99 '4)
=6F,L$99 'L)
(((
, (((
7
H*$"
+,

FG4000 – installations and specifications
FG4000 mtpa – rev. 01/2020 +G
8.6. Archiving module
A"
&"
@+&&('Fig.22)@
"'??,)P6C9#
P6C9#
"'?+?F)"'?)
"'??,")
$"Fig.35"
/.,?""3
Y""
+H""
""
6
"'Fig.36)
"%;
P 6 C9#"%;"
FG4000 V5.55 (COM2, Node 04)
00000009
Date/Time Volume Optional uantity uantity Idle
[m3] counter [m3] Е [m3] F [m3] [min]
-----------------------------------------------------------------------------
2.12.1998: 9:59: 3074.639 2: 298.054 0.950 0.000 1025
3.12.1998:10:59: 3183.119 2: 406.534 11.044 0.000 1025
4.12.1998:11:59: 3191.820 1: 8.701 21.345 0.000 1025
FG4000 V5.55 (COM2, Node 04)
00000009
Date/Time Volume Optional
[m3] counter [m3]
----------------------------------------------
7.10.1999: 9:58: 935850.313 3: 3.736
7.10.1999: 9:58: 935850.313 2: 10.728
7.10.1999: 9:59: 935850.438 3: 3.736
7.10.1999: 9:59: 935850.438 3: 0.000
7.10.1999:11:30: 935850.688 4: 282.188
7.10.1999:11:30: 935850.688 4: 0.000
7.10.1999:11:30: 935850.813 2: 11.228
7.10.1999:11:30: 935850.813 4: 0.000
user counter 3 final value
before resetting at 9:59
user couner 2 final value,
selected (connected)
before selecting user counter 4
user counter 2 initial value
when selected (connected) at
9:58
user counter 3 final value,
selected (conected)
before selecting user counter 2
user counter 4 final value
before resetting at 11:30
main volume counter value on switching user counter
Fig. 36 - user counter change archive
user counter 4
user counter 4 initial value
when selected (connected) at 11:30
H"
"
'"F,)
"
main volume counter value as of end of hour
(volume measured by the flowmeter)
user counter number
Fig. 35 - hourly archive
header:
firmware version (PC port, RS485 or M-Bus address)
flowmeter identifier
user counter value as of end of hour

FG4000 – installations and specifications
FG4000 mtpa – rev. 01/2020 +F
8.7. Communication protocols for data collection by FG4000
Simple via RS232:F+
.
+(U'4)Q
L')7
(Q
(;Q6Y>
=".
+(Q
96;
(Q
(;Q6Y>
;Q6Y>U*-'+S-=/S-=S-=)4+Q
93".
.+;@ 'U+)
=".+//H,7$G
""+/.,7G')
BitBus via RS485:F4++
%+
%".
&.
+L
/LU' 4)Q
L')7
(Q
(;Q6Y>
=".
+L
/LU'4)Q
(Q
96;
(Q
(;Q6Y>
;Q6Y>U*-'/S-=S-=S-=)4+Q
93"+,.
&.+;@ 'U+)
=".@+//H,7$H 'UG)
""+/.,7')
ASCII via RS485: F+
&>
@@@"96;
93"+,.
&.Z : + ; @ Z
=". Z : @ + / / H , 7 $ H Z
""+/.,7')
93"""
G.
&.Z: G 7 + + 9 Z 'U)
=".Z:G+ / ? F / H + / + G / H 7 , H Z
""?F.+/+G.7, 'U+)
'")
Tab.
6
(see also para
?
/)
,Q
+)
Q
"')
+Q
/)
FQ
?Q
H(')
9Q
')
/Q
=;')
Q
=;')
7Q
"
,9Q
&'))
,@Q
3'0))
7,Q
&'))
77Q
3'0))
7Q
H3"')
7Q
H3'0)
7Q
3"'
)
7/Q
3'0)
//Q
"4'),)
/Q
"L'),)
/7Q
&"')
7Q
+')
/FQ
/')
/9Q
')
/;Q
')
/HQ
,')
9?Q
HHQ
'))
HQ
'))
H@Q
'))
H
;
Q'))
+Q
!7)
+)
$(
P6C9#
/)
)
)
,) +
7) +7
+Q
Q96;"
63

FG4000 – installations and specifications
FG4000 mtpa – rev. 01/2020 +?
Modbus RTU via RS485: F/
>=Y
')
Modbus message format:
[$HP;H\9$$=H66][Y*;-*\;-$H][$99'*)][;=;]
P(H'>6@)
$HP;H\9$$=H66L=6F,+(/G"
"
Y*;-*\;-$HL>'L
L)
$99L>
;=;L&;=;+7';=;>6@(]#6@)
DATA format:
>(]"([-6H][*-\-\%-*6]
-6HL+U+'/)
*-\-\%-*6L
6"(]([-6H][@1H\;-Y*][=H+][=H/]W[=H*]
-6H(+U+'/)
@1H\;-Y*L'/X\\)
=HSL"')
An example of data message:
93",.
&.,(((9((/(H,(F$
+',)L=6F,&
/')L>=Y'L)
'(9)L'93U
)
,7'(/)L'/)
GF'H,(F$)L&';=;+7)
="&.,(((/(7(GH((/9(+$
+',)L=6F,&
/')L>=Y'L)
')L')
LG'/(7(GH()L"U+//70
F?'/9(+$)L&';=;+7)
* .
H"
"=6//'%;)
6 " " 6
+/
!"
.Z** ZZ4*ZZL*ZZ*Z
>,?',??9)

FG4000 – installations and specifications
FG4000 mtpa – rev. 01/2020 /
Map of Modbus RTU registers in flow meters FG4000:
Address
(hex)
Register
(dec)
Length
(bytes)
Parameter Type of data Access
+ G "A 96;6=*'IP,?I) =
F F / 6 #-* =
9 + / ;D0E #-9 =
; +/ + ;')0
;')
QQ@1H'U"+U")
#-A@1H'U0+U0/U0
U0U0,U07U%>)
=
$ + + ="
H + / H #-*'"U) =
+ +7 / "DE #-9 =
+/ +F / "4DE #-9 =
+ / / "(DE #-9 =
+7 // + " @1H'U+U/UUU) =
+G / + &')0
;')
QQ@1H'+U)
#-A@1H'() =
+F / + > @1H') =
+? /, + 6($*DE @1H'") =
+9 /7 / %("D0E #-9 =
+; /F / %(!DQE #-9 =
+H / ;("/9D0E #-9 =
/ / / ;("D9E #-9 =
// + ;@')0
;')
QQ@1H'U@+U7@/U+/@
U/@UF@,U?7@
7U+?/&@GU7/,&@FUF&@
#-A@1H'QHS)
=
/ , + ; @1H'U6+U@@Y6/U96;
U>@Y6U>@Y6,U616?+ =
Table of contents
Popular Measuring Instrument manuals by other brands

Thermo Scientific
Thermo Scientific Orion AQUAfast II instruction manual

Hach
Hach LBOD101 user manual

Agilent Technologies
Agilent Technologies 86122A user guide

PCE Instruments
PCE Instruments PCE-XXM 30 user manual

Apera Instruments
Apera Instruments SX716 instruction manual

VETEC
VETEC V-LINK WRDX01 User instructions