
1-3
1
4-STROKE
The Arctic Cat 4-stroke engine (when new or rebuilt)
requires a short break-in period before the engine is sub-
jected to heavy load conditions.
This engine does not require any pre-mixed fuel during
the break-in period.
To ensure trouble-free operation, careful adherence to the
following break-in guidelines will be beneficial.
* With occasional full-throttle operation.
To ensure proper engine break-in, Arctic Cat recommends
that the engine oil and filter be changed after 500 miles or
after one month, whichever comes first. This service is at
the discretion and expense of the snowmobile owner.
Drive Belt Break-In
Drive belts require a break-in period of approximately 25
miles. Drive the snowmobile for 25 miles at 3/4 throttle or
less. By revving the engine up and down (but not exceed-
ing 60 mph), the exposed cord on the side of a new belt
will be worn down. This will allow the drive belt to gain
its optimum flexibility and will extend drive belt life.
NOTE: Before starting the snowmobile in extremely
cold temperatures, the drive belt should be removed
and warmed up to room temperature. Once the drive
belt is at room temperature, install the drive belt (see
Drive Belt sub-section in Section 6 of this manual).
Genuine Parts
When replacement of parts is necessary, use only genuine
Arctic Cat parts. They are precision-made to ensure high
quality and correct fit.
Varying Altitude
Operation
Operating a snowmobile at varying altitudes requires recal-
ibration of carburetor and/or drive system components.
The altitude information decal is located beneath the hood
of the snowmobile on the belt guard on the 500/570/1100
cc non-turbo models. Consult the appropriate specification
sheet on Cat Tracker Online for the F/M/XF models.
Following are basic altitude theories for clutching,
engine, suspension, and track.
CLUTCHING
On a normally-aspirated engine as altitude changes,
engine horsepower changes with it. As you go up in alti-
tude, the engine loses horsepower. Because of this, the
continuously variable transmission (CVT) system needs
to be calibrated to compensate for the horsepower loss.
At altitudes above 5000 ft, the engine loses peak horse-
power but will also lose horsepower at engagement speed.
For this reason, calibrating the drive system is usually
needed in order to attain acceptable performance. Changing
drive clutch engagement speed can be done several ways.
Some of the methods will affect other characteristics of
CVT operation, so you must be careful what you change.
Drive clutch springs are the most common way to increase
engagement speed; however, by simply changing the cam
arms to a lighter weight from the heavier sea level cam arm,
you will gain some engagement speed.
Other more complicated methods exist such as engage-
ment notches and changing the position of the cam arm
center of gravity in relation to the roller. This is called
“tucking the weight” and can be used, but, like the
engagement notch, it can hurt belt life.
The driven clutch will also play a part in CVT tuning for
high altitude operation. A steeper helix (torque bracket)
angle in the driven clutch will mean a quicker up-shift. A
shallower angle will mean a slower up-shift. If the up-shift
is too quick, due to a very steep helix, RPM will be pulled
down under the peak operating RPM of the engine (where
the horsepower is) and performance will suffer. The engine
may even bog. If you have a helix that is too shallow, the
engine may over-rev or have poor acceleration. Usually,
angles shallower than the sea level calibrations work best.
The driven spring will also affect driven clutch tuning.
Tighten the spring, and RPM will increase. Loosen the
spring, and RPM will decrease. The spring should be used
to fine-tune and complement the helix selection.
Carburetor calibration changes for high altitude operation will
have an effect on the CVT system and how it operates. Under-
standing the basics of CVT operation is important in order to
make the correct high altitude CVT calibration changes.
ENGINE
A normally aspirated engine will generate more horsepower
at sea level than it does at higher altitudes. The reason is that
the higher you go, less oxygen is available for the engine to
use during its combustion process. Less oxygen means it
needs less fuel to obtain the correct air/fuel ratio to operate
properly. This is why the fuel ratio has to be recalibrated.
High altitude engines operate as though they have a lower
compression ratio. This, along with less oxygen and less
fuel, means that the engine generates less horsepower.
The carbureted models will also have lower pressure applied
to the float chamber because of pressure changes in the atmo-
sphere between high altitude and sea level. All of these char-
acteristics will become more evident the higher the altitude.
CAUTION
DO NOT use premixed fuel in the snowmobile gas tank.
Engine damage will occur.
0-200 miles 1/2 Throttle (45 MPH-max)
200-400 miles 1/2-3/4 Throttle
400-600 miles 1/2-3/4 Throttle *
CAUTION
Running the engine with the drive belt removed could
result in serious engine damage and drive clutch failure.
CAUTION
On the 570 cc, carefully follow the Carburetor Jet Chart
recommendations for proper carburetor calibration for
altitude, temperature, and gasoline being used.