Bruker BioSpin Solid State NMR User manual

Version
Bruker BioSpin
think
forward
NMR Spectroscopy
Solid State NMR
002
AVANCE Solids
User Manual

This manual was written by:
Hans Foerster, Jochem Struppe, Stefan Steuernagel, Fabien Aussenacc,
Francesca Benevelli, Peter Gierth, and Sebastian Wegner
Desktop Published by:
Stanley J. Niles
© May 25, 2009: Bruker Biospin GmbH
Rheinstetten, Germany
P/N: Z31848
DWG-Nr.: Z4D10641 002
For further technical assistance on Solid State NMR, please do
not hesitate to contact your nearest BRUKER dealer or contact
us directly at:
BRUKER BioSpin GMBH
am Silberstreifen
D-76287 Rheinstetten
Germany
Phone: + 49 721 5161 0
FAX: + 49 721 5171 01
E-mail: solids@bruker.de, service@bruker.de
Internet: www.bruker.com
The information in this manual may be altered without notice.
BRUKER BIOSPIN accepts no responsibility for actions taken
as a result of use of this manual. BRUKER BIOSPIN accepts
no liability for any mistakes contained in the manual, leading to
coincidental damage, whether during installation or operation of
the instrument. Unauthorized reproduction of manual contents,
without written permission from the publishers, or translation
into another language, either in full or in part, is forbidden.

User Manual Version 002 BRUKER BIOSPIN 3
Contents
Contents ............................................................................................... 3
1 Introduction ........................................................................................... 9
1.1 Disclaimer .................................................................................................................... 10
1.2 Safety Issues ............................................................................................................... 10
1.3 Contact for Additional Technical Assistance .................................................................. 10
2 Test Samples ........................................................................................11
3 General Hardware Setup ..................................................................... 15
3.1 Connections to the Preamplifier .................................................................................... 15
3.2 RF Connections Between Preamplifier and Probe ......................................................... 20
3.3 RF-Filters in the RF Pathway ........................................................................................ 21
3.4 Connections for Probe Identification and Spin Detection ............................................... 25
3.5 MAS Tubing Connections ............................................................................................. 26
3.5.1 Connections ..................................................................................................................27
Wide Bore (WB) Magnet Probes ...............................................................................28
Standard Bore (SB) Magnet Probes ..........................................................................30
3.6 Additional Connections for VT Operation ...................................................................... 31
3.7 Probe Setup, Operations, Probe Modifiers .................................................................... 41
3.7.1 Setting the Frequency Range of a Wideline (single frequency) Probe ............................41
3.7.2 Shifting the Probe Tuning Range ...................................................................................42
3.7.3 Adding a Frequency Channel to a Probe (WB probes only) ............................................48
3.8 Mounting the Probe in the Magnet/Shim Stack .............................................................. 50
3.9 EDASP Display: Software Controlled Routing ............................................................... 51
4 Basic Setup Procedures ...................................................................... 55
4.1 General Remarks ......................................................................................................... 56
4.2 Setting the Magic Angle on KBr .................................................................................... 57
4.2.1 RF-Routing ...................................................................................................................57
4.2.2 Setting Acquisition Parameters ......................................................................................59
4.3 Calibrating 1H Pulses on Adamantane .......................................................................... 65
4.4 Calibrating 13C Pulses on Adamantane and Shimming the Probe ................................. 73
4.5 Calibrating Chemical Shifts on Adamantane ................................................................. 75
4.6 Setting Up for Cross Polarization on Adamantane ........................................................ 76
4.7 Cross Polarization Setup and Optimization for a Real Solid: Glycine ............................. 79
4.8 Some Practical Hints for CPMAS Spectroscopy ............................................................ 85
4.9 Field Setting and Shift Calibration ................................................................................ 87
4.10 Literature ..................................................................................................................... 88
5 Decoupling Techniques ...................................................................... 89
5.1 Heteronuclear Decoupling ............................................................................................ 89

4 BRUKER BIOSPIN User Manual Version 002
Contents
5.1.1 CW Decoupling ............................................................................................................. 89
5.1.2 TPPM Decoupling ......................................................................................................... 90
5.1.3 SPINAL Decoupling ...................................................................................................... 91
5.1.4 Swept-Frequency-TPPM ............................................................................................... 91
5.1.5 XiX Decoupling ............................................................................................................. 91
5.1.6 Pi-Pulse Decoupling ..................................................................................................... 91
5.2 Homonuclear Decoupling ............................................................................................. 92
5.2.1 Multiple Pulse NMR: Observing Chemical Shifts of Homonuclear Coupled Nuclei .......... 92
5.2.2 Multiple Pulse Decoupling ............................................................................................. 92
BR-24, MREV-8, BLEW-12 ....................................................................................... 92
FSLG Decoupling ..................................................................................................... 92
DUMBO ................................................................................................................... 97
5.3 Transverse Dephasing Optimized Spectroscopy ........................................................... 98
6 Practical CP/MAS Spectroscopy on Spin 1/2 Nuclei ...........................99
6.1 Possible Difficulties ...................................................................................................... 99
6.2 Possible Approaches for 13C Samples ......................................................................... 99
6.3 Possible Approaches for Non-13C Samples ............................................................... 101
6.4 Hints, Tricks, Caveats for Multi-nuclear (CP-)MAS Spectroscopy ................................ 102
6.5 Setup for Standard Heteronuclear Samples 15N, 29SI, 31P ....................................... 102
7 Basic CP-MAS Experiments ...............................................................105
7.1 Pulse Calibration with CP .......................................................................................... 105
7.2 Total Sideband Suppression TOSS ............................................................................ 106
7.3 SELTICS ................................................................................................................... 110
7.4 Non-Quaternary Suppression (NQS) .......................................................................... 113
7.5 Spectral Editing Sequences: CPPI, CPPISPI and CPPIRCP ....................................... 116
8 FSLG-HETCOR ...................................................................................119
8.1 Pulse Sequence Diagram for FSLG HETCOR ............................................................ 120
8.2 Setting up FSLG HETCOR ......................................................................................... 121
8.3 Results ...................................................................................................................... 125
9 Modifications of FSLG HETCOR ........................................................127
9.1 Carbon Decoupling During Evolution .......................................................................... 128
9.2 HETCOR with DUMBO, PMLG or w-PMLG, Using Shapes .......................................... 129
9.2.1 The Sequence pmlghet ............................................................................................... 129
9.2.2 w-pmlghet ................................................................................................................... 132
9.2.3 edumbohet ................................................................................................................. 133
9.2.4 dumbohet ................................................................................................................... 134
9.3 HETCOR with Cross Polarization under LG Offset ..................................................... 135
10 RFDR ..................................................................................................137
10.1 Experiment ................................................................................................................ 138
10.2 Set-up ....................................................................................................................... 138
10.3 Data Acquisition ........................................................................................................ 139
10.3.1 Set-up 2D Experiment ................................................................................................. 139
10.4 Spectral Processing ................................................................................................... 141

Contents
User Manual Version 002 BRUKER BIOSPIN 5
11 Proton Driven Spin Diffusion (PDSD) ................................................143
11.1 Pulse Sequence Diagram ........................................................................................... 145
11.2 Basic Setup ................................................................................................................ 145
11.2.1 2D Experiment Setup ..................................................................................................146
11.3 Acquisition Parameters .............................................................................................. 147
11.3.1 Processing Parameters ...............................................................................................149
11.4 Adjust the Rotational Resonance Condition for DARR/RAD ........................................ 149
11.5 Example Spectra ........................................................................................................ 151
12 REDOR ................................................................................................155
12.1 Pulse Sequence ......................................................................................................... 157
12.2 Setup ......................................................................................................................... 157
12.2.1 Data Acquisition ..........................................................................................................159
12.2.2 Data Processing ..........................................................................................................160
12.3 Final Remarks ............................................................................................................ 167
13 SUPER ................................................................................................169
13.1 Overview .................................................................................................................... 169
13.2 Pulse Program ........................................................................................................... 170
13.3 2D Experiment Setup ................................................................................................. 170
13.3.1 Experiment setup ........................................................................................................170
13.3.2 Setup 2D Experiment ..................................................................................................171
13.4 Data Acquisition ......................................................................................................... 173
13.5 Spectral Processing ................................................................................................... 174
14 Symmetry Based Recoupling .............................................................179
14.1 Pulse Sequence Diagram, Example C7 ...................................................................... 181
14.2 Setup ......................................................................................................................... 181
14.2.1 Spectrometer Setup for 13C ........................................................................................183
14.2.2 Setup for the Recoupling Experiment ..........................................................................183
14.2.3 Setup of the 2D SQ-DQ Correlation Experiment ..........................................................185
14.3 Data Acquisition ......................................................................................................... 186
14.4 Spectral Processing ................................................................................................... 188
14.5 13C-13C Single Quantum Correlation with DQ Mixing ................................................ 189
14.6 Data Acquisition ........................................................................................................ 190
14.7 Spectral Processing ................................................................................................... 191
15 PISEMA ...............................................................................................193
15.1 Pulse Sequence Diagram ........................................................................................... 194
15.2 Setup ......................................................................................................................... 195
15.3 Processing ................................................................................................................. 198
16 Relaxation Measurements ..................................................................201
16.1 Describing Relaxation ................................................................................................ 201
16.2 T1 Relaxation Measurements ..................................................................................... 202
16.2.1 Experimental Methods .................................................................................................202
16.2.2 The CP Inversion Recovery Experiment ......................................................................203
16.2.3 Data Processing ..........................................................................................................205
16.2.4 The Saturation Recovery Experiment ..........................................................................208

6 BRUKER BIOSPIN User Manual Version 002
Contents
16.2.5 T1p Relaxation Measurements .................................................................................... 209
16.3 Indirect Relaxation Measurements ............................................................................. 210
16.3.1 Indirect Proton T1 Measurements ............................................................................... 211
17 Basic MQ-MAS ....................................................................................213
17.1 Introduction ............................................................................................................... 213
17.2 Pulse sequences ....................................................................................................... 213
17.3 Data Acquisition ........................................................................................................ 215
17.3.1 Setting Up the Experiment .......................................................................................... 215
17.3.2 Two Dimensional Data Acquisition .............................................................................. 220
17.4 Data processing ......................................................................................................... 222
17.5 Obtaining Information from Spectra ............................................................................ 225
18 MQ-MAS: Sensitivity Enhancement ...................................................231
18.1 Split-t1 Experiments and Shifted Echo Acquisition ...................................................... 231
18.2 Implementation of DFS into MQMAS Experiments ...................................................... 233
18.2.1 Optimization of the Double Frequency Sweep (DFS) ................................................... 233
18.2.2 2D Data Acquisition .................................................................................................... 238
18.2.3 Data Processing .........................................................................................................240
18.3 Fast Amplitude Modulation - FAM .............................................................................. 242
18.4 Soft Pulse Added Mixing - SPAM ............................................................................... 242
19 STMAS ................................................................................................245
19.1 Experimental Particularities and Prerequisites ............................................................ 245
19.2 Pulse Sequences ....................................................................................................... 247
19.3 Experiment Setup ...................................................................................................... 249
19.3.1 Setting Up the Experiment .......................................................................................... 249
19.3.2 Two Dimensional Data Acquisition .............................................................................. 251
19.4 Data Processing ........................................................................................................ 253
20 Double-CP ..........................................................................................255
20.1 Pulse Sequence Diagram, Double CP (DCP) ............................................................. 256
20.2 Double CP Experiment Setup ..................................................................................... 256
20.2.1 Double CP 2D Experiment Setup ................................................................................ 256
20.2.2 15N Channel Setup .................................................................................................... 258
20.2.3 Setup of the Double CP Experiment ............................................................................ 259
20.2.4 Setup of the 2D Double CP Experiment ...................................................................... 264
20.3 2D Data Acquisition ................................................................................................... 265
20.4 Spectral Processing ................................................................................................... 266
20.5 Example Spectra ....................................................................................................... 267
21 CRAMPS: General ..............................................................................271
21.1 Homonuclear Dipolar Interactions .............................................................................. 271
21.2 Multiple Pulse Sequences .......................................................................................... 271
21.3 W-PMLG and DUMBO ............................................................................................... 272
21.4 Quadrature Detection and Chemical Shift Scaling ...................................................... 273
22 CRAMPS 1D ........................................................................................275
22.1 Pulse Sequence Diagram of W-PMLG or DUMBO ...................................................... 275

Contents
User Manual Version 002 BRUKER BIOSPIN 7
22.2 Pulse Shapes for W-PMLG and DUMBO ..................................................................... 276
22.3 Analog and Digital Sampling Modi .............................................................................. 277
22.3.1 Analog Mode Sampling ...............................................................................................278
22.3.2 Digital Mode Sampling ................................................................................................278
22.4 Setup ......................................................................................................................... 279
22.5 Parameter Settings for PMLG and DUMBO ................................................................ 279
22.6 Fine Tuning for Best Resolution .................................................................................. 281
22.7 Fine Tuning for Minimum Carrier Spike ....................................................................... 281
22.8 Correcting for Actual Spectral Width ........................................................................... 281
22.9 Digital Mode Acquisition ............................................................................................. 282
22.10 Examples ................................................................................................................... 282
23 Modified W-PMLG ...............................................................................285
23.1 Pulse Sequence Diagram for Modified W-PMLG ......................................................... 285
23.2 Pulse Shapes for W-PMLG ......................................................................................... 286
23.3 Setup ......................................................................................................................... 287
23.4 Parameter Settings for PMLG and DUMBO ................................................................ 287
23.5 Fine Tuning for Best Resolution .................................................................................. 288
23.6 Correcting for Actual Spectral Width ........................................................................... 288
23.7 Digital Mode Acquisition ............................................................................................. 289
24 CRAMPS 2D ........................................................................................291
24.1 Proton-Proton Shift Correlation (spin diffusion) ........................................................... 291
24.2 Pulse Sequence Diagram ........................................................................................... 292
24.3 Data Processing ......................................................................................................... 293
24.4 Examples ................................................................................................................... 294
24.5 Proton-Proton DQ-SQ Correlation .............................................................................. 296
24.6 Pulse Sequence Diagram ........................................................................................... 297
24.7 Data Processing ......................................................................................................... 299
24.8 Examples ................................................................................................................... 299
A Appendix ........................................................................................... 303
A.1 Form for Laboratory Logbooks .................................................................................... 303
Figures ............................................................................................... 309
Tables ................................................................................................ 315
Index .................................................................................................. 319

8 BRUKER BIOSPIN User Manual Version 002
Contents

User Manual Version 002 BRUKER BIOSPIN 9 (327)
1
Introduction 1
This manual is intended to help the users set up a variety of different experiments
that are nowadays more or less standard in solid state NMR.
Previously, the manuals described the hardware in some detail, and also basic
setup procedures. Armed with this knowledge, it was assumed the users would be
in a position to manage the setup of even complicated experiments themselves.
In this manual however, the hardware is not discussed in detail, since there is no
longer much hardware which is specific to solid-state NMR. There are still trans-
mitters with higher power, and preamps and probes that take this power, but for
the purposes of experimental setup, detailed knowledge is not required, since the
setup does not generally depend on the details of the hardware. So, this manual
is now much more specific to the type of experiment which is to be executed, and
includes tricks and hints required to set the experiment up properly for best perfor-
mance. If any special hardware (or software) knowledge is required, it is indicated
within the experimental section.
This manual begins with the most frequently used solid-state NMR experiments,
and will be extended as time permits and as it is required by new development in
NMR. The manual is written primarily for Bruker AVANCE III instruments, but the
experimental part will be identical, or similar, for AVANCE I and AVANCE II instru-
ments. For example, pulse programs will have slightly different names, differing
usually in the pulse program name extension. Contact your nearest applications
scientist if you do not find the experiment/pulse program that you are looking for.
Users of older instruments (DSX, DMX, DRX) should refer to the Solids Users
Manual delivered within the Help system at Help -> Other topics -> Solids Users
Manual. Even though the pulse programs may look similar, they will not run on
these instruments.
The first five chapters deal with basic setup procedures, subsequent chapters are
dedicated to specific types of experiments. There may be many different „sub“ ex-
periments within a given type, since the same information can often be obtained
with pulse sequences differing by subunits only, or in using a totally different prin-
ciple. The experiments outlined here are usually the most important ones and/or
the ones that were common at the time when the manual was written.
New chapters will be added, as the manual consists of largely self-contained units
rather than being a comprehensive single volume. This was done in order to be
more flexible in updating/replacing individual chapters. So do not be surprised if
some chapters are still missing, they will be completed in the near future and im-
plemented as they are finished and proofread. The individual chapters are written
by different people, so there will be some differences in style and composition.
Note Concerning Future TopSpin Release
Upon the release of this manual, a new TopSpin version was in development. In
the new version, which is scheduled to be released later this year, there are fairly
big changes that will influence all of the setup routines described in this manual.

10 (327) BRUKER BIOSPIN User Manual Version 002
Introduction
In the future version of TopSpin there will be a different way of setting pulse pow-
ers. There will be a watt scale which refers to the pulse power in watts. This al-
lows you to set pulse powers in a spectroscopically more relevant scale.
Moreover, different transmitters and different routings will not anymore have an in-
fluence on the pulse power setting, since it is referenced to an absolute, not rela-
tive scale. This means however, that some setup routines within this manual will
have to be modified to comply with this. The setting will also be possible on a dB
scale, however with an absolute reference. Power level changes will therefore be
calculated properly using calcpowlev. Where pulse power recommendations are
given in this manual, they will still apply if given in watts, they will however not ap-
ply in the future version of TopSpin if given in dB.
We will try to release a new version of this manual when the new TopSpin version
is available, whereas possible inconsistencies will be removed. There is no incon-
sistency with TopSpin vs. 2.1.
Disclaimer 1.1
Any hardware units mentioned in this manual should only be used for their intend-
ed purpose as described in their respective manual. Use of units for any purpose
other than that for which they are intended is taken only at the users own risk and
invalidates any and all manufacturer warranties.
Service or maintenance work on the units must be carried out by qualified
personnel.
Only those persons schooled in the operation of the units should operate
the units.
Read the appropriate user manuals before operating any of the units mentioned.
Pay particular attention to any safety related information.
Safety Issues 1.2
Please refer to the corresponding user manuals for any hardware mentioned in
this manual for relevant safety information.
Contact for Additional Technical Assistance 1.3
For further technical assistance please do not hesitate to contact your nearest
BRUKER dealer or contact us directly at:
BRUKER BioSpin GMBH
am Silberstreifen
D-76287 Rheinstetten
Germany
Phone: + 49 721 5161 0
FAX: + 49 721 5171 01
E-mail: service@bruker.de
Internet: www.bruker.de

User Manual Version 002 BRUKER BIOSPIN 11 (327)
2
Test Samples 2
Table 2.1. Setup Samples for Different NMR Sensitive Nuclei
Nucleus Sample Method O1P Remarks
3H
1HSilicone paste
Silicone rubber
Adamantane
Glycine
Malonic Acid
1HMAS
1HMAS
1HMAS
CRAMPS
CRAMPS
0
0
0
-3
-3
setup proton channel, shim, set field
setup proton channel, set field
setup proton channel, set field, shim
under CRAMPS conditions
setup CRAMPS
resolution CRAMPS, d1=60s
19FPVDF
PTFE
19FMAS
CP
19FMAS
106
126
direct observe 19F
CP 1H/19F, 1H/13C,19F/13C (low sensitivity)
direct observe
3He
203,209 Tl
31P(NH4)H2PO41H/31PCP 0powdered sample, piezoelectric, 4s
7Li LiCl MAS
117,119Sn Sn (cyclohexyl)4
Sm2Sn2O7/SnO2
CP
MAS
5ms contact, d1>10s
VT shift thermometer, d1<1s
Sm2Sn2O7,>60s SnO2(temp. independent)
87Rb RbNO3, RbClO4MQMAS 00.5s repetition
11BBN
Boric Acid
MAS
MQMAS >5s repetition
65Cu Cu-metal powder wideline knight shift +2500ppm
71Ga Ga2O3hahn echo CT 300 kHz wide
129Xe as hydroquinon
Clathrate
gas in air
CPMAS 0
0
d1>5s
single pulses overnight, 1s
23Na Na2HPO4
Na3P3O9
MQMAS
MQMAS
0dep. on crystal water 2-5 lines
51VNH4VO4
123Te
27Al AlPO-14 MQMAS 0d1 05-1s, 4 lines

12 (327) BRUKER BIOSPIN User Manual Version 002
Test Samples
13CAdamantane
α-glycine
CP,DEC
CP
50
110
HH setup, shim
sensitivity,decoupling.Prep.: precipitate
with acetone from aq. solution, C,N fully
labelled for fast setup, recoupling, REDOR
(10% in natrl. abundance)
79Br KBr MAS 57 d1< 50msec, angle setting
finely powdered, reduced volume
59Co Co(CN)6MAS shift thermometer
55Mn KMnO4MAS >500 kHz pattern
93Nb
207Pb PbNO3
Pb(p-tolyl)4
MAS
CP -150
shift thermometer, 0,753 ppm/degr.
d1>10s
5ms, 15s
29Si Q8M8
DSS,TMSS
CPMAS
CPMAS
-50
0
d1>5s, reference sample 12.6/-108 ppm
reference sample 0 ppm
77Se H3SeO3
(NH4)2SeO4
CPMAS
CPMAS
1800
-200
HH setup, 8ms contact, d1>10s
3ms, d1>4s
113Cd Cd(NO3)2*4H2OCPMAS 350 15ms contact, d1>8s
195Pt K2Pt(OH)6CPMAS -12000 1ms contact, d1>4s
199Hg Hg(acetate)2
Hexakis (dimethyl
sulphoxide)
Hg(II) trifluorome-
thansulfonate
CPMAS 2500
-2313
5ms contact, d1>10s
30-35ms contact, d1>10s *
2Hd-PMMA
d-PE
d-DMSO2
WL
WL
WL
0
0
0
wideline setup d1 5s
wideline setup d1 0.5s/10s amorphous/
crystalline
exchange expt. at 315K
6Li LiCl, Li (org.) make sure it is not 6Li depleted, d1>60s
17O D2O 0 pulse determination, 100scans,0.5s
15Nα-glycine CP 50 sensitivity, 4ms contact,4s
labelled for fast setup
35Cl KCl WL,MAS 0pulse determ., 100 scans
33S K2SMAS 0100 scans in a >=500 MHz instr.
14NNH4Cl MAS,WL 0100 scans, narrow line.
25Mg
47/49Ti Anatas MAS
39KKCl MAS,WL 0100 scans
Table 2.1. Setup Samples for Different NMR Sensitive Nuclei

Test Samples
User Manual Version 002 BRUKER BIOSPIN 13 (327)
109Ag AgNO3
AgSO3CH3
MAS
CPMAS 70
1scan, 500s, finely powdered
50 ms contact, 10 s repetition, 1 scan.
89YY(NO3)3*6H2OCPMAS -50 10ms contact, d1>10s
*Literature: J.M. Hook, P.A.W. Dean and L.C.M. van Gorkom, Magnetic Resonance in Chemistry, 33, 77
(1995).
Table 2.1. Setup Samples for Different NMR Sensitive Nuclei

User Manual Version 002 BRUKER BIOSPIN 15 (327)
3
General Hardware
Setup 3
Avance instruments are constructed in a way to minimize the requirements to re-
connect or readjust hardware for different experiments. Probe changes are how-
ever sometimes necessary, and require some manual operations. This chapter
deals with connections that need to be done by the operator, and also with other
manipulations that are required to set up the instrument in an optimum way.
Since the RF pathways are under software control up to the preamplifier, and un-
der operator control between preamplifier and probe, both setups are considered
separately.
All remaining connections (heater cable, thermocouple, gas flow, spin rate cable,
PICS cable) can in no way be under software control, so the operator is responsi-
ble for proper wiring, cabling, and tubing! Since mistakes (especially in connection
with compressed gas tubing) may cause rather expensive repairs, it is recom-
mended to check carefully before an experiment is started.
The following operations will be described and illustrated with suitable images, for
WB and SB probes, where non-trivial differences exist.
"Connections to the Preamplifier" on page 15
"RF Connections Between Preamplifier and Probe" on page 20
"RF-Filters in the RF Pathway" on page 21
"Connections for Probe Identification and Spin Detection" on page 25
"MAS Tubing Connections" on page 26
"Additional Connections for VT Operation" on page 31
"Probe Setup, Operations, Probe Modifiers" on page 41
"Mounting the Probe in the Magnet/Shim Stack" on page 50
"The edasp Display for a System with two Receiver Channels" on page 54
Connections to the Preamplifier 3.1
For solids and liquids there should normally be different sets of preamplifiers. Liq-
uids preamplifiers (HPPR, High Performance Preamplifiers) are not suitable for
some of the requirements of solid state NMR. Where CP/MAS applications are the
only solids applications, it is however possible to use liquids preamplifiers for X-
observation. Solids preamplifiers (HPHPPr, High Power High Performance Pre-
amplifiers) are definitely required if high power ≥1 kW is used (liquids preamplifi-
ers take max. 500W for X frequencies, 50W for proton and fluorine frequency).
For the high frequency range 19F and 1H, two different types of solids preamps
are available, the older HPHPPr 19F /1H and the recent replacement HPLNA

16 (327) BRUKER BIOSPIN User Manual Version 002
General Hardware Setup
(High Power Low Noise Amplifier) which is strictly frequency selective, either 19F
or 1H.
The connections into (the back) of the preamp stack should normally not be
changed. For broadband high power preamplifiers, it is important to insert the ap-
propriate “matching box” into the side of the preamp.
Figure 3.1. All Connections to the Back of the Preamplifier
RF cables from transmitter, RS-485
control, DC voltages in, tune and lock
RF in, RF signal out to receiver, gate
pulses for preamplifier control (multi-
receive setup only).
The orange colored cable is the high
voltage supply for the HPLNA pream-
plifier.

Connections to the Preamplifier
User Manual Version 002 BRUKER BIOSPIN 17 (327)
Figure 3.2. Transmitter Cables (only) Wired to Back of the Preamplifier
The lock preamplifier is located at the
bottom of the stack, the transmitter
cable carries the lock pulses. For sol-
ids, this preamp is normally not re-
quired.
When the transmitter cables are re-
wired to different preamp modules,
the changes must be entered into the
edasp routing (type edasp setpre-
amp, NMRSU password required).

Connections to the Preamplifier
User Manual Version 002 BRUKER BIOSPIN 19 (327)
Figure 3.4. Additional Connections to the Preamplifier Stack.
1
1. RF signal out to receiver
2. Lock signal out to lock receiver
3. Tune RF in (from SGU 2 aux out)
4. PICS probe ID cable to probe
5. ATMA and AUX connectors
6. RS 485 control connection and DCin
7. Additional DC supply for >3 preamps
8. High voltage DC for HPLNA-preamp
9. Additional controls for multi-receiver
2
3
456
8
9
7

20 (327) BRUKER BIOSPIN User Manual Version 002
General Hardware Setup
Figure 3.5. Matching Box Setup for High Power X-BB Preamplifiers
The frequency of the observed nucleus must be within the bandwidth of the
matching box (the matching box contains a low pass filter to suppress frequencies
above the X-nucleus frequency range (1H, 19F) and a passive diode multiplexer,
which directs the RF pulse into the probe, and the NMR signal into the preamplifi-
er). High resolution preamplifiers use actively switched pin diodes for this purpose
and are therefore broadbanded, so there is no exchangeable box.
Pulsing with high power into an RF circuit which is not properly set up to pass this
frequency may result in damage to the RF circuit (in this case, the “matching box”)
or to the transmitter. This applies to filters, preamplifiers and matching boxes. Es-
pecially, if liquids preamps are used for solids work, as well power limitations as
frequency limitations must be strictly observed!
RF Connections Between Preamplifier and Probe 3.2
These connections must be done with high quality cable, with suitable length. It
should be short, but not too short so that the cable must not be severely bent.
Higher quality cable is fairly stiff; the flexible ones are of less quality.
N.B.: It is extremely important that RF cables are not bent to a radius of less than
30 cm, and that no force is exerted on the RF connectors. Adapters should be
avoided; since every connector may change the impedance to deviate from the
required 50 Ω. Cables with loose connectors should be discarded, unless they
1. Pulse from TX
2. Pulse pathway to probe
3. To probe
4. Signal from probe
5. Signal to preamplifier
1
2
3
4
5
2
4
Table of contents
Other Bruker BioSpin Measuring Instrument manuals
Popular Measuring Instrument manuals by other brands

Extech Instruments
Extech Instruments 382400 user guide

PCE Instruments
PCE Instruments PCE-RCM 10 user manual

Delta Electronics
Delta Electronics CTA4 instruction sheet

ROOTECH
ROOTECH Accura 2550TEMP Quick setup guide

Onicon
Onicon SYSTEM-30 Installation and operation guide

Geokon
Geokon 4910 instruction manual

EAS Electric
EAS Electric SDM630MCTV2 instruction manual

Circutor
Circutor DHC-96 CPM instruction manual

Agilent Technologies
Agilent Technologies 8960 reference guide

3M
3M Dynatel 7550 Series Operator's manual

VOLTCRAFT
VOLTCRAFT 10 10 40 operating instructions

Endress+Hauser
Endress+Hauser Levelflex M FMP40 technical information