Hach BODTrak II Quick manual

DOC022.97.80363
BODTrak II
02/2013, Edition 1
Basic User Manual
Manuel d'utilisation de base
Manual básico del usuario

English...................................................................................................................................................................................................3
Français..............................................................................................................................................................................................14
Español...............................................................................................................................................................................................26
2

Table of contents
Specifications on page 3 Startup on page 7
General information on page 3 Standard operation on page 7
Installation on page 5 Maintenance on page 9
User interface on page 6 Troubleshooting on page 10
Specifications
Specifications are subject to change without notice.
Table 1 General Specifications
Specification Details
Operating
temperature
5 to 40 ºC (41 to 104 ºF)
Altitude limit 2000 m (6500 ft)
Pollution degree 2
Installation
category
II
Storage/operating
humidity
Maximum relative humidity is 80% for temperatures up to
31 ºC (87.8 ºF), decreases linearly to 50% relative
humidity at 40 ºC (104 ºF)
Location Laboratory / Indoor
Protection class 2
Range Selectable, 0 to 35, 0 to 70, 0 to 350, 0 to 700 mg/L
Dimensions 28.9 x 26 x 9.8 cm (11.375 x 10.25 x 3.875 in.)
External power
supply
Input: 100 to 240 VAC, 50/60 Hz, 1.5 A; Output: 24 VDC,
2.7 A, UL CSA and TUV approved.
Capacity Six 492 mL bottles
Table 1 General Specifications (continued)
Specification Details
Shipping weight 4 kg (8.8 lb)
Warranty 1 year
Table 2 Method performance specifications
Specification Details
Precision Parameters:
• Standard: 150 mg/L each of glucose and glutamic acid
• Number of samples: 44
• Number of analysts: 1
• Number of BodTrak II instruments: 6
Results:
• Mean of 235 mg/L BOD
• Distribution: 11 mg/L or range of 224 to 246 mg/L BOD
• 95% confidence limit
Drift Less than 3 mg/L BOD in 5 days
Resolution 1 mg/L BOD
General information
In no event will the manufacturer be liable for direct, indirect, special,
incidental or consequential damages resulting from any defect or
omission in this manual. The manufacturer reserves the right to make
changes in this manual and the products it describes at any time, without
notice or obligation. Revised editions are found on the manufacturer’s
website.
Expanded manual version
For additional information, refer to the CD for an expanded version of
this manual.
English 3

Safety information
NOTICE
The manufacturer is not responsible for any damages due to misapplication or
misuse of this product including, without limitation, direct, incidental and
consequential damages, and disclaims such damages to the full extent permitted
under applicable law. The user is solely responsible to identify critical application
risks and install appropriate mechanisms to protect processes during a possible
equipment malfunction.
Please read this entire manual before unpacking, setting up or operating
this equipment. Pay attention to all danger and caution statements.
Failure to do so could result in serious injury to the operator or damage
to the equipment.
Make sure that the protection provided by this equipment is not impaired.
Do not use or install this equipment in any manner other than that
specified in this manual.
Use of hazard information
DANGER
Indicates a potentially or imminently hazardous situation which, if not avoided, will
result in death or serious injury.
W A R N I N G
Indicates a potentially or imminently hazardous situation which, if not avoided,
could result in death or serious injury.
CAUTION
Indicates a potentially hazardous situation that may result in minor or moderate
injury.
NOTICE
Indicates a situation which, if not avoided, may cause damage to the instrument.
Information that requires special emphasis.
Precautionary labels
Read all labels and tags attached to the instrument. Personal injury or
damage to the instrument could occur if not observed. A symbol on the
instrument is referenced in the manual with a precautionary statement.
This symbol, if noted on the instrument, references the instruction
manual for operation and/or safety information.
Electrical equipment marked with this symbol may not be disposed of
in European public disposal systems after 12 August of 2005. In
conformity with European local and national regulations (EU Directive
2002/96/EC), European electrical equipment users must now return
old or end-of-life equipment to the Producer for disposal at no charge
to the user.
Note: For return for recycling, please contact the equipment producer or supplier
for instructions on how to return end-of-life equipment, producer-supplied
electrical accessories, and all auxiliary items for proper disposal.
Certification
Canadian Radio Interference-Causing Equipment Regulation,
IECS-003, Class A:
Supporting test records reside with the manufacturer.
This Class A digital apparatus meets all requirements of the Canadian
Interference-Causing Equipment Regulations.
Cet appareil numèrique de la classe A respecte toutes les exigences du
Rëglement sur le matériel brouilleur du Canada.
FCC Part 15, Class "A" Limits
Supporting test records reside with the manufacturer. The device
complies with Part 15 of the FCC Rules. Operation is subject to the
following conditions:
1. The equipment may not cause harmful interference.
2. The equipment must accept any interference received, including
interference that may cause undesired operation.
Changes or modifications to this equipment not expressly approved by
the party responsible for compliance could void the user's authority to
4 English

operate the equipment. This equipment has been tested and found to
comply with the limits for a Class A digital device, pursuant to Part 15 of
the FCC rules. These limits are designed to provide reasonable
protection against harmful interference when the equipment is operated
in a commercial environment. This equipment generates, uses and can
radiate radio frequency energy and, if not installed and used in
accordance with the instruction manual, may cause harmful interference
to radio communications. Operation of this equipment in a residential
area is likely to cause harmful interference, in which case the user will be
required to correct the interference at their expense. The following
techniques can be used to reduce interference problems:
1. Disconnect the equipment from its power source to verify that it is or
is not the source of the interference.
2. If the equipment is connected to the same outlet as the device
experiencing interference, connect the equipment to a different
outlet.
3. Move the equipment away from the device receiving the interference.
4. Reposition the receiving antenna for the device receiving the
interference.
5. Try combinations of the above.
Product overview
Respirometric Biological Oxygen Demand (BOD) is a test that measures
the quantity of oxygen consumed by bacteria that oxidize organic matter
in a water sample. The test is used to measure waste loadings at
wastewater treatment plants and to examine the efficiency of wastewater
treatment.
The instrument is sealed to prevent external atmospheric pressure
changes in the test bottle. The pressure in the sample bottles is
monitored. Bacteria in the sample use oxygen when they consume
organic matter. This oxygen consumption causes the pressure in the
bottle head space to drop. The pressure drop correlates directly to BOD.
During a test period, stir bars mix the sample and cause oxygen to move
from the air in the bottle to the sample. This helps simulate natural
conditions.
Carbon dioxide is a result of the oxidation process and can interfere with
a measurement. The instrument continuously removes carbon dioxide
from the system so that the monitored pressure difference stays
proportional to the quantity of oxygen used. Pressure changes in the
closed system are shown graphically in milligrams per liter (mg/L) on a
liquid crystal display. The instrument gives 360 uniform data points over
the selected time period.
The instrument adjusts for any negative errors produced when heat is
applied to a sample. The instrument does not start the test until the
temperature gets to equilibrium.
Product components
Make sure that all components have been received. If any of these items
are missing or damaged, contact the manufacturer or a sales
representative immediately.
• BODTrak™ II instrument
• A UL/CSA approved 115 VAC power cord with a NEMA 5-15P style
plug
• A 230 VAC harmonized power cord with a continental European plug
• Power supply, auto-switching between 115 V and 230 V
• Seal cups (6x)
• BODTrak II amber sample bottles (6x)
• BODTrak II magnetic stir bars (6x)
• Spatula scoop
• Nutrient buffer solution pillows (1 pkg)
• Potassium hydroxide pellets (1 container)
Installation
External connections
Figure 1 shows the locations of the power switch and external
connections.
English 5

Figure 1 External connections
1 Power switch 3 Serial I/O port
2 DC power connector
Connect the RS232 interface
All RS232 connections are made through the serial I/O port. Connect the
9-pin D connector of a computer interface cable to the serial I/O port on
the instrument (Figure 1 on page 6). Connect the other end of the cable
to the computer serial I/O port (COM 1 or COM 2).
The instrument is equipped as Data Communication Equipment (DCE).
The instrument operates at 9600 baud with 8 data bits, no parity and one
stop bit. The computer or printer will not receive complete transmissions
if the device cannot continuously receive at 9600 baud.
Note: The use of the specified cable or an equivalent shielded cable is necessary
to meet radio frequency emissions requirements.
Bottle connections
Each bottle position/channel has the applicable tube numbered with a
plastic sleeve. The bottle positions are numbered 1 through 6 with
number 1 in the back left corner of the chassis. Use the channel
selection keys as a guide to the bottle positions Figure 2 on page 6.
User interface
The instrument display and the keypad are shown in Figure 2.
Figure 2 Display and keypad
1 Display 4 Arrow keys
2 Channel selection keys 5 Power indicator
3 ON and OFF keys1
1The ON and OFF keys are used to start and stop a test. They do not power
the instrument on and off.
6 English

Channel selection keys
Push the related channel selection key to show data for one of the six
bottles. The channel selection keys are also used in the instrument setup
menu to select a parameter to be edited. Refer to Figure 2 on page 6
and Table 3.
Table 3 Channel key setup parameters
Channel Parameter
1 Year (0–99)
2 Month (1–12)
3 Day (1–31)
4 Hour (0–24)
5 Minute (0–59)
6 Test length (5, 7 or 10 days)
Arrow keys
The display shows a graph of BOD values on the vertical axis and time
in days on the horizontal axis. Push the LEFT and RIGHT arrows to
move the cursor along the BOD curve to show the approximate
coordinates (time, BOD) of the selected data point.
The time interval and BOD value of the data point are shown in the lower
right of the display. The cursor is automatically placed at the most
recently collected data point in a channel display.
Push and hold the LEFT and RIGHTarrows at the same time to go into
the instrument setup menu. The arrow keys are also used to change the
time, date, test length and range.
ON key
To go to the range selection menu, push ON from a channel display
screen. Then push and hold ON to start the test for the selected channel.
OFF key
When a test is in DELAY or RUN modes, push and hold OFF to
manually end the test. The instrument will show END. The OFF key is
also used to exit the instrument setup menu or range selection menu.
The changes made before the menu is exited are saved.
Startup
Turn the instrument on
Note: The ON and OFF keys are used to start and stop a test. They do not power
the instrument on and off.
1. Connect the power adaptor to the DC power connector (Figure 1
on page 6).
2. Toggle the power switch to set the instrument to on and off. (Figure 1
on page 6).
Set the clock
All the channels must show END or CLEAR before the clock can be set.
1. Push and hold the two arrow keys at the same time until the
instrument setup menu is shown.
2. Push the applicable channel key to select the clock parameter to be
adjusted.
3. Use the arrow keys to edit the selected parameter. Adjust each
parameter in the same manner.
4. When all the time adjustments are complete, push OFF to save and
go back to the data display screen.
Standard operation
Typical curves
Refer to the expanded version of the manual for information about
specific procedures.
English 7

Figure 3 shows typical curves through a 10 day test period. For incorrect
curves, refer to Figure 4 on page 10.
Figure 3 Typical curves
1 Typical with substrate variation 3 Typical with time lag
2 Typical
Download test results
To transfer test results to a PC:
1. Select
PROGRAMS>ACCESSORIES>COMMUNICATIONS>HYPERTERM
INAL.
2. In the Connection Description window, type in a name for the
connection and select an icon to represent the connection. Click OK.
3. In the Connect To window, use the drop-down menu to select the
COM port connected to the instrument. Click OK.
4. Configure the COM port properties: BPS = 9600, Data Bits = 8,
Parity = None, Stop Bits = 1, Flow Control = None.
5. Click OK. The connector indicator shows.
6. Select TRANSFER>CAPTURE TEXT.
7. In the Capture Text window, click START.
8. Power the instrument on. Push the key for the channel that has data
to be downloaded.
9. Type GA in the HyperTerminal window and push ENTER. The
transfer is complete when the screen stops adding new data.
10. Select TRANSFER>CAPTURE TEXT>STOP.
11. Select CALL>DISCONNECT. The disconnected indicator shows.
12. To end the HyperTerminal session, select FILE>EXIT.
Import data
To import the data from the captured text file:
1. Open a new or existing spreadsheet. Select DATA>IMPORT
EXTERNAL DATA>IMPORT DATA.
2. Select the text file captured in HyperTerminal. Click IMPORT.
3. In the Text Import Wizard, select Delimited as the file type, the start
row in the spreadsheet and Windows (ANSI) as the file origin. Click
NEXT.
4. Click the check boxes for Space delimiter and Treat consecutive
delimiters as one. Click NEXT.
8 English

5. Select General as the column data format, then click FINISH.
6. In the Import Data window, select Existing worksheet. Select the
starting cell, then click OK. The data will appear in the spreadsheet.
The spreadsheet data cannot be edited or formatted in
HyperTerminal or with the BODTrak II.
Data format
When a result array is downloaded to HyperTerminal, all of the data from
a test is sent without pause. The data flow cannot be stopped or paused.
The example shows the channel number, start date, start time and the
format of the downloaded data. BOD values in mg/L follow. Only the first
data points of a maximum of 360 equal distance points are shown. Each
line ends with a carriage return and a line feed. The end of the data
stream is shown by a message such as "Test Run to Completion" and a
dollar symbol ($).
If small negative BOD values are seen at the start of a test, refer to
Troubleshooting on page 10.
Example of the data format
BOD Log for Ch 1
Status: END
Full Scale: 700 mg/L
Tst length: 7 days
Start Date: 3/3/08
Time: 13:04
Days, Reading (mg/L)
0.00, 0
0.05, 10
0.11, 12
0.16, 12
0.22, 14
0.27, 14
0.33, 12
0.38, 8
0.44, 10
0.50, 12
0.55, 12
0.61, 14
-
-
-
Test Run to Completion
$
Print test results
The BODTrak II is compatible with the Citizen PD-24 printer, which is
available as an optional accessory (Accessories on page 12).
1. Connect the printer cable to the serial I/O port on the instrument. Use
the gender adapter supplied with the printer to make the connection.
Make sure that the printer settings are correct (Connect the RS232
interface on page 6).
2. Power on the instrument.
3. Push and hold the applicable channel number for approximately
5 seconds at any time during a test.
The test results move from the instrument to the printer. The
instrument sends a copy of the graphical display and a truncated
data stream (127 data points).
Maintenance
DANGER
Multiple hazards. Only qualified personnel must conduct the tasks
described in this section of the document.
English 9

CAUTION
Chemical exposure hazard. Obey laboratory safety procedures and
wear all of the personal protective equipment appropriate to the
chemicals that are handled. Refer to the current material safety data
sheets (MSDS) for safety protocols.
Clean the instrument
Clean spills on the instrument with a soft cloth that has been dampened
with deionized or distilled water.
Clean the sample bottles
Clean the sample bottles and caps with a brush, water and a mild
detergent. Flush the containers with fresh water followed by a distilled
water rinse.
Clean the stir bars and seal cups
Clean the stir bars with hot water and soap. Use a brush to remove
deposits. Rinse with fresh water and then rinse with distilled water.
Carefully empty and rinse the seal cups with water. Invert to dry.
Storage
The bottle fences prevent tipping of the bottles and provide tubing
management in storage. For storage, put the tubing in the opening in the
bottle fence. Move the tubing counter-clockwise and secure the bottle
cap inside the fence.
Troubleshooting
Incorrect BOD curves
Figure 4 shows incorrect BOD curves for a 10 day test period. For typical
curves, refer to Typical curves on page 7.
Figure 4 Incorrect curves
1 High oxygen demand 4 Initial sample temperature below
20 ºC or supersaturated with
oxygen
2 Nitrification 5 Bottle leak
3 Excessive time lag
10 English

High oxygen demand
Refer to Figure 4 on page 10. Samples that are above range (for
example, a BOD over 350 mg/L when a 160-mL sample is taken) will
cause results as shown in Curve 1. Dilute the sample or use a higher
BOD range and a different sample volume. Refer to the Sample dilution,
Simplified procedure, Hach GGA procedure or the Hach Standard
method procedure for more information.
When the BOD range of a sample is unknown:
• Use the results from the Chemical Oxygen Demand (COD test).
Multiply the COD by 0.68 to get an estimated BOD value.
• Use the results from a series of BOD tests that use the same sample
but different volumes.
• Use dilution ratios to select an applicable BOD range.
Typically, effluent is in the 0–70 mg/L range while influent is in the
0-700 mg/L range. when the BOD of the sample is more than 700 mg/L,
prepare a sample dilution. Refer to the Sample dilution section in the
expanded version of this manual for more information.
Nitrification
Refer to Figure 4 on page 10. The condition shown by Curve 2 is an
example of nitrification. Deviation from the typical curve (shown as the
dashed line) is apparent by the concave increase near the end of the
test period.
Biological oxidation of organic nitrogen usually occurs after 5 days with
typical domestic waste. Nitrifying bacteria develop more slowly than
other types of bacteria.
Some samples contain a high concentration of nitrifying bacteria and
nitrification results can occur sooner. Control nitrification problems with
Hach Nitrification Inhibitor. Dispense the inhibitor powder into an empty
sample bottle and then add the sample. With the Hach Dispenser cap,
dispense 6 shots (approximately 0.48 grams) into the empty bottle. Refer
to Optional reagents on page 12.
Excessive time lag
Refer to Figure 4 on page 10. Curve 3 shows a test that did not start with
sufficient bacteria during the incubation period. To do a test on a sample
without sufficient bacteria, seed the sample. Refer to the Seed the
sample section in the expanded version of this manual for more
information.
Bacteria acclimation also causes conditions that can cause curve 3. This
sometimes occurs with standards and added seed. Add more seed or
select a different seed source.
Sample temperature
Refer to Figure 4 on page 10. The initial negative results of Curve
4 show that the initial sample temperature was below the specified range
of 20 ±1 ºC. A sample supersaturated with oxygen will also show this
type of curve. Refer to the Sample temperature and Supersaturation
sections in the expanded version of this manual for more information.
Bottle leak
Refer to Figure 4 on page 10. Curve 5 shows a bottle leak. A bottle leak
makes the system unresponsive. If such a condition occurs, examine the
seal cup and bottle cap for contamination or damage.
Replacement parts and accessories
Replacement parts
Description Quantity Item no.
BODTrak ™ II instrument, 115/230 VAC 1 2952400
Bottle, BODTrak II, amber 6 714421
Power cord, 18/3 SVT 7.5 ft, 10A,125 VAC
for North American 115 VAC use 1 2959200
Power Cord, 8 ft, with continental
European plug for 230 VAC use 1 2959100
Power supply 1 2952500
English 11

Replacement parts (continued)
Description Quantity Item no.
Computer cable for data transfer to PC 1 2959300
Seal cup 1 2959500
Spatula scoop 1 1225700
Stir bar, magnetic, BODTrak II 1 2959400
Required reagents
Description Quantity Item number
Respirometric BOD nutrient buffer pillows 1 2962266
Potassium hydroxide pellets 1 31425
Optional reagents
Description Quantity Item no.
Nitrification inhibitor 35 g 253335
Dispenser cap for 35 g bottle (for use with
nitrification inhibitor) 1 45901
Polyseed inoculum 50 2918700
Potassium iodide solution, 100 g/L 500 mL 1228949
Sodium Hydroxide standard solution,
1.0 N 900 mL 104553
Sodium Thiosulfate standard solution,
0.025 N 1000 mL 35253
Starch indicator solution, dropping bottle 1000 mL MDB 34932
Sulfuric acid, ACS 500 mL 97949
Sulfuric acid, 0.02 N standard solution 1000 mL 20353
Optional reagents (continued)
Description Quantity Item no.
Sulfuric acid, 1.0 N standard solution 1000 mL 127053
Voluette ampule standard for BOD,
3000 mg/L for manometric, 10-
mL/ampule
16 1486610
Accessories
Description Quantity Item number
Ampule breaker kit for voluette ampules 1 2196800
Bottle, wash, 500 mL 1 62011
Bottle, polyethylene, with spigot, 4 L 1 1486817
Brush, cylinder, size 2 1 68700
Buret, straight stopcock, Teflon plug,
25 mL 1 1405940
Clamp, buret, double 1 32800
Cylinder, graduated, 10-mL 1 50838
Cylinder, graduated, 25-mL 1 50840
Cylinder, graduated, 50-mL 1 50841
Cylinder, graduated, 100-mL 1 50842
Cylinder, graduated, 250-mL 1 50846
Cylinder, graduated, 500-mL 1 50849
Cylinder, graduated, 1000-mL 1 50853
Flask, Erlenmeyer 1 50546
Incubator, BOD, Model 205, 110 V 1 2616200
Incubator, BOD, Model 205, 220/240 V 1 2616202
12 English

Accessories (continued)
Description Quantity Item number
Pipet, Tensette®, 0.1 to 1.0 mL 1 1970001
Pipet, Tensette, 1 to 10 mL 1 1970010
Pipet tips, 0.1 to 1.0 mL 50 2185696
Pipet tips, 0.1 to 1.0 mL 1000 2185628
Pipet tips, 1 to 10 mL 50 2199796
Pipet tips, 1 to 10 mL 250 2199725
Pipet filler, 3 valve 1 1218900
Pipet serological, glass, 10-mL 1 53238
Printer, Citizen PD-24 with cable 1 2960100
Standard Methods for the Examination of
Water and Wastewater 1 2270800
Support stand, buret 1 32900
Thermometer, Mercury, –20 to 110 ºC 1 56601
Thermometer, non-Mercury, –20 to 110 ºC 1 2635702
Water Still, 120 V 1 2615900
Water Still, 220 V 1 2615902
Water System, Ultrapure, Millipore Direct-
Q 3 1 2512100
DQ3 purification pack 1 2512201
English 13
Other manuals for BODTrak II
3
Table of contents
Popular Medical Equipment manuals by other brands

Compound W
Compound W FREEZE OFF manual

ResMed
ResMed ApneaLink Patient instructions

Zhermack
Zhermack Doublemix user manual

Top shelf Orthopedics
Top shelf Orthopedics Crusader ACL Instructions for use

Mizuho
Mizuho Sugita T2 Clip Tray Series Instructions for use

EunSung
EunSung Vital Injector 2 Operator's manual