
6
F. Engine misfire.
G. Excessive vibration.
H. Enclosed compartments, orconfined areas.
I. Flame or smoke.
J. Rain, snow orwet conditions.
K. Operator non-attendance.
WARNING Check fuel system on a
regular basis. Look for signs of leaks, deterioration,
chafed or spongyfuel hose,loose ormissing fuel hose
clamps, damaged fuel tank or a defective fuel shut-off
valve. Correctanydefectsbefore operation.
WARNING Keep the fire extinguisher
close byyourgenerator, andbefamiliaronhow to use
it. Consult your local fire department for correct
extinguisher type.
INSTALLATION
OUTDOORS: Choose locations where the
generator will not be exposed to rain, snow or direct
sunlight. Position the generator on secure, level
ground soit will nottip or slide down a hill. Place the
generator so that the exhaust fumes will not be
directedtowardspeople.
The installation site must be free from water,
moisture,or dust. All electrical components should be
protected from excessive moisture or the insulation
system will deteriorate and result in grounding or
shorting out thegenerating system.
Foreign matters, such as dust, dirt, sand, lint, or
abrasivematerialscan cause damage tothe generator
head andengineif allowedintoitscooling system.
NEVER install your generator inside confined
areas. Insideinstallation can cause health hazards or
death.
DANGERRemember, exhaust fumes are
deadly carbon monoxide gas, and must be vented to
theoutside where there are no people. Cooling air of
sufficient amounts must be brought in and exhausted
out to ensure proper cooling of the engine and
generator head.
LOAD APPLICATION
Itisimportanttodetermine the total electrical load
beforeitisconnected to the generator. The twomajor
factorsin determining the lifeof a generator head are:
heat build-up, caused by overloading the generator
and corrosive contaminants that attack the wiring
insulation. If the generator is overloaded, the wires
become excessively hot and cause the insulation to
break down, reducing its ability to resist corrosive
contaminants. Over time the effectiveness of the
insulation iseliminatedand a dead short can result.
Always compare the generator nameplate data
with that of the equipment to be used to ensure that
watts, volts, amperage, and frequency requirements
are suitable for operating equipment. The wattage
listed on the equipment nameplate is its rated output.
However, some equipment may require three to ten
times more wattage than its rating on the nameplate,
as the wattage is influenced by the equipment
efficiency, power factor and starting system. NOTE: If
wattage is not given on equipment nameplate,
approximate wattage may be determined by
multiplying nameplate voltage by nameplate
amperage.
VOLTS X AMPS = WATTS
Example: 120V X 5A = 600W
When connecting a resistive load such as
incandescentlights, heatersor common electric power
tools, a capacity of up to the generator full rated
wattage outputcanbe used.
When connecting a resistive-inductive load such
as a fluorescent or mercury light, transformers or
inductive coils, a capacity of up to 0.6 times the
generatorsfull ratedoutputcan be used.
Always allow the generator to reach operating
speed before a loadisapplied.
STARTING ELECTRICMOTORS
Electric motors require much more current (amps)
to start than to run. Some motors, particularlylow cost
split-phase motors, are very hard to start and require 5
to 7timesmore currentto start than to run. Capacitor
motors are easier to start and usually require 2 to 4
timesasmuch current to start than to run. Repulsion
Induction motors are the easiest to start and require
1.5to2.5timesasmuchto start thantorun.
Most fractional motors take about the same
amount of current to run them whether they are of
Repulsion-Induction (RI), Capacitor (Cap), or Split-
Phase (SP) type. The following chart shows the
approximate current required to start and run various
types and sizes of 120 volt 60 cycle electric motors
under variousconditions.
120V,60 HzMotors Starting Amps
Hp motor Running
Watts RI type Cap type SP type
1/6 525 7-11 9-18 16-22
1/4 700 9-15 12-23 22-32
1/3 875 11-18 14-29 26-35
1/2 1175 15-25 20-40 NA
11925 24-40 32-64 NA
1 1/2 2400 30-50 40-80 NA
22900 36-60 48-96 NA
3 4075 51-85 68-136 NA
56750 84-140 112-224 NA
The figures given above are for an average load
such as a blower or fan. If the electric motor is