
signal that would otherwise drop below this level. For example, a +/-5V input signal will be
processed into an approximately 0-5V “chaotic” output with the waveform’s bottom half “clipped”
at 0V. Most audio signals in Eurorack are centered around 0V, so if fed into the PVP without any
additional offset the signal’s bottom half will be clipped. (Note: this sounds cool!)
- The input of each Channel is normalized to the prior channel’s output (except Channel 1’s input,
see below). If a signal is patched to a Channel input, the normalization from the prior channel will
be broken and the Channel in question will process the input signal only.
- The Upper Knob is a simple unipolar attenuator for Channel 1’s input normalized to a static
voltage. If anything is patched to the input of Channel 1, the knob will act as an attenuator for this
signal. If anything is patched into the inputs of Channel 2 onwards, the normalization from
Channel 1’s output is broken and the knob will have no further influence over other channels.
3. Summary of Functions
Front Panel: LED circuit visualizers. Each Channel’s LEDs “steal” current from one another to create an
unpredictable chaotic voltage which the PVP utilizes for your patching pleasure.
Upper Knob: Input signal level attenuator for Channel 1. With nothing patched to the Channel 1 input, a
10V static voltage is normalized to the input and the Upper Knob thus controls the level of the voltage
sent to Channel 1, from 0-10V. Patching a cable to Channel 1’s input will interrupt the normalized voltage
and the Upper Knob becomes an attenuator, with the input signal to Channel 1 “muted” when fully CCW
and at Unity Gain when fully clockwise.
Channel 1 Input: The module’s “Master” CV input in a sense. Any signal patched to this input will be
attenuated by the Upper Knob before being processed by Channel 1 along with any other Channels for
which normalization is maintained.
Channel 2-4 Inputs: Non-attenuated direct CV inputs for each LED processor Channel. A signal patched
to one of these Inputs will interrupt the normalization from the preceding Output and be processed directly
by the corresponding channel. With nothing patched, these Inputs receive their signal from the previous
Channel Output, and using more Channels in a row to process a signal will lead to a more chaotic output.
Channel Outputs: Signal outputs for each of the four processor Channels. Positive input voltages fed to
the corresponding Channel input are processed chaotically and reproduced on the output, which will
generate an unpredictable, fluctuating output voltage that somewhat tracks the input between 0V and 10V
but will deviate in either direction. An input of Ground/0V generally causes low-level chaotic fluctuations
near 0V on the Channel output, while negative voltage inputs will lead to an output of 0V that does not
fluctuate much, if at all.
5. Calibration
Calibration of the PVP is easiest with an oscilloscope, but can be accomplished with a Multimeter as well.
- Patch a unipolar (aka, positive voltage only) low-frequency variable CV source such as a looping
envelope or slope generator (ideally 0-10V but 0-5V or 0-8V will work too) to the Channel 1 Input..
Use your oscilloscope to monitor the voltage range of the input, or make a note of the range if
using a multimeter.
- Turn the Upper Knob fully clockwise and monitor the first Channel Output. Adjust the top rear
trimmer so that the range of the Channel Output roughly tracks the voltage of the input, with the
output neither spending too much time at exactly 0V nor going more than about 500mV above the
original input level. (Note there will be variations between cycles as it is a chaotic module.)
- When you are satisfied, patch the same input signal to the Channel 2 Input and monitor that
Channel output. Repeat the prior rear trimmer adjustment directions, but for the second trimmer.
- Repeat this process for Channels 2, 3 and 4.