ADTRAN T200 H2TU-R Instruction Manual

61222026L7-5B Section 61222026L7-5, Issue 2 1
Section 61222026L7-5B
Issue 2, June 2001
CLEI Code #T1L3W71A _ _
T200 H2TU-R Circuit Pack
2-Wire HDSL (HDSL2) Remote Unit
Installation and Maintenance
1. GENERAL
The ADTRAN 2-wire T200 HDSL2 transceiver unit
for the remote end (H2TU-R), P/N 1222026L7, is a
network terminating unit used to deploy an HDSL2 T1
circuit using 2-wire metallic facilities, see Figure 1.
The H2TU-R is a T200 mechanics card which will fit
T200 or T400 mechanic enclosures. The H2TU-R can
be housed in the ADTRAN standalone metal
enclosures (P/N 1242034LX or 1245034L1). Refer to
the appropriate ADTRAN practice for more
information. The T200 H2TU-R card can also plug
into the ADTRAN HR12 HDSL2 remote shelf (P/N
1242007LX), or the ADTRAN HR4 HDSL2 remote
shelf (P/N 1242008L1).
Figure 1. ADTRAN T200 H2TU-R
Trademarks: Any brand names and product names included in this document are
trademarks, registered trademarks, or trade names of their respective holders.
CONTENTS
1. GENERAL ............................................................................ 1
2. INSTALLATION .................................................................. 2
3. CONNECTIONS ................................................................... 4
4. HDSL2 SYSTEM TESTING ................................................ 4
5. FRONT PANEL OPERATION ............................................ 6
6. CONTROL PORT OPERATION ......................................... 6
7. HDSL2 DEPLOYMENT GUIDELINES ........................... 17
8. TROUBLESHOOTING PROCEDURES .......................... 18
9. MAINTENANCE ............................................................... 18
10. PRODUCT SPECIFICATIONS ......................................... 19
11. WARRANTY AND CUSTOMER SERVICE ................... 20
APPENDIX A. HDSL2 Loopback ........................................... A-1
FIGURES
Figure 1. ADTRAN T200 H2TU-R ......................................... 1
Figure 2. H2TU-R Edge Connector Wiring ............................. 4
Figure 3. H2TU-R MON Diagram .......................................... 4
Figure 4. HDSL2 Loopbacks ................................................... 5
Figure 5. RS-232 (DB-9) Connector Pinout ............................ 6
Figure 6. HDSL2 Main Menu Screen ...................................... 8
Figure 7. HDSL2 Information Screen ..................................... 9
Figure 8. Provisioning Screen .................................................. 9
Figure 9. Span Status Screen ................................................. 10
Figure 10. Detailed Status Screen ............................................ 10
Figure 11. Loopback and Test Commands Screen................... 11
Figure 12. 15-Minute Performance History Line Data
Screen ..................................................................... 11
Figure 13. 24-Hour Performance History Line Data Screen ... 12
Figure 14. Performance Data Definitions Screen .................... 12
Figure 15. Performance Data Definitions Screen Continued ..... 13
Figure 16. Scratch Pad, Circuit ID, Time/Date Screen ............ 13
Figure 17. Terminal Modes Screen .......................................... 14
Figure 18. Alarm History Screen ............................................. 15
Figure 19. Event History Screen .............................................. 15
Figure 20. Virtual Terminal Control Screen ............................ 16
Figure 21. Deployment Guidelines .......................................... 17
TABLES
Table 1. Compliance Codes .................................................... 2
Table 2. Front Panel Indicators .............................................. 3
Table 3. Screen Abbreviations ................................................ 7
Table 4. HDSL2 Loss Values ............................................... 17
Table 5. Loop Insertion Loss Data ....................................... 17
Table 6. Troubleshooting Guide ........................................... 18
Table 7. ADTRAN T200 H2TU-R Specifications ............... 19
Table A-1. In Band Addressable Loopback Codes ................. A-2
TX
RX
M
O
N
1222026L7
O
P
T
CPE LOS
LBK
STAT
DLOS
RLOS
HLOS
DSL
HCRC
ARM/LBK
B8ZS
AIS / LP
(YEL) (GRN)
(OFF) (GRN)

2Section 61222026L7-5, Issue 2 61222026L7-5B
C A U T I O N !
SUBJECT TO ELECTROSTATIC DAMAGE
OR DECREASE IN RELIABILITY.
HANDLING PRECAUTIONS REQUIRED.
This version of the H2TU-R works with multiple list
versions of the HDSL2 transceiver unit for the central
office (H2TU-C) as listed below.
Unit Number Description
1221001LX ..............220/E220 H2TU-C
1221002L1 ...............LiteSpan® H2TU-C
1221003LX ..............DDM+ H2TU-C
1221004LX ..............3192 H2TU-C
1221006L6 ...............T200 H2TU-C
1221007L4 ............... H2TU-C for Soneplex®LEC
1181111LX ..............Total Access®H2TU-C
1222001LX .............. 2nd Gen 220/E220 H2TU-C
1222003LX .............. 2nd Gen DDM+ H2TU-C
1222004LX .............. 2nd Gen 3192 H2TU-C
1222007L4 ...............2nd H2TU-C for Soneplex®
1181112LX .............. 2nd Gen Total Access H2TU-C
The H2TU-R can be deployed in circuits using one
H2TU-C and one H2TU-R.
The H2TU-R terminates local loop HDSL2 signals
originating from the Central Office (CO) unit and
transforms the HDSL2 signal into traditional DS1
signals to be delivered to the customer.
The H2TU-R (P/N 1222026L7) can be used with any
H2TU-C to complete a fully span-powered HDSL2
circuit. Span power is provided from the H2TU-C. Span
powering meets all requirements of Class A2 voltages as
specified by Bellcore GR-1089-CORE. This unit is
intended for Span Power Only. If a locally power unit
is needed, refer to P/N 1222024L7.
Revision History
This is the second release of this document. This
revision includes update Provisioning and Alarm
History Screen.
2. INSTALLATION
After unpacking the unit, inspect it for damage. If
damage is discovered, file a claim with the carrier,
then contact ADTRAN. See Warranty and Customer
Service.
The settings on the H2TU-C are encoded and
transmitted to the H2TU-R once the circuit has
achieved synchronization. There are no switch
settings on the H2TU-R.
Remote Provisioning
This H2TU-R can be used to provision the entire
HDSL2 circuit via the craft interface.
Compliance Codes
Table 1 shows the Compliance Codes for the
H2TU-R. The H2TU-R complies with the requirements
covered under UL 60950 third edition and is intended
to be installed in an enclosure with an Installation
Code (IC) of “B” or “E.”
NOTE
This product is intended for installation in
RESTRICTED ACCESS LOCATIONS only.
Up to -200 Vdc may be present on the HDSL2
telecommunications port.
Front Panel Indicators
There are nine front panel mounted status indicators.
Each indicator is described in Table 2.
Front Panel DS1 Monitor Jack
The H2TU-R provides DS1 monitor bantam jacks.
These jacks provide a test point for DS1 traffic to and
from the customer. See Section 4, HDSL2, System
Testing, for more details.
Code Input Output
Installation Code (IC) A –
Telecommunication Code (TC) X X
Power Code (PC) C C
Table 1. Compliance Codes

61222026L7-5B Section 61222026L7-5, Issue 2 3
Table 2. Front Panel Indicators
Label Condition Description
STAT Off ........................Indicates no power present at H2TU-R.
Blinking Green ..... The unit is in the process of acquiring HDSL2 synchronization.
Solid Green .......... Normal Operation: HDSL2 synchronization is achieved.
DLOS Off ........................DSX-1 signal is present at the H2TU-C.
Red .......................Loss of DSX-1 signal into the H2TU-C.
RLOS Off ........................DS1 signal is present at the H2TU-R.
Red .......................Loss of DS1 signal into the H2TU-R from the CPE.
HLOS Off ........................Normal operation: HDSL2 synchronization on the Loop.
Blinking Red.........GFI or overcurrent condition detected.
Solid Red ..............Loss of HDSL2 synchronization on the Loop.
DSL Off ........................Unit is in the process of acquiring HDSL2 synchronization, or
HDSL2 synchronization has been lost as evidenced by the Red
HLOS indicator.
Green ...................Normal operation: Indicates good signal quality on the Loop. No
routine maintenance or verification is required.
Yellow...................Marginal operation: Indicates marginal signal quality on the Loop.
Degraded conditions suggest verification of key HDSL2
parameters. For details, refer to the Troubleshooting Guide in
section 8 of this practice.
Red .......................Alarm condition: Indicates poor signal quality on the Loop.
Requires prompt troubleshooting of HDSL2 circuit, including
verification of pulse attenuation, insertion loss, and other
parameters. For details, refer to the Troubleshooting Guide in
section 8 of this practice.
Blinking ................Pulse attenuation (ATTEN on Span Status Screen) on Loop is
above the recommended threshold for quality service. If the pulse
attenuation is 30 dB or below, the DSL LED will remain solid. As
described above, the signal quality (margin) on the Loop is
indicated by the color of the DSL LED. For instance, if the signal
quality on the Loop is good and the pulse attenuation is bad, the
LED will Blink Green. If the signal quality is marginal and the
pulse attenuation is good, the LED will be Solid Yellow.
HCRC Off ........................Normal operation: No HDSL2 CRC error detected within the last
24 hours on the Loop (no local loop trouble).
Blinking Yellow ....One or more HDSL2 CRC errors are being detected on the Loop
(local loop trouble).
Solid Yellow .........Four or more HDSL2 CRC errors have occurred on the Loop
within the last 30 minutes. After a HDSL2 CRC error occurs, the
HCRC LED will remain Yellow for 30 minutes. If no HDSL2
CRC errors occur within a rolling 30 minute interval, the HCRC
LED will extinguish.
ARM/LBK Off ........................Unit is not in the armed or loopback state.
Yellow...................Arming sequence has been detected. In this state, the unit is armed
(ready for loopback), but not in loopback.
Green ...................A loopback is active on this specific unit.
B8ZS Off ........................Indicates AMI line code.
Green ...................Indicates B8ZS line code.
AIS/LP Green ...................Indicates loopback will occur upon customer loss of signal.
Off ........................Indicates AIS will be sent to the network upon customer loss of signal.
TX
RX
M
O
N
1222026L7
O
P
T
CPE LOS
LBK
STAT
DLOS
RLOS
HLOS
DSL
HCRC
ARM/LBK
B8ZS
AIS / LP
(YEL) (GRN)
(OFF) (GRN)

4Section 61222026L7-5, Issue 2 61222026L7-5B
3. CONNECTIONS
All connections of the H2TU-R are made through card
edge connectors. Figure 2 gives the card edge pin
assignments for the H2TU-R circuit pack.
When the circuit pack is installed in any of the
H2TU-R enclosures, all connections are made through
the enclosure backplanes. See the following
ADTRAN documents for more information:
Document Number Description
61242007LX-5 ...... HR12 I&M
61242008L1-5 ....... HR4 I&M
61242034L2-5 ....... T400 Single Mount I&M
(removable RJ-48 jacks)
61242034L3-5 ....... T400 Single Mount HV I&M
61245034L1-5 ....... T200 Dual Mount I&M
CAUTION
Ensure chassis ground is properly connected for
either standalone or shelf-mounted applications.
4. HDSL2 SYSTEM TESTING
The T200 H2TU-R provides diagnostic, loopback, and
signal monitoring capabilities.
The nine front panel LEDs provide diagnostics for
HDSL2 loops, DS1 signals, alarms, provisioning, and
loopbacks. See section 2, Installation, for details.
The H2TU-R provides a bidirectional loopback via the
loopback button on the front panel. See the H2TU-R
Network Loopbacks and Customer Loopbacks sections
for more details.
The H2TU-R also provides a nonintrusive test point of
the DS1 signal via the jack labeled “MON” on the
front panel.
DS1 MON Bantam Jacks
The “MON” jack provides a nonintrusive access point
for monitoring the characteristics of the transmit and
receive signals at the DS1 interface point.
For example, the DS1 MON jack on the H2TU-R
could be used to connect to a bit error rate tester to
monitor for synchronization, test patterns, etc.
Figure 3 is an illustration of specific jack detail.
Figure 2. H2TU-R Edge Connector Wiring
Figure 3. H2TU-R MON Diagram
RX
TX
DS1
MON
CPE
DS1
INTERFACE
H2TU-R
T
R
T1
R1

61222026L7-5B Section 61222026L7-5, Issue 2 5
NOTE
For the MON jacks, the Tx and Rx indications
relate to the direction of the signal to/from the
CPE, respectively.
H2TU-R Network Loopbacks
The H2TU-R responds to multiple loopback activation
processes. The loopback position is a logic loopback
located within the H2TU-R internal HDSL2
transceiver. See Figure 4.
First, manual loopback activation may be
accomplished using the control port of the H2TU-R.
Second, the H2TU-R will respond to the industry
defacto HDSL loopback codes as designated in the
ANSI document T1E1.4/92. A synopsis of the
method described by ANSI is presented in
Appendix A.
Third, the H2TU-R responds to T1 Network Interface
Unit (NIU) loopback codes as described in Bellcore
TR-TSY-000312. The NIU loopback codes are as
follows:
In-Band Codes
Loop up ....... 11000
Loop down .. 11100
ESF Codes
Loop up ....... 1111 1111 0100 1000
Loop down .. 1111 1111 0010 0100
Receiving the in-band codes for more than five
seconds or the ESF codes four consecutive times will
cause the appropriate loopback action. The ESF codes
must be transmitted in the Facility Data Link (FDL).
NOTE
The NIU loopback option must be enabled
before the H2TU-R can respond to the NIU
loopback.
The H2TU-R will respond to the loop up codes by
activating the NIU loopback from either the disarmed
or armed state. The loop down codes will return the
H2TU-R to the state from the armed or loop up state.
Refer to Appendix A for more details on loopbacks
and loopback arming sequences.
Figure 3 illustrates all of the possible loopback
locations of the ADTRAN HDSL2 equipment.
Customer Loopbacks
In addition to the loopbacks in the direction of the
network, the H2TU-R may also be looped back in the
direction of the customer. The H2TU-C and H2TU-R
Customer Side Loopbacks are illustrated in Figure 3.
NOTE
Network and customer loopbacks are governed
by the loopback time out option (Default=120
minutes).
Figure 4. HDSL2 Loopbacks
!"
#
#
#
#
#
$%!& #!'
$ !
(&&

6Section 61222026L7-5, Issue 2 61222026L7-5B
5. FRONT PANEL OPERATION
The front panel contains two pushbuttons on the
faceplate. These are labeled “LBK” and
“OPT.”
The LBK pushbutton controls a bidirectional loopback
at the H2TU-R. Pressing the button causes a
bidirectional loopback to occur. If the bidirectional
loopback is active, pressing the button a second time
will disable the loopback.
The OPT pushbutton controls the Customer Loss of
Signal response. Press the button to toggle the setting
between a Network Loopback and AIS. The front
panel LED labeled “AIS/LP” indicates the current
setting.
6. CONTROL PORT OPERATION
The H2TU-R provides a faceplate-mounted DB-9
connector that supplies an RS-232 interface for
connection to a controlling terminal. The pinout of
the DB-9 is illustrated in Figure 5.
The terminal interface operates at data rates from
1.2 kbps to 19.2 kbps. A terminal session is initiated
by entering multiple space bar characters which are
used by the H2TU-R to determine the rate of the
terminal. The asynchronous data format is fixed at 8
data bits, no parity, and 1 stop bit.
NOTE
When operating in Virtual Terminal Mode, the
terminal baud rate should be 4.8 kbps or higher.
The H2TU-R supports two types of terminal
emulation modes. The Manual Update Mode is a
dumb terminal mode, where the user can utilize print
screen and log file commands easily. This mode also
includes a message on the top of the terminal screen
(3 SPACES TO UPDATE).
NOTE
Pressing “CTRL” and “T” while on any screen
will toggle between the Manual and Real Time
Terminal Modes.
The Real Time Update Mode is a VT100 terminal
mode. This mode enables all screens highlighting and
cursor placement. Print screen and log file commands
are not available in this mode.
The default terminal mode is Real Time Update
Mode.
NOTE
If you are using a personal computer (PC) with
terminal emulation capability, be sure to disable
any power-saving programs. Otherwise,
communication between the PC and the HDSL2
unit may be disrupted, resulting in misplaced
characters or screen time outs.
Figure 5. RS-232 (DB-9) Connector Pinout
6
7
8
9
1
2
3
4
5
TXD (Transmit Data)
RXD (Receive Data)
SGN (Signal Ground)

61222026L7-5B Section 61222026L7-5, Issue 2 7
Table 3. Screen Abbreviations
Abbreviation Definition
ES ..............................................Errored Seconds
DSX/DS1 ........ (SF) Second in which a BPV or frame bit error occurs
(ESF) Second in which a BPV or CRC error occurs
HDSL2 ............ Second in which a CRC error occurs
SES ............................................Severely Errored Seconds
DSX/DS1 ........ (SF) Second in which 1544 BPVs or 8 frame bit errors occur
(ESF) Second in which 1544 BPVs or 320 CRC errors occur
HDSL2 ............ Second in which 165 CRC errors occur
UAS ...........................................Unavailable Seconds
DSX/DS1 ........ Second in which there is a loss of signal or sync
HDSL2 ............ Second in which there is a loss of signal or sync
SF ...............................................Superframe Format
ESF ............................................Extended Superframe Format
B8ZS ..........................................Bipolar with 8 Zero Substitution
AMI ...........................................Alternate Mark Inversion
LBO ...........................................Line Buildout
BPV ...........................................Bipolar Violation
DSX/DS1 ........ Second in which a bipolar violation occurs
NIU ............................................T1 Network Interface Unit
S/N .............................................Serial Number
15M............................................Fifteen-Minute period
24H ............................................Twenty-Four-Hour period
Operation
For abbreviations used in the screen diagrams, see
Table 3.
The screens illustrated in Figures 6 through 21 apply
to an HDSL2 circuit deployed with ADTRAN's
HDSL2 technology. The circuit includes an H2TU-C
and an H2TU-R. Other configurations are possible
(i.e., HDSL2 repeater, other vendor's equipment) and
their displays will vary slightly from those shown in
this section.

8Section 61222026L7-5, Issue 2 61222026L7-5B
A terminal session is initiated by entering multiple
space bar characters, which are used by the H2TU-R
to determine the speed of the terminal. Once the
speed has been determined, an HDSL2 Main Menu is
presented, as illustrated in Figure 6.
Figure 6. HDSL2 Main Menu Screen
CIRCUIT ID: 01/01/00 00:32:53
Adtran HDSL2 Main Menu
1. HDSL2 Unit Information
2. Provisioning
3. Span Status
4. Loopbacks and Test
5. Performance History
6. Scratch Pad, Ckt ID, Time/Date
7. Terminal Modes
8. Alarm History
9. Event History
10. Virtual Terminal Control
Selection:
The Main Menu provides access to detailed
performance and configuration information. Selecting
the corresponding number or letter can access the
following screens:
1. HDSL2 Unit Information
2. Provisioning
3. Span Status
4. Loopback and Test Commands
5. Performance History
6. Scratch Pad, Circuit ID, Time/Date
7. Terminal Modes
8. Alarm History
9. Event History
10. Virtual Terminal Control

61222026L7-5B Section 61222026L7-5, Issue 2 9
The HDSL2 Unit Information Screen, illustrated in
Figure 7, provides detailed product information on
each component in the HDSL2 circuit. This screen
also displays contact information for ADTRAN
Technical Support, Internet site, and address.
Figure 7. HDSL2 Information Screen
CIRCUIT ID: 01/01/00 00:35:20
Press ESC to return to previous menu
ADTRAN
901 Explorer Boulevard
Huntsville, Alabama 35806-2807
--------------------- For Information or Technical Support ---------------------
Support Hours ( Normal 7am - 7pm CST, Emergency 7 days x 24 hours )
Phone: 800.726.8663 / 888.873.HDSL Fax: 256.963.6217 Internet: www.adtran.com
--------------------------------------------------------------------------------
ADTN H2TU-C ADTN H2TU-R
List: 4 List: 7
S/N: 123456789 S/N: 123456789
CLEI: T1L3X8XAAA CLEI: T1L3W71AAA
Manf: 01/01/2000 Manf: 01/01/2000
The Provisioning Screen, illustrated in Figure 8,
displays the current provisioning settings for the
HDSL2 circuit. To change a particular option setting,
select the appropriate number, and a new menu will
appear with a list of the available settings.
Options that cannot be changed from this screen are
marked with an asterisk "*".
Figure 8. Provisioning Screen
CIRCUIT ID: 01/01/00 00:35:31
Press ESC to return to previous menu
Provisioning
1. DSX-1 Line Buildout = 0-133 Feet
2. DSX-1/DS1 Line Code = B8ZS
3. NIU Loopback = Enabled
4. Loopback Timeout = 120 Min
5. DS1 TX Level = 0 dB
6. Customer Loss Indicator = AIS
7. PRM Setting = None
8. Loop Atten Alarm Thres = 30 dB
9. SNR Margin Alarm Thres = 06 dB
Selection:

10 Section 61222026L7-5, Issue 2 61222026L7-5B
The Span Status Screen, illustrated in Figure 9,
provides quick access to status information for each
HDSL2 receiver in the circuit. The Legend selection
provides a description of the messages that are used
on the Span Status Screens.
The Detailed Status selection from the System Status
Menu, illustrated in Figure 10, displays the HDSL2
and T1 status for each receiver point.
From this screen, all registers can be zeroed (which
requires confirmation), and MIN/MAX can be reset.
NOTE
The insertion loss reading shown on the Detailed
Status Screen is an approximation that is valid
for some loops. Caution should be used when
using this value.
Figure 10. Detailed Status Screen
CIRCUIT ID: 01/01/00 00:37:20
Press ESC to return to previous menu
Detailed HDSL2 and T1 Status
HDSL2 RECEIVER DATA
H2TU-C H2TU-R
-------- --------
MARGIN(CUR/MIN/MAX): 11/00/12 11/00/13
ATTEN(CUR/MAX): 30/30 29/29
INS LOSS (CUR/MAX): 38/38 37/37
ES 15MIN: 001 001
SES 15MIN: 000 001
UAS 15MIN: 014 017
T1 RECEIVER DATA
DSX-1 DS1
------- -------
FRAMING: UNFR UNFR
LINE CODE: B8ZS B8ZS
ES-P/ES-L: 001/000 000/000 1. Zero Registers
SES-P/SES-L: 001/000 000/000 2. Restart Min/Max
UAS-P/UAS-L: 000/382 000/391
ALARMS: NONE NONE Selection:
Figure 9. Span Status Screen
CIRCUIT ID: 01/01/00 00:36:49
Press ESC to return to previous menu
Span Status Screen
ATTEN
______ <-23dB-> ______
|H2TUC | |H2TUR |
<---| | | |--->
| | | |
NET | |<--------->| | CUST
| |15dB 14dB| |
--->| | MARGIN | |<---
DSX-1 |______| |______| DS1
1. Legend
2. Detailed Status
Selection:

61222026L7-5B Section 61222026L7-5, Issue 2 11
Figure 11 illustrates the Loopback and Test
Commands Screen, which provides the user with the
ability to invoke or terminate all available HDSL2
loopbacks. Each HDSL2 circuit component can be
looped toward the network or customer from this
screen. It also provides a self-test option to perform a
self-diagnostic of the H2TU-C and H2TU-R.
The Performance History Screens, illustrated in
Figure 12 and Figure 13 display the historical
HDSL2 and T1 performance data in several different
registers.
Figure 11. Loopback and Test Commands Screen
CIRCUIT ID: 01/01/00 00:38:20
Press ESC to return to previous menu
Loopback and Test Commands
______ ______
|H2TUC | |H2TUR |
<---| | | |--->
| | | |
NET | |<--------->| | CUST
| | | |
--->| | | |<---
DSX-1 |______| |______| DS1
1. Run Self Tests
2. H2TU-C Loopup Network
3. H2TU-C Loopup Customer
4. H2TU-R Loopup Network
5. H2TU-R Loopup Customer
Selection:
Figure 12. 15-Minute Performance History Line Data Screen
CIRCUIT ID: 01/01/00 00:08:46
Press ESC to return to previous menu
Menu 15 Minute H2TUC DSX-1 Performance Data
1. Definitions ES-L SES-L UAS-L CV-L
2. Reset Data 000 000 000 00000
3. 15 Min Data 00:00 --- --- --- -----
4. 24 Hr Data 23:45 --- --- --- -----
5. Line Data 23:30 --- --- --- -----
6. Path Data 23:15 --- --- --- -----
7. H2TUC DSX-1 23:00 --- --- --- -----
8. H2TUC LOOP 22:45 --- --- --- -----
9. H2TUR LOOP 22:30 --- --- --- -----
10. H2TUR DS1 22:15 --- --- --- -----
22:00 --- --- --- -----
21:45 --- --- --- -----
21:30 --- --- --- -----
21:15 --- --- --- -----
___ ___
-7->| C | | R |---->
| |<-8---9->| |
<---|___| |___|<-10-
Selection:

12 Section 61222026L7-5, Issue 2 61222026L7-5B
At each 15-minute interval, the performance
information is transferred to the 15-minute
performance data register. This unit stores
performance data in 15-minute increments for the last
24-hour period. At each 24-hour interval, the
performance data is transferred into the 24-hour
performance data registers. This unit stores up to 31
days of 24-hour interval data.
Figure 13. 24-Hour Performance History Line Data Screen
The user is prompted to select a module and interface
to view the corresponding performance data. Line (L)
and Path (P) can be viewed.
Abbreviations used in the Performance History
screens are defined in Data Definition Screens, see
Figure 14 and Figure 15.
Figure 14. Performance Data Definitions Screen
CIRCUIT ID: 01/01/00 00:54:35
Press ESC to return to previous menu
Performance Data Definitions
H2TUC, H2TUR, and H2R LOOP Related: HDSL2 Framing
ES-L Errored Seconds CRC>=1 or LOSW>=1
SES-L Severely Errored Seconds CRC>=50 or LOSW>=1
UAS-L Unavailable Seconds >10 cont. SES-Ls
DS1 and DSX-1 Line Related: Superframe and Extended Superframe
ES-L Errored Seconds (BPV+EXZ)>=1 or LOS>= 1
SES-L Severely Errored Seconds (BPV+EXZ)>=1544 or LOS>=1
UAS-L Unavailable Seconds >10 cont. SES-Ls
CV-L Code Violation Count (BPV+EXZ) count
NOTE: Reverse video indicates invalid data due to a terminal restart (or power
cycle), a data register reset, or a system date or time change.
N. Next
P. Previous Selection:
CIRCUIT ID: 01/01/00 00:08:22
Press ESC to return to previous menu
Menu 24 Hour H2TUC DSX-1 Performance Data
1. Definitions ES-L SES-L UAS-L CV-L
2. Reset Data 00000 00000 00000 0000000
3. 15 Min Data 12/31 ----- ----- ----- -------
4. 24 Hr Data 12/30 ----- ----- ----- -------
5. Line Data 12/29 ----- ----- ----- -------
6. Path Data 12/28 ----- ----- ----- -------
7. H2TUC DSX-1 12/27 ----- ----- ----- -------
8. H2TUC LOOP 12/26 ----- ----- ----- -------
9. H2TUR LOOP 12/25 ----- ----- ----- -------
10. H2TUR DS1 12/24 ----- ----- ----- -------
12/23 ----- ----- ----- -------
12/22 ----- ----- ----- -------
___ ___
-7->| C | | R |---->
| |<-8---9->| |
<---|___| |___|<-10-
Selection:

61222026L7-5B Section 61222026L7-5, Issue 2 13
Figure 15. Performance Data Definitions Screen (continued)
CIRCUIT ID: 01/01/00 00:55:00
Press ESC to return to previous menu
Performance Data Definitions
DS1 and DSX-1 Path Related: Superframe Extended Superframe
ES-P Errored Seconds FE>=1 or CRC>=1 or
SEF>=1 or AIS>=1 SEF>=1 or AIS>=1
SES-P Severely Errored Seconds FE>=8 or CRC>=320 or
SEF>=1 or AIS>=1 SEF>=1 or AIS>=1
UAS-P Unavailable Seconds >10 cont. SES-Ps >10 cont. SES-Ps
CV-P Code Violation Count FE count CRC error count
NOTE: Under o UAS-P condition, ES-P and SES-P counts are inhibited.
Under a SES-L or SES-P condition, the respective CV-L or CV-P count is
inhibited.
P. Previous Selection:
Figure 16 illustrates the Scratch Pad, Circuit ID, and
Time/Date Screen. The Scratch Pad data can be any
alphanumeric string up to 50 characters in length. The
Circuit ID can be any alphanumeric string up to 25
characters in length. The time should be entered using
military time (for example, enter 3:15 p.m. as
"151500"). The date should be entered as MMDDYY
(for example, enter January 02, 2000, as "010200").
Figure 16. Scratch Pad, Circuit ID, Time/Date Screen
CIRCUIT ID: 01/01/00 00:44:17
Current Scratch Pad:
New Scratch Pad =
New Circuit ID =
New Date = / / (MM/DD/YY)
New Time = : : (HH:MM:SS)
Press TAB to skip to next entry field.
Press ESC to Exit.

14 Section 61222026L7-5, Issue 2 61222026L7-5B
Figure 17. Terminal Modes Screen
CIRCUIT ID: 01/01/00 00:44:30
Press ESC to return to previous menu
TERMINAL MODES MENU
MANUAL UPDATE MODE:
* You can print or log screens
* No text is highlighted
* “3 SPACES TO UPDATE” appears at the top of each screen,
reminding you to press the spacebar 3 times to update the screen
* There is a delay between screen changes & updates
* After 30 min. of no interaction, a new baud rate search is begun
* Ignores input until screen is finished printing.
REAL-TIME UPDATE MODE:
* Faster of the two modes
* You cannot print screens to a log file
* Highlighting is enabled
* Recommended for daily operation
Press CTRL+T to toggle update modes on any screen.
This unit includes two terminal emulation modes.
These modes are described on the Terminal Modes
Screen, illustrated in Figure 17.
NOTE
Pressing “CTRL” and “T” while on any screen
will toggle between Manual and Real Time
Terminal Modes.
The Manual Update Mode allows the user to manually
update the provisioning option screens. This mode
supports efficient print screen and log file utilities for
storage of key provisioning parameters, alarm or
performance history and current system status. “3
SPACES TO UPDATE” appears at the top of each
screen. By pressing the space bar 3 times, the screen
will be refreshed and will reflect the most current
circuit conditions and provisioning options.
NOTE
When the H2TU-R is used with the following
H2TU-Cs: 1221001L4, 1221003L4, 1221004L4,
1221007L4, and 1181111L4, a remote virtual
terminal session is supported while accessing
the terminal screens via the craft ports (DB-9) on
the faceplate. When operating in Virtual
Terminal Mode, the terminal baud rate should
be 4.8 kbps or higher. The remote terminal
session is automatically initiated if a terminal is
connected to the H2TU-R, and the HDSL2 loops
are in sync with the H2TU-C. When a remote
terminal session is in progress, the screens are
not accessible from the H2TU-C. Once a remote
terminal session is terminated, the screens are
available at the H2TU-C. The remote terminal
session is terminated by typing “CTRL” + X ”
on the terminal at the H2TU-R. Alternatively, if
there is no keyboard input at the H2TU-R’s
terminal for a period of 5 minutes, the remote
session will time out, and the screens will once
again be available at the H2TU-C. After the 5
minute time out, the remote terminal session can
be reinstated at the H2TU-R by pressing the
space bar several times.
The default terminal emulation mode is the Real Time
Update Mode (VT100). This mode provides real time
updating of HDSL2 circuit conditions and
provisioning options as changes occur. While in Real
Time Update Mode, the unit is anticipating baud poll
responses from the terminal.

61222026L7-5B Section 61222026L7-5, Issue 2 15
Figure 18. Alarm History Screen
The Alarm History Screen, illustrated in Figure 18,
provides the user with a detailed alarm history and
events log for the HDSL2 and T1 spans.
This screen includes a time, date, first/last occurrence,
and count for each type of HDSL2 or T1 alarm.
CIRCUIT ID: 01/01/00 00:44:49
Press ESC to return to previous menu
T1 Alarm History
LOCATION ALARM FIRST LAST CURRENT COUNT
--------------------------------------------------------------------------------
H2TU-C RED(LOS/LOF) OK 000
(DSX-1) YELLOW(RAI) OK 000
BLUE(AIS) OK 000
H2TU-R RED(LOS/LOF) OK 000
(DS1) YELLOW(RAI) OK 000
BLUE(AIS) OK 000
--------------------------------------------------------------------------------
1. T1 Alarm 2. HDSL2 Span C. Clear T1 Alarm
Selection:
The Event History Screen, illustrated in Figure 19,
provides a log history of HDSL2 circuit events.
Figure 19. Event History Screen
CIRCUIT ID: 01/01/00 00:45:05
Press ESC to return to previous menu
Num Description of Event Date Time
-----------------------------------------------------------------
1. H2TU-R Powered Up 01/01/00 00:00:01
2. H2TU-C Powered Up 01/01/00 00:30:17
Page Number: 1/ 1 Number of Events: 2
-----------------------------------------------------------------
‘P’ - Previous Page ‘H’ - Home ‘R’ - Reset Events
‘N’ - Next Page ‘E’ - End
Selection:

16 Section 61222026L7-5, Issue 2 61222026L7-5B
Figure 20. Virtual Terminal Control Screen
CIRCUIT ID: 01/01/00 00:45:20
Virtual Terminal Session: Inactive
Virtual Host: no
Virtual Terminal Control
1. Log into H2TU-C
Selection:
Figure 20, illustrates the Virtual Terminal Control
Screen.

61222026L7-5B Section 61222026L7-5, Issue 2 17
7. HDSL2 DEPLOYMENT GUIDELINES
The ADTRAN HDSL2 system is designed to provide
DS1-based services over loops designed to comply
with Carrier Service Area (CSA) guidelines. CSA
deployment guidelines are given below.
1. All loops are non-loaded only.
2. For loops with 26-AWG cable, the maximum
loop length including bridged tap lengths is 9
kft.
3. For loops with 24-AWG cable, the maximum
loop length including bridged tap lengths is
12 kft.
4. Any single bridged tap is limited to 2 kft.
5. Total bridged tap length is limited to 2.5 kft.
6. The total length of multi-gauge cable containing
26-AWG cable must not exceed
12 - {(3*L26)/(9-LBTAP)} (in kft)
L26 =Total length of 26-AWG cable
excluding bridged taps (in kft)
LBTAP =Total length of all bridged taps (in kft)
This deployment criteria is summarized in the chart
shown in Figure 21.
Loop loss per kft for other wire is summarized in
Table 4.
Recommended maximum local loop loss information
for PIC cable at 70°F, 135 Ω, resistive termination is
provided in Table 5.
An approximation for the maximum amount of
wideband noise on an HDSL2 local loop as measured
by a 50 kb filter is ≤31 dBrn.
An approximation for the maximum level of impulse
noise as measured using a 50 kb filter on an HDSL2
loop is ≤50 dBrn.
NOTE
These approximations are to be used as guidelines
only and may vary slightly on different loops.
Adhering to the guidelines should produce
performance in excess of 10-7 BER.
For further information regarding deployment
guidelines and applications, reference ADTRAN's
Supplemental Deployment Information for HDSL/
HDSL2 document, P/N 61221HDSLL1-10.
2.5
INVALID CABLE LENGTHS
2.0 1.5 1.0 0.5 0.0
TOTAL
BRIDGED
TAP
LENGTH
(KFT)
VALID HDSL2 CABLE LENGTHS
Figure 21. Deployment Guidelines
Cable Cable Temperature:
Gauge Type 68°90°120°
26 ............... PIC .............. 3.902 ..... 4.051 ..... 4.253
26 ............... Pulp ............. 4.030 ..... 4.179 ..... 4.381
24 ............... PIC .............. 2.863 ..... 2.957 ..... 3.083
24 ............... Pulp ............. 3.159 ..... 3.257 ..... 3.391
22 ............... PIC .............. 2.198 ..... 2.255 ..... 2.333
22 ............... Pulp ............. 2.483 ..... 2.45 ....... 2.629
19 ............... PIC .............. 1.551 ..... 1.587 ..... 1.634
19 ............... Pulp ............. 1.817 ..... 1.856 ..... 1.909
Table 4. HDSL2 Loss Values
(200 kHz cable loss in dB/kft at 135 Ω)
Table 5. Loop Insertion Loss Data
)zH(ycneuqerF)Bd(ssoLmumixaM
000,3
000,01
000,05
000,001
000,051
000,691
000,002
000,052
000,523
0.21
0.51
5.52
0.03
57.23
0.53
52.53
5.73
00.24

18 Section 61222026L7-5, Issue 2 61222026L7-5B
8. TROUBLESHOOTING PROCEDURES
Use Table 6 to troubleshoot the ADTRAN H2TU-R.
9. MAINTENANCE
The ADTRAN H2TU-R requires no routine
maintenance. In case of equipment malfunction, use
the faceplate Bantam jack and/or DB-9 connector to
help locate the source of the problem.
ADTRAN does not recommend that repairs be
performed in the field. Repair services may be
obtained by returning the defective unit to the
ADTRAN Customer and Product Service (CAPS)
Department.
Table 6. Troubleshooting Guide
Condition: All front panel indicators are Off.
Solutions:
1. Make sure the H2TU-R is properly seated in the housing.
2. Verify that the H2TU-C is delivering sufficient simplex voltage to the loops.
3. If Steps 1 and 2 pass, replace the H2TU-R.
Condition: Power is present and adequate, but loop sync is not available (HLOS).
Solutions:
1. Verify that the loop conforms with CSA guidelines (not too long, etc.).
2. Verify that the tip and ring of the HDSL2 loop belong to the same twisted pair.
3. Verify that loop loss at 196 kHz is not greater than 35 dB.
4. Verify that noise on the HDSL2 loop is within acceptable limits (see section 7 of this practice).
5. If steps 1 through 4 pass and loop sync is still not available, replace the H2TU-R.
Condition: HCRC LED is blinking yellow.
Solution:
Errors are being taken on the HDSL2 loop. The craft interface will identify the source. BERT tests to the
appropriate loopbacks should also reveal the source of the problem.
Condition: DSL LED is yellow, red or blinking.
Solutions:
1. Verify that loss (pulse attenuation) on Current System Status screen is < 30 dB.
2. Verify that the loop conforms with CSA guidelines (not too long, etc.).
3. Verify that loop loss at 196 kHz is not greater than 35 dB.
4. Verify that noise on the HDSL2 loop is within acceptable limits (see section 7 of this practice).
5. If steps 1 through 4 pass and LED is yellow, good service can be assumed.

61222026L7-5B Section 61222026L7-5, Issue 2 19
10. PRODUCT SPECIFICATIONS
Table 7 lists the H2TU-R specifications.
Table 7. ADTRAN T200 H2TU-R Specifications
Loop Interface
Modulation Type ...................................... 16-TC PAM
Mode ........................................................ Full Duplex, Partially Overlapped Echo Canceling
Number of Pairs ....................................... One
Bit Rate .................................................... 1.552 mpbs
Baud Rate ................................................. 517.333k baud
Service Range .......................................... Defined by Carrier Service Area Guidelines
Loop Loss ................................................. 35 dB maximum @ 196 kHz
Bridged Taps ............................................ Single Taps < 2 kft, Total Taps < 2.5 kft
Performance ............................................. Compliant with T1.418-2000 (HDSL2 Standard)
Return Loss .............................................. 12 dB (50 kHz to 200 kHz)
Input Impedance....................................... 135 Ω
H2TU-C Tx Pwr (Data) Level ................. 16.6 + 0.5 dBm (0 to 450 kHz)
H2TU-C Tx Pwr (ACT) Level ................ 16.3 + 0.5 dBm (0 to 350 kHz)
Maximum Loop Resistance ..................... 900Ωper span
Customer Interface
DS1 (T1.403 compatible) (ITU-T1.431 compliant)
DS1 Signal Output Level ......................... 0, -7.5 or -15 dB
DS1 Input Signal Level ........................... 0 to -22.5 dB
DS1 Line Coding ..................................... AMI, B8ZS
DS1 Framing Format ............................... SF, ESF, Unframed
Power
Span-powered by H2TU-C
Maximum Heat Dissipation ..................... 3.0 W (Span Power Mode)
Span Current ............................................ 15 mA to 20 mA (with 1 H2TU-R)
Clock Sources
Clock Sources .......................................... Internal, HDSL2 Loop Derived
Internal Clock Accuracy .......................... ±25 ppm, (exceeds Stratum 4). Meets T1.101 timing requirements.
Tests
Diagnostics ............................................... Loopback (H2TU-R), initiated with HDSL2 in-band codes, initiated with T1
NIU in-band codes, initiated with H2TU-C command, initiated manually, H2TU-R control port. Self-Test.
Physical
Dimensions .............................................. 5.5 in. High, 0.7 in. Wide, 6.0 in. Deep
Weight ...................................................... < 1 pound
Environment
Temperature ............................................. Operating (Standard): -40°C to +70°C; Storage: -40°C to +85°C
Relative Humidity .................................... Up to 95 percent non-condensing
Part Number
H2TU-R T200 Circuit Pack ..................... 1222026L7

20 Section 61222026L7-5, Issue 2 61222026L7-5B
11. WARRANTY AND CUSTOMER SERVICE
ADTRAN will replace or repair this product within 10
years from the date of shipment if it does not meet its
published specifications or fails while in service
(see ADTRAN U.S. and Canada Carrier Networks
Equipment Warranty, Repair, and Return Policy and
Procedure, document 60000087-10).
Contact CAPS prior to returning equipment to
ADTRAN.
For service, CAPS requests, or further information,
contact one of the following numbers:
ADTRAN Sales
Pricing and Availability
(800) 827-0807
ADTRAN Technical Support
Pre-sales Applications/Post-sales Technical Assistance
(800) 726-8663
Standard hours: Monday-Friday, 7 a.m. to 7 p.m. CST
Emergency hours: 7 days/week, 24 hours/day
ADTRAN Repair/CAPS
Return for repair/upgrade
(256) 963-8722
Repair and Return Address
ADTRAN, Inc.
CAPS
901 Explorer Boulevard
Huntsville, Alabama 35806-2807
Other manuals for T200 H2TU-R
5
Table of contents
Other ADTRAN Remote Control manuals