
FLIGHT CREW TRAINING MANUAL
OPERATIONAL PHILOSOPHY
FLIGHT CONTROLS
01.020
JAN 09/07
The above-mentioned pitch law is not the most appropriate for takeoff and flare,
because the stable flight path is not what the PF naturally expects. Therefore,
the computers automatically adapt the control laws to the flight phases:
. GROUND LAW: The control law is direct law
. FLARE LAW: The control law is a smoother direct law.
Operational Recommendation:
Takeoff and landing maneuvers are naturally achieved. For example, a flare
requires the PF to apply permanent aft pressure on the sidestick, in order to
achieve a progressive flare. Whereas, derotation consists of smoothly flying
the nosegear down, by applying slight aft pressure on the sidestick.
LATERAL CHARACTERISTICS
NORMAL CONDITIONS
When the PF performs a lateral input on the sidestick, a roll rate is ordered and
naturally obtained.
Therefore, at a bank angle of less than 33 degrees, with no input on the
sidestick, a zero roll rate is ordered, and the current bank angle is maintained.
Consequently, the aircraft is laterally stable, and no aileron trim is required.
However, lateral law is also a mixture of roll and yaw demand with:
-- Automatic turn coordination
-- Automatic yaw damping
-- Initial yaw damper response to a major aircraft assymetry.
In addition, if the bank angle is less than 33 degrees, pitch compensation is
provided.
If the bank angle is greater than 33 degrees, spiral stability is reintroduced and
pitch compensation is no longer available. This is because, in normal situations,
there is no operational reason to fly with such high bank angles for a long
period of time.
AIRBUS LATERAL CHARACTERISTIC
ENV A330/A340 FLEET FCTM Page 3 of 21