INGENIA Everest XCR User manual

INGENIA-CAT S.L.
AVILA 124 2-B
08018 BARCELONA
Everest XCR - Product manual
Edition 10/01/2020
For the most up to date information visit the online manual.

1. Table of Contents
1. Table of Contents 2
2. General Information 5
2.1. Manual revision history....................................................................................................................................... 5
2.2. Disclaimers and limitations of liability .............................................................................................................. 5
2.3. Contact ................................................................................................................................................................ 5
3. Safety Information 6
3.1. For your safety..................................................................................................................................................... 6
3.2. Warnings.............................................................................................................................................................. 6
3.3. Precautions ......................................................................................................................................................... 6
4. Product Description 7
4.1. Part Numbering................................................................................................................................................... 7
4.2. Specifications...................................................................................................................................................... 7
4.3. Product Revisions ............................................................................................................................................. 14
4.4. Thermal and Power Specifications .................................................................................................................. 14
4.4.1. Standby power consumption........................................................................................................................... 14
4.4.2. Thermal model.................................................................................................................................................. 15
4.4.3. Current derating................................................................................................................................................ 16
4.4.4. Heat dissipation and heatsink calculation ...................................................................................................... 16
4.4.5. Energy efficiency ............................................................................................................................................... 18
5. EtherCAT Specifications 19
6. CANopen Specifications 20
6.1. Specifications.................................................................................................................................................... 20
7. Connectors Guide 21
7.1. Connector Overview ......................................................................................................................................... 21
7.2. Supply................................................................................................................................................................ 21
7.3. Motor................................................................................................................................................................. 22
7.4. Feedback Connector......................................................................................................................................... 23
7.5. Input / Outputs Connector ............................................................................................................................... 24
7.6. EtherCAT Connectors........................................................................................................................................ 26
7.7. Mating Connectors............................................................................................................................................ 27
7.7.1. Common mating terminals and cables for all signal connectors................................................................... 29
8. Signalling LEDs 32
8.1. Start-up Sequence ............................................................................................................................................ 32
8.2. Driver Status LEDs............................................................................................................................................. 33
8.3. EtherCAT Status LEDs ....................................................................................................................................... 33
8.4. CANopen Status LEDs ....................................................................................................................................... 34
9. Wiring and Connections 36
9.1. Everest XCR Connection Diagram .................................................................................................................... 36

9.2. Protective Earth ................................................................................................................................................ 38
9.3. Power Supply and Motor Power....................................................................................................................... 40
9.3.1. Single Power Supply ......................................................................................................................................... 40
9.3.1.1 Power Supply Requirements............................................................................................................................ 40
9.3.2. Dual Power Supply........................................................................................................................................... 41
9.3.2.1 Logic Supply Requirements.............................................................................................................................. 41
9.3.3. Power Supply EMI Filter.................................................................................................................................... 41
9.3.4. Shunt Braking Resistor Connection ................................................................................................................ 42
9.3.5. Motor Connections............................................................................................................................................ 43
9.3.5.1 3 Phase Brushless.............................................................................................................................................. 43
9.3.5.2 DC Motor............................................................................................................................................................ 44
9.3.5.3 Motor Choke ...................................................................................................................................................... 44
9.3.6. Power Wiring Recommendations..................................................................................................................... 45
9.3.6.1 Cable Selection ................................................................................................................................................. 45
9.3.6.2 Soldering Power Pins........................................................................................................................................ 45
9.4. Safe Torque Off (STO) ....................................................................................................................................... 47
9.4.1. Safety Function Specifications......................................................................................................................... 47
9.4.2. Integration Requirements ................................................................................................................................ 48
9.4.3. STO External Diagnostic Test ........................................................................................................................... 50
9.4.4. STO Operation States ....................................................................................................................................... 52
9.4.5. Interface and Connections ............................................................................................................................... 53
9.4.6. STO bypass (needed when no STO functionality is implemented) ................................................................ 55
9.5. Brake and Motor Temperature......................................................................................................................... 56
9.5.1. Motor electromagnetic / electromechanical brake......................................................................................... 56
9.5.2. External temperature sensor........................................................................................................................... 57
9.6. Feedbacks.......................................................................................................................................................... 59
9.6.1. Digital Halls ....................................................................................................................................................... 59
9.6.2. Absolute Encoder 1 ........................................................................................................................................... 61
9.6.3. Absolute Encoder 2 ........................................................................................................................................... 63
9.6.4. Incremental Encoder........................................................................................................................................ 64
9.6.5. Feedback wiring recommendations ................................................................................................................ 66
9.7. Inputs and Outputs ........................................................................................................................................... 68
9.7.1. Digital Inputs Interface ..................................................................................................................................... 68
9.7.2. Analog Input Interface ...................................................................................................................................... 70
9.7.3. Digital Outputs Interface .................................................................................................................................. 71
9.8. Communications............................................................................................................................................... 73
9.8.1. CANopen Interface............................................................................................................................................ 73
9.8.1.1 CAN wiring recommendations ......................................................................................................................... 74
9.8.2. EtherCAT Interface............................................................................................................................................ 75
9.8.2.1 Recommended EtherCAT cables and connectors........................................................................................... 76

9.8.2.2 Ethernet over EtherCAT (EoE) Protocol - Used by Motion Lab 3..................................................................... 78
10. Dimensions 80
11. Installation 82
11.1. Unboxing ........................................................................................................................................................... 82
11.2. Installation Safety Requirements..................................................................................................................... 82
11.3. Mounting the Drive to a Heatsink or Cooling Plate ......................................................................................... 82
11.3.1. Back Installation ............................................................................................................................................... 82
11.3.2. Front Installation .............................................................................................................................................. 84
12. Commissioning 86
12.1. Safety first.......................................................................................................................................................... 86
12.2. Decommissioning............................................................................................................................................. 87
13. EMC and Environmental Testing Details 88
14. Service 90

Everest XCR - Product manual|General Information
INGENIA |2020-10-01 00:04:38
5
2. General Information
2.1. Manual revision history
Revisio
n
Release Date Changes
v1 01 Apr 2019 Initial version
v2 21 Feb 2020 Added safety-related indications, expanded STO information,
added commissioning guide. Reordered manual structure.
v3 14 Sep 2020 Cahnges according to Safe Torque Off (STO) certification. Export as PDF
For the most up to date information use the onlineProduct manual.
2.2. Disclaimers and limitations of liability
The information contained within this document contains proprietary information belonging toINGENIA-CAT S.L.
Such information is supplied solely for the purpose of assisting users of the product in its installation.
INGENIA-CAT S.L.rejects all liability for errors or omissions in the information or the product or in other documents
mentioned in this document.
The text and graphics included in this document are for the purpose of illustration and reference only. The
specifications on which they are based are subject to change without notice.
This document may contain technical or other types of inaccuracies. The information contained within this
document is subject to change without notice and should not be construed as a commitment byINGENIA-CAT S.L.
INGENIA-CAT S.L.assumes no responsibility for any errors that may appear in this document.
Some countries do not allow the limitation or exclusion of liability for accidental or consequential damages,
meaning that the limits or exclusions stated above may not be valid in some cases.
2.3. Contact
INGENIA-CAT S.L.
C/ Avila 124, 2-B
08018 Barcelona
Spain
Telephone: +34 932 917 682
E-mail:[email protected]
Web site:www.ingeniamc.com

Everest XCR - Product manual|Safety Information
INGENIA |2020-10-01 00:04:38
6
•
•
•
•
•
•
•
•
•
•
•
•
•
3. Safety Information
3.1. For your safety
The instructions set out below must be read carefully prior to initial commissioning or installation in order to
raise awareness of potential risks and hazards, and to prevent injury to personnel and/or damage to property.
To ensure safety when operating this servo drive, it is mandatory to follow the procedures included in this manual.
The information provided is intended to protect users and their working area when using the device, as well as
other hardware that may be connected to it.
3.2. Warnings
Electric servo drives are dangerous:The following statements should be considered to avoid serious injury to
individuals and/or damage to the equipment:
Do not touch the power terminals of the device (supply and phases) as they can carry dangerously high
voltages > 50 V.
Never connect or disconnect the device while the power supply is ON to prevent danger to personnel, the
formation of electric arcs, or unwanted electrical contacts.
Disconnect the drive from all power sources before proceeding with any wiring change.
The surface of the device may exceed 100 ºC during operationand may cause severe burns to direct touch.
After turning OFF and disconnecting all power sources from the equipment, wait at least 10 seconds before
touching any parts of the controller, as it can remain electrically charged or hot.
3.3. Precautions
The following statements should be considered to avoid serious injury to those individuals performing the
procedures and/or damage to the equipment:
Always comply with the connection conditions and technical specifications. Especially regarding wire cross-
section and grounding.
Some components become electrically charged during and after operation.
The power supply connected to this controller should comply with the parameters specified in this manual.
When connecting this drive to an approvedpower source, do so through a line that is separate from any
possible dangerous voltages, using the necessary insulation in accordance with safety standards.
High-performance motion control equipment can move rapidly with very high forces. Unexpected motion
may occur especially during product commissioning. Keep clear of any operational machinery and never
touch them while they are working.
Do not make any connections to any internal circuitry. Only connections to designated connectors are
allowed.
All service and maintenance must be performed by qualified personnel.
Before turning on the drive, check that all safety precautions have been followed, as well as the installation
procedures.

Everest XCR - Product manual|Product Description
INGENIA |2020-10-01 00:04:38
7
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
4. Product Description
Main features:
Ultra-small footprint
80 VDC, 30 Acontinuous
Up to 99% efficiency
Up to 75 kHz current loop, 25 kHz servo loops
10 kHz ~ 100 kHz PWM frequency
16 bit ADC withVGA for current sensing
Supports Halls, Quadrature encoder, SSI and BiSS-C
Up to 4 simultaneous feedback sources
Full voltage, current and temperature protections
Safety Torque Off (STO SIL3 Ple) inputs
Typical applications:
Collaborative robot joints
Robotic exoskeletons
Wearable robots
AGVs
UAVs
Industrial highly integrated servomotors
Smart motors
Battery-powered and e-Mobility
Low inductance motors
4.1. Part Numbering
Product Ordering
part
number
Status Image Label
Everest XCR
Ready-to-use servo
drive featuring
EtherCAT and
CANopen
communications.
EVE-XCR
For applications requiring a pluggable drive enabled with EtherCAT or CANopen, please seeEverest NET.
For applications not requiring CANopen or EtherCAT, please seeEverest CORE.
4.2. Specifications
Part number →EVE-XCR
Electrical and power specifications
Minimum power supply voltage 8 VDC
PRODUCTIO
N

Everest XCR - Product manual|Product Description
INGENIA |2020-10-01 00:04:38
8
•
•
Maximum absolute power
supply voltage
80 VDC (continuous)
85 VDC (peak 100 ms)
Recommended power supply
voltage
12 VDC ~ 72 VDC
This voltage range ensures a safety margin including power supply tolerances and regulation
during acceleration and braking.
Internal drive DC bus
capacitance
30 μF
Logic power supply voltage
(optional)
8 to 50 VDC
Providing the logic supply is optional, as the drive is supplied from the DC bus (single supply) on its
full operating voltage range. When supplied from logic, an intelligent switch will stop consuming
from the DC bus.
Nominal phase continuous
current
> 30 A @ 50ºC
Typically, 30 A(RMS) can be obtained with appropriatecooling and keeping heatsink at 50ºC. SeeTh
ermal and Power Specifications below. For disambiguation on current definitions please
seeDisambiguation on current values and naming for Ingenia Drives.
Maximum phase peak current 60 A @ 3 sec
Active current limiting based on power stage and motor temperature.
Short circuit protection By active hardware detection. Short circuit detection level: 100 A ~ 250 A
max. < 10 µs.
Maximum continuous output
power
2800 W
Efficiency Up to 98% @ 20 kHz, 80 V, 30 A
Bus voltage > 97% @ 20 kHz, 80 V, voltage mode, no load
Standby power 2.4 W ~ 3.2 W with power stage disabled.
*See detailed standby power consumption below.
Motion control specifications
Supported motor types Rotary brushless (SVPWM and Trapezoidal)
Rotary brushed (DC)
Power stage PWM frequency
(configurable)
10 kHz, 20 kHz (default), 50 kHz & 100 kHz

Everest XCR - Product manual|Product Description
INGENIA |2020-10-01 00:04:38
9
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Current sensing 3 phase, shunt based current sensing. 16 bit ADC resolution. Accuracy is ±2%
full scale.
Current sense resolution
(configurable)
Current gain is configurable in 4 ranges:
2.475 mA/count
1.352 mA/count
0.570 mA/count
0.379 mA/count
Current sense ranges (configura
ble)
Current ranges for the 4 configurable current gains:
±81.1 A
±44.3 A
±18.7 A
±12.4 A
Max. Current loop frequency 75 kHz
Max. servo loops frequency
(position & velocity)
25 kHz @ 75 kHz current loop
Feedbacks Digital Halls (Single ended)
Quadrature Incremental encoder (RS-422 or Single ended)
Absolute Encoder (RS-422 or Single ended): up to 2 at the same time,
combining any of the following:
BiSS-C (up to 2 in daisy chain topology)
SSI
Supported target sources Network communication (EtherCAT or CANopen*)
*CANopen is the communication enabled by default. In order to use EtherCAT, the FW must be
updated.
Control modes Cyclic Synchronous Position
Cyclic Synchronous Velocity
Cyclic Synchronous Current
Profile Position (trapezoidal & s-curves)
Profile Velocity
Interpolated Position (P, PT, PVT)
Homing
Inputs/outputs and protections

Everest XCR - Product manual|Product Description
INGENIA |2020-10-01 00:04:38
10
•
•
•
•
•
•
•
General purpose Inputs and
outputs
4 x non-isolated single-ended digital inputs - 5 V logic level & 3.3 V
compatible. Can be configured as:
General purpose
Positive or negative homing switch
Positive or negative limit switch
Quick stop input
4 x non-isolated single-ended digital outputs - 5 V logic level (continuous
short circuit capable with 470 Ωseries resistance) - 8 mA max. current. Can
be configured as:
General purpose
Operation enabled event flag
External shunt braking resistor driving signal
1 x ±10 V, 16 bit, fully differential analog input for load cells or torque
sensors. Can be read by the Master to close a torque loop.
Shunt braking resistor output Configurable over any of the digital outputs (see above).
Enabling this function would require an external transistor or power driver.
Motor brake output 1 A, 50 V, dedicated brake output. Open drain with re-circulation diode.
Brake enable and disable timing can be configured accurately.
PWM modulation available to reduce brake voltage and power consumption.
Safe Torque OFF inputs 2 x dedicated, isolated (> 4 GΩ, 1 kV) STO inputs (from 3.3 V to 30 V).
The STO inputs include a current limiter at ~ 5 mA to minimize losses.Details:
Safe Torque Off (STO).
Motor temperature input 1 x dedicated, 5 V, 12-bit, single-ended analog input for motor temperature
(1.65 kΩpull-up to 5 V included).
NTC, PTC, RTD, Linear Voltage Sensors , Silicon Based Sensors and Switches
are supported.

Everest XCR - Product manual|Product Description
INGENIA |2020-10-01 00:04:38
11
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Protections Hardcoded / hardwired Drive protections:
Automatic current derating on voltage, current and temperature
Short-circuit Phase to DC bus
Short-circuit Phase to Phase
Short-circuit Phase to GND
Configurable protections:
DC bus over-voltage
DC bus under-voltage
Drive over-temperature
Drive under-temperature
Motor over-temperature (requires external sensor)
Current overload (I2t). Configurable up to Drive limits
Voltage mode over-current (with a closed current loop, protection
effectiveness depends on the PID).
Motion Control protections:
Halls sequence / combination error (Pending implementation)
Limit switches
Position following error
Velocity / Position out of limits
Communications for Operation
CANopen (by default) CiA-301, CiA-303, CiA-305, CiA-306 and CiA-402 (4.0) compliant.
125 kbps to 1 Mbps (default). Non isolated. Termination resistor not
included.
Note: when configured as CANopen the Ethernet ports can still be used to configure the drive.
EtherCAT (Software selectable) CANopen over EtherCAT (CoE)
File over EtherCAT (FoE)
Ethernet over EtherCAT (EoE)
Note: CANopen is the communication enabled by default. In order to use EtherCAT, the FW must be
updated.
Environmental conditions
Aluminium case Yes (interface board not covered). Minimum wall thickness > 0.75 mm.
Isolation between aluminium
case and live circuits
Basic insulation according to IEC 61800-5-1.
> 200 MΩ. Measured between PE (case) and GND_P and +SUP and phases.
Note: The drive includes 2 nF EMC capacitance between the power supply
negative (GND_P) and the enclosure (PE).

Everest XCR - Product manual|Product Description
INGENIA |2020-10-01 00:04:38
12
•
•
Case temperature Operation:
-20 ºC to +60 ºC at full current (-40 °C on Extended version option)
+60 ºC to +85 ºC with derated current
For further information, see Thermal Specifications below.
Storage:
-40 ºC to +100 ºC
Maximum humidity 5% ~ 85% non-condensing
Pollution degree and
installation environment
Pollution Degree 2 environmentaccording toIEC 61800-5-1: Normally, only
non-conductive pollution occurs. Occasionally, a temporary conductivity
caused by condensation is to be expected when the Everest is off.
Minimum index of protection of
the installation
IP3X: Since Everest has accessible live electrical circuits, it should be
installed onclosed electrical operating areas with a minimum protection
rating of IP3X and should be accessed by skilled or instructed persons.
Mechanical specifications
Dimensions 42.1 mm x 29.1 mm x 23.1 mm
Dimensions include mating connectors
Weight 38 gr
Compliance

Everest XCR - Product manual|Product Description
INGENIA |2020-10-01 00:04:38
13
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Certifications CE Marking
RoHS3:Restriction of Hazardous Substances Directive (2011/65/UE +
2015/863/EU)
LVD:Low voltage directive(2014/35/EU)
EMC:Electromagnetic Compatibility Directive (2014/30/EU)
Safe Torque Off (STO)
IEC 61800-5-2:2016 :SIL3
IEC 61508:2010 : SIL3
EN ISO 13849-1:2015 : PLe Cat. 3
Electromagnetic Compatibility (EMC)
IEC 61800-3:2017
IEC 61000-6-2:2016
Environmental Testing
IEC 60068-2-1:2007
IEC 60068-2-2:2007
IEC 60068-2-38:2009
IEC 60068-2-78:2012
IEC 60068-2-6:2007
IEC 60068-2-27:2008

Everest XCR - Product manual|Product Description
INGENIA |2020-10-01 00:04:38
14
•
•
•
•
•
•
•
•
•
•
•
•
•
4.3. Product Revisions
Revision Date Notes
101 Jun 2018 Initial prototype
201 Oct 2018 Second prototype. Known issues or pending features:
Ethernet physical layer is affected by commutation noise
320 Dec 2018 Known issues or pending features:
Noisy phase current measurement (+/- 150 mA)
CANopen under development
Trapezoidal commutation under development
Halls errors under development
Efficiency & Bus voltage not yet measured empirically
STO certification pending
414 Apr 2019 First official product release.
524 Mar 2019 Added CANopen variant
Added trapezoidal commutation
Improved current sensing measurement
624 May 2019 Improvements related to industrialization
730 Jan 2020 Improvements related to industrialization
811 Sep 2020 STO certified
4.4. Thermal and Power Specifications
4.4.1. Standby power consumption
The following table shows the standby power consumption of the Everest assuming 1 EtherCAT port is active and
communicating at full speed, no feedbacks or I/Os are connected. When the power stage is enabled, motor current
is set to 0 and housing temperature is kept at 50ºC.
Power supply
voltage
Typical total standby power consumptionwith single supply Power savings by
having dual
supply and logic
at 12 V*
Power
stage
disabled
Power stage enabled and switching at 0 current
10 kHz 20 kHz 50 kHz 100 kHz
12 V 2.50 W 2.50 W 2.54 W 2.62 W 2.74 W ~0.0 W
24 V 2.60 W 2.66 W 2.72 W 2.91 W 3.24 W ~0.10 W

Everest XCR - Product manual|Product Description
INGENIA |2020-10-01 00:04:38
15
Power supply
voltage
Typical total standby power consumptionwith single supply Power savings by
having dual
supply and logic
at 12 V*
Power
stage
disabled
Power stage enabled and switching at 0 current
10 kHz 20 kHz 50 kHz 100 kHz
48 V 2.85 W 3.07 W 3.26 W 3.80 W 4.70 W ~0.35 W
60 V 2.94 W 3.34 W 3.61 W 4.38 W 5.66 W ~0.44 W
72 V 3.10 W 3.34 W 3.97 W 5.00 W 6.70 W ~0.60 W
*If minimal standby power consumption is desired working at 48 V or higher it is suggested to have dual supply and
provide 12 V or 24 V to the Logic. This reduces losses by allowing the main DC/DC converter to operate at peak
efficiency.
4.4.2. Thermal model
The following diagram depicts the general dissipation model. The Everest is designed to be mounted on a cooling
plate or heatsink to achieve its maximum ratings. Please seeInstallation for more details. In order to calculate the
heatsink requirements, the power dissipation can be estimated below.
In some low power applications, the Everest can be NOT mounted to any heatsink. In this case its thermal
resistance from housing/case to ambient Rth(h-a)can be estimated between 8 K/W, to 12 K/W assuming 10 cm
clearance to allow air convection at sea level. For example, with the drive on standby at 2.6 W losses at 25ºC air
temperature the internal drive temperature can be 56ºC.When the Everest is not attached to a heatsink factors like
air cooling, power cable thickness will have a significant effect on its temperature. Typically 7 W can be dissipated
without heatsink, refer to the graph below to know which current can be handled.

Everest XCR - Product manual|Product Description
INGENIA |2020-10-01 00:04:38
16
4.4.3. Current derating
The following figure show the maximum motor phase current at different case temperatures and operating points.
As can be seen lower temperature, bus voltage or PWM frequency allows higher current due to lower heat
dissipation.For highest current, Everest can be configured at 10 kHz PWM frequency, however this may not be
suitable for low inductance motors or acoustic noise sensitive applications.The graph expresses the achievable
current including the derating algorithm that limits the current based operation conditions and the power stage
temperature.
Notice that current is expressed in crest value for a 3 phase BLAC motor. For further clarifications and conversion to
equivalent RMS values please refer toDisambiguation on current values and naming for Ingenia Drives.
To ensure a proper performance of Everest XCR, thecase temperature should be held always below 85 ºC (Tc-
max=85 ºC).
4.4.4. Heat dissipation and heatsink calculation
Following figure show the total power losses at different operating points. This includes logic supply and considers
a single supply scenario. As can be seen, lower PWM frequency and voltage leads to lower power losses.

Everest XCR - Product manual|Product Description
INGENIA |2020-10-01 00:04:38
17
1.
a.
2.
a.
3.
a.
4.
a.
Please, use the following procedure to determine the required heatsink:
Based on the voltage & continuous (averaged) current required by your application and Currentderating
graph determine the Case temperature Tc. Remember that Case temperature must be always below 85 ºC (Tc
< 85 ºC)
For example: If the application requires 30 A@ 72 V (20 kHz) the Tcwill be 85 ºC
Based on the voltage & continuous current required by your application and Power losses graph determine
the generated Power LossesPLto be dissipated.
For example: If the application requires 30 A@ 72 V (20 kHz) the PLwill be 25 W
Determine the Thermal impedance of the used thermal sheetRth(c-h)
For example, a thermal sheetTGX-150-150-0.5-0,which has an estimated thermal impedance ofRth(c-
h)=0.2 K/W
Based on the ambient temperature and using the following formula determine the maximum thermal
impedance to air of the required heatsink Rth(h-a)
For example: If the application requires 30 A@ 72 V(20 kHz)working at Ta= 25 ºC and we use a
thermal sheet with Rth(c-h)=0.2 K/W the required thermal impedance of the heatsink will be Rth(h-a)=
2.6 K/W

Everest XCR - Product manual|Product Description
INGENIA |2020-10-01 00:04:38
18
4.4.5. Energy efficiency
The following graph shows the electricalenergy efficiency including logic for various operation points assuming
50 ºC case temperature and the drive delivering the maximum output power (i.e. maximum output voltage and
motor speed). As seen, very high efficiencies > 99% can be achieved at 10 kHz or 20 kHz PWM frequencies.

Everest XCR - Product manual|EtherCAT Specifications
INGENIA |2020-10-01 00:04:38
19
5. EtherCAT Specifications
Ports available 2
LED Signals Status LED
Link/Act LED
Supported Mailbox CoE, FoE, EoE
SDO info Supported
Segmented SDO Supported
SDO complete access Supported
Modes of Operation DS402 drive device profile
Voltage mode
Current mode
Cyclic Synchronous Current Mode (Note 1)
Current amplifies mode
Profile Velocity
Profile Position
Homing modes
Interpolated Position Mode
Cyclic Synchronous Position Mode(Note 1)
Cyclic Synchronous Velocity Mode(Note 1)
Synchronization
modes
SM synchronous
Distributed clock
Process data object Configurable
Up to 64 bytes in each direction
EtherCAT® is a registered trademark and patented technology, licensed by Beckhoff Automation
GmbH, Germany.
Note 1:Max. Update rate up to 250 μs (4 kHz) to keep a latency of 2-3 cycles
Using PWM ≥50 kHz & PDO size 11 bytes

Everest XCR - Product manual|CANopen Specifications
INGENIA |2020-10-01 00:04:38
20
•
•
•
•
•
•
•
•
•
6. CANopen Specifications
6.1. Specifications
Ports available 1 CAN port
LED Signals CANopen run LED (according to CiA-303)
CANopen error LED (according to CiA-303)
Modes of operation CiA-402 drive device profile
Voltage mode
Current mode
Cyclic synchronous current mode
Current amplifier mode
Profile velocity
Profile position
Homing modes
Cyclic synchronous position mode
Cyclic synchronous velocity mode
Process data object RPDO and TPDO 1 to 4 are available.
Up to 32 bytes on each direction.
Up to 15 different registers can be mapped on each direction.
Synchronous or asynchronous transmission and reception.
Service data object Supported.
EMCY Supported.
Device node-ID and baudrate can be configured using this service.
Fast-scan service is supported.
Life guard protocol Implemented.
Heartbeat Supported heartbeat producer.
Time Stamp Supported time stamp consumer.
Other manuals for Everest XCR
2
This manual suits for next models
1
Table of contents
Popular Controllers manuals by other brands

BEKA
BEKA BA550 Series manual

Navien
Navien HotButton NPE-ODC installation manual

Lafalink
Lafalink LF-AC300 Quick installation guide

WAREMA
WAREMA KNX MSE 6M230 Series Operating and installation instructions

Tranquil-Easy
Tranquil-Easy HC 7360H operating instructions

BZ PRODUCTS
BZ PRODUCTS MPPT250 installation manual

artisan
artisan PMAC2-Lite Hardware reference manual

OPHIR
OPHIR RF Technical description and operating instructions

SMC Networks
SMC Networks VCHR30 Series Installation and maintenance manual

Wise Controls
Wise Controls WisePack Simple Instructions

Fife
Fife CDP-01 Additional instruction manual

Siemens
Siemens BT300 LonWorks installation instructions