KMB NOVAR 2600 User manual

KMB systems, s.r.o.
Dr. M. Horákové 559, 460 06 Liberec 7, Czech Republic
tel. 420 485 130 314, fax 420 482 736 896
email : [email protected], internet : www.kmb.cz
NOVAR 2600
Three-Phase Power Factor Contro ers
& Power Ana yzers
Operating Manual
Document
revision
Release
date
Valid for versions
hardware bootloader firmware ENVIS
1.3 15.6.2020 2.6 4.0 3.0.33 1.8

NOVAR 2600 Operating Manual
LIST OF CONTENTS
1. GENERAL...........................................................................6
1.1 Common features........................................................................................................................................ 6
1.2 Operation..................................................................................................................................................... 8
2. INSTALLATION..................................................................9
2.1.1 Physical................................................................................................................................................. 9
2.2 Instrument Connection............................................................................................................................... 9
2.2.1 Power Supply......................................................................................................................................... 9
2.2.2 Measured Electrical Quantities............................................................................................................10
2.2.2.1 Measured Voltages....................................................................................................................... 10
2.2.2.2 Measured Currents.......................................................................................................................10
2.2.3 Outputs................................................................................................................................................ 10
2.2.3.1 Relay Outputs............................................................................................................................... 11
2.2.3.2 Transistor Outputs........................................................................................................................ 11
2.2.4 Digital Input.......................................................................................................................................... 11
2.2.5 External Temperature Sensor.............................................................................................................. 12
3. COMMISSIONING.............................................................13
3.1 Setup.......................................................................................................................................................... 13
3.1.1 Measured Electrical Quantities Installation Setup................................................................................13
3.1.1.1 Setup Example............................................................................................................................. 14
3.1.2 PFC Setup........................................................................................................................................... 15
3.1.2.1 PFC Control Setup....................................................................................................................... 15
3.1.2.2 PFC Output Setup........................................................................................................................ 15
3.1.2.3 AOR Process................................................................................................................................ 15
4. PFC BLOCK......................................................................17
4.1 Basic Functions........................................................................................................................................ 17
4.2 Manipu ation and Setting......................................................................................................................... 17
4.2.1 PFC Screen......................................................................................................................................... 17
4.2.1.1 Outputs & Digital Input State........................................................................................................18
4.2.1.2 Outputs State Additional Information............................................................................................18
4.2.1.3 Power Factor Gauges................................................................................................................... 19
4.2.1.4 Control Deviation Flags................................................................................................................20
4.2.1.5 Control Time Bargraph.................................................................................................................20
4.2.1.6 Actual Data & Status Panel..........................................................................................................21
4.2.1.6.1 Actual Data Folders...............................................................................................................21
4.2.1.6.2 Alarms Folder........................................................................................................................ 22
4.2.1.6.3 Info Folder............................................................................................................................. 22
4.2.1.7 Actual Temperature Panel............................................................................................................ 22
4.2.1.8 Event Indicators............................................................................................................................ 23
4.2.1.9 Toolbar......................................................................................................................................... 23
4.2.1.9.1 Multifunction / button.............................................................................................................23
4.2.1.9.2 PFC Setup Direct Access Button...........................................................................................24
2

NOVAR 2600 Operating Manual
4.3 PFC Setup Parameters.............................................................................................................................. 24
4.3.1 PFC Control Setup............................................................................................................................... 25
4.3.1.1 Target Power Factor for Tariff 1/2.................................................................................................25
4.3.1.2 Control Bandwidth on High Loads for Tariff 1/2............................................................................25
4.3.1.3 Control Time for Tariff 1/2.............................................................................................................26
4.3.1.4 Offset Power for Tariff 1/2...........................................................................................................27
4.3.1.5 Tariff 2 Control............................................................................................................................. 27
4.3.1.6 Tariff 2 Control Power.................................................................................................................. 28
4.3.1.7 Control Strategy........................................................................................................................... 28
4.3.1.8 Choke Control..............................................................................................................................29
4.3.1.8.1 Mixed Choke Control.............................................................................................................29
4.3.1.8.2 Non-Mixed Choke Control.....................................................................................................30
4.3.1.9 Choke Control Limit Power Factor (for Mixed Choke Control).....................................................30
4.3.1.10 Offset Control............................................................................................................................30
4.3.2 PFC Output Setup................................................................................................................................31
4.3.2.1 Compensation Section Type, Nominal Power and Control State..................................................31
4.3.2.2 Discharge Time for Output Set 1/2...............................................................................................33
4.3.2.3 Output Set 2................................................................................................................................. 34
4.3.2.4 Switching Mode............................................................................................................................ 34
4.3.2.5 AOR – Automatic Output Recognizer...........................................................................................35
4.3.2.6 Manual Output Type & Power Filler..............................................................................................35
4.3.3 PFC Alarm Setup................................................................................................................................. 36
4.3.3.1 Standard Type Alarms.................................................................................................................. 38
4.3.3.2 Fast Actuation Reaction Alarms...................................................................................................39
4.3.3.3 NS> - “Number of Switching Operations Exceeded” Alarm..........................................................39
4.3.3.4 OE - “Output Error” Alarm.............................................................................................................39
4.3.3.5 T1>< (T2><) - “Temperature Exceeded/Drop” Alarm..................................................................40
4.3.3.6 OoC - “Out of Control” Alarm........................................................................................................41
4.3.3.7 RCF - “Remote Control Failure” Alarm.........................................................................................41
4.3.4 Control / Manual State Indicator and Switch........................................................................................41
4.3.5 Power Factor Block Factory Setting.....................................................................................................41
4.4 PFC B ock Operation................................................................................................................................ 43
4.4.1 Control State........................................................................................................................................ 43
4.4.2 Manual State........................................................................................................................................ 44
4.4.3 Automatic Output Recognition (AOR) Process...................................................................................44
4.4.4 CT Connection Test............................................................................................................................ 46
4.4.5 Single-Phase Mode.............................................................................................................................49
4.4.5.1 Connection................................................................................................................................... 49
4.4.5.2 Setup............................................................................................................................................ 51
4.4.5.2.1 Connection Type 1Y3 / 1D3..................................................................................................51
4.4.5.2.2 Angle of Voltage Connected to the U1 Input (U1-Angle )......................................................51
4.4.5.2.3 ACD Process – Automatic Connection Detection.................................................................52
4.4.5.3 Operation...................................................................................................................................... 54
4.4.6 Special PFC-Block Related Quantities's Meaning & Evaluation...........................................................54
4.4.6.1 Values Used for Power Factor Control Evaluation and Aggregation.............................................55
4.4.6.2 ΔQfh – PF Control Deviation.......................................................................................................55
4.4.6.3 Cosφ / Tanφ / φ – Power Factor...................................................................................................55
4.4.6.4 CHL – Capacitor Harmonic Load Factor......................................................................................56
4.4.6.5 RC, RL – Compensation Reserve Powers...................................................................................57
5. METER BLOCK................................................................60
5.1 Basic Functions........................................................................................................................................ 60
5.2 Meter B ock Manipu ation and Setting....................................................................................................60
5.2.1 Data Area – Status Bar - Toolbar.........................................................................................................60
5.2.2 Main Menu........................................................................................................................................... 61
5.2.2.1 Actual Data Group........................................................................................................................ 61
3

NOVAR 2600 Operating Manual
5.2.2.2 Daily and Weekly Graphs.............................................................................................................63
5.2.2.3 Electricity Meter Data Group.........................................................................................................63
5.2.2.4 Instrument Setting........................................................................................................................64
5.2.2.4.1 Display Setting...................................................................................................................... 64
5.2.2.4.2 Installation Setting.................................................................................................................64
5.2.2.4.3 Clock Setting......................................................................................................................... 64
5.2.2.4.4 Average Values Processing Setting.....................................................................................65
5.2.2.4.5 Remote Communication Setting............................................................................................65
5.2.2.4.6 Embedded Electricity Meter Setting.....................................................................................65
5.2.2.4.7 Archiving Setting..................................................................................................................65
5.2.2.5 Instrument Lock........................................................................................................................... 66
5.2.2.5.1 Locking.................................................................................................................................. 66
5.2.2.5.2 Unlocking from the User Locked State..................................................................................66
5.2.2.5.3 Unlocking from the Admin Locked State...............................................................................66
5.2.2.6 Instrument Information................................................................................................................. 66
5.2.2.6.1 Info – General Window.........................................................................................................67
5.2.2.6.2 Info – Archive Status............................................................................................................67
5.2.2.6.3 Info – Producer..................................................................................................................... 67
5.3 Description of Operation.......................................................................................................................... 68
5.3.1 Method of Measurement...................................................................................................................... 68
5.3.1.1 Voltage Fundamental Frequency Measurement Method..............................................................68
5.3.1.2 Voltage and Current Measurement Method..................................................................................68
5.3.1.3 Harmonics and THD Evaluation Method.......................................................................................69
5.3.2 Power, Power Factor and Unbalance Evaluation Method....................................................................69
5.3.2.1 Temperature................................................................................................................................ 71
5.3.3 Measured Values Evaluation and Aggregation....................................................................................71
5.3.3.1 Actual Values Evaluation and Aggregation...................................................................................71
5.3.3.1.1 Harmonics and THD Presentation.........................................................................................72
5.3.3.2 Average Values Evaluation...........................................................................................................72
5.3.3.2.1 Maximum and Minimum Average Values.............................................................................73
5.3.3.3 Recorded Values Aggregation......................................................................................................74
5.3.4 Embedded Electricity Meter.................................................................................................................74
5.3.4.1 Electric Energy Processing...........................................................................................................74
5.3.4.2 Maximum Demand Registration...................................................................................................74
5.3.4.3 Setting......................................................................................................................................... 75
5.3.4.4 Energy Presentation....................................................................................................................75
5.3.4.5 Maximum Demand Presentation..................................................................................................76
5.3.5 Inputs.................................................................................................................................................. 76
6. COMPUTER CONTROLLED OPERATION......................77
6.1 Communication Links............................................................................................................................... 77
6.1.1 Local Communication Link...................................................................................................................77
6.1.2 Remote Communication Links.............................................................................................................77
6.1.3 RS-485 Interface (COM)......................................................................................................................77
6.1.3.1 Communication Cable.................................................................................................................78
6.1.3.2 Terminating Resistors.................................................................................................................. 78
6.1.4 Ethernet (IEEE802.3) Interface............................................................................................................78
6.2 Communication Protoco s....................................................................................................................... 78
6.2.1 KMB Communications Protocol..........................................................................................................78
6.2.2 Modbus-RTU Communications Protocol.............................................................................................79
6.3 Embedded Webserver............................................................................................................................... 79
7. EXAMPLES OF CONNECTIONS.....................................80
4

NOVAR 2600 Operating Manual
1. Genera
This manual comprises description of NOVAR 2600 three-phase power factor controllers.
The controllers are based on precise and powerful three-phase measurement & evaluating core and
combine multifunctional panel meter and power quality analyzer with power factor control functionality
in the same box.
The built-in meter can be optionally equipped with memory for datalogging of measured quantities and
various events in the network thus the instruments can be used for long time network data recording.
For on-line monitoring, the controllers can be provided with remote communication interface.
The controllers can be delivered in various modifications : with various numbers of outputs & inputs,
optional datalogging capabilities and communication interfaces. Depending on it the instruments
support only basic functions or additional functions too.
1.1 Common features
Power Factor Contro
• individual phase power factor control capability using single- / two- / three-phase capacitors
and chokes
• selectable power factor control strategy : both three- and single-phase control / three-phase
control only / three independent single-phase controls
• up to 18 output sections, relay or solid-state
• controller’s speed of response independently programmable for conditions of
undercompensation and overcompensation
• the preset speed of response increases in proportion to instantaneous control deviation, that
is either with the value squared or in direct proportion to the ratio of the control deviation to
the smallest section value (OMIN)
• adjustable control range to reduce the number of control interventions in systems with a wide
control range at high loads
• combined mains compensation & decompensation capability
• selectable two-rate operation controlled with active power level or external signal (optional
input)
• automatic output section recognition, any combination of the output sections possible
•continuously checks output sections in the control process. When failure is detected
repeatedly, disables the faulty section and possibly actuates alarm.
•periodically rechecks the temporarily disabled sections and on positive test result (for example
when replacing a section’s burnt fuse link), it enables them again automatically
• wide assortment of independently settable alarm’s warning and actuation functions
( undervoltage, overvoltage, undercurrent, overcurrent, THDU limit overflow and more )
6

NOVAR 2600 Operating Manual
Measurement & Eva uation
• three measurement wide range voltage inputs, star / delta / Aron connection
• three measurement current inputs for xxx/ 5A or xxx /1A CTs connection
• sampling rate 128/96 samples/period, 10/12 periods evaluation cycle (200 ms at 50/60 Hz)
• continuous ( gap-less) measurement of voltage and current
• evaluation of harmonic components up to 40th
• fixed window / floating window / thermal average values of all evaluated quantities with
minimum & maximum values registration
• built-in electricity meter :
•four-quadrant three tariff electricity meter
•single phase and three phase energies
•maximum of average active power value ( power demand )
•built-in thermometer
Design
•144x144 mm plastic box for panel mounting
•LCD graphic display, 5 keys
•digital input ( 7- & 16-output models only )
•optional input for external Pt100 temperature sensor
Communication ( Se ected Mode s On y )
•optional remote communication interface ( RS 485 / Ethernet )
•optional USB 2.0 communication port for fast data acquisition, configuration and firmware
upgrades
•proprietary protocol with free data acquisition software ENVIS
•MODBUS RTU and MODBUS TCP protocols for simple integration with third party SCADA
software
•embedded webserver ( for instruments with Ethernet interface )
Data ogging Capabi ities ( Se ected Mode s On y )
•battery backed real time circuit (RTC)
•selection of aggregation intervals from 1 second up to 24 hours
•high memory capacity for programmable recording of aggregated measurement values
•automated electricity meter readings at preselected time intervals
7

NOVAR 2600 Operating Manual
1.2 Operation
From point of view of function the NOVAR 2600 power factor controllers consist from two main blocks.
The first of them is universal three-phase meter. The meter can be optionally equipped with battery
backed real time circuit, additional memory for datalogging, various communication interfaces etc.,
forming powerful network analyzer.
The second part of the instrument is power factor control block. The block uses measured data from
the meter block; except of this, both of the blocks operate autonomously.
Fig. 1.1: NOVAR 2600 Block Diagra
After an activation of supply voltage, the instrument accomplishes internal diagnostics, updating of
internal database of measured data and then it starts to measure and display actual measured data.
Simultaneously, the power factor control blocks starts and tries to keep power factor as near as
possible to the preset value by connecting optimal combination of compensation elements to the
network.
All of actual measured and evaluated data can be observed on the instrument's display. Navigation
through the screens is intuitive with arrow keys. The data are arranged in row of screens according
navigation maps below.
Fig. 1.2 : NOVAR 2600 Display – Main Menu
8
Electricity
Meter
General
Meter
PFC Graphs

NOVAR 2600 Operating Manual
2. Insta ation
2.1.1 Physica
The instrument is built in a plastic box to be installed in a distribution board panel. The instrument’s
position must be fixed with locks.
Natural air circulation should be provided inside the distribution board cabinet, and in the instrument’s
neighbourhood, especially underneath the instrument, no other instrumentation that is source of heat
should be installed.
2.2 Instrument Connection
2.2.1 Power Supp y
The instrument requires an AC or DC voltage power supply as specified in technical parameters. The
supply inputs are isolated from other circuits of the instrument.
It is necessary to connect an auxiliary supply voltage in the range as declared in technical
specifications table to the terminals AV1 ( No. 9, L ) and AV2 ( No.10, N ). In case of DC supply
voltage the polarity of connection is generally free, but for maximum electromagnetic compatibility the
grounded pole should be connected to the terminal AV2.
The supply voltage must be connected via a disconnecting device ( switch - see installation diagram ).
It must be situated directly at the instrument and must be easily accessible by the operator. The
disconnecting device must be labelled as the disconnecting device of the equipment. A two-pole
circuit breaker with the C-type tripping characteristics rated at 1A may be used for the disconnecting
device; however its function and position must be clearly marked (symbols „O" and „I" according to EN
61010 – 1). If one of the supply signals is neutral wire N (or PEN) usually a single breaker in the line
branch is sufficient.
Since the instrument’s inbuilt power supply is of pulse design, it draws a momentary peak current on
powerup which is in order of magnitude of amperes. This fact needs to be kept in mind when selecting
the primary protection devices.
Fig. 2.1: Typical star (3Y) connection, ains 3 x 230/400 V
9

NOVAR 2600 Operating Manual
2.2.2 Measured E ectrica Quantities
2.2.2.1 Measured Vo tages
Measured voltages in wye ( star ), delta or Aron connection connect to terminals VOLTAGE / N (No.
11), U1 (No. 12), U2 (No. 13), and U3 (No. 14). Phase rotating direction is free.
Types of connections are stated in the following table.
Tab. 2.1: Connection of the easured voltages – VOLTAGE group of ter inals
Terminal Type of connection
VOLTAGE wye-star (Y) delta (D) Aron (A)
U1L1-phase voltage L1-phase voltage L1-phase voltage
U2L2-phase voltage L2-phase voltage L2-phase voltage
U3L3-phase voltage L3-phase voltage L3-phase voltage
UNneutral wire voltage - -
It is advisable to protect the supply leads by 1A safety fuses.
The type of voltage and currents connection must be entered in Installation parameters : the code
shows the amount of connected phases, 3Y means three-phase connection in wye ( star ), 3D in delta.
3A means Aron connection. For 1Y3 or 1D3 setup, the instrument operates in, so called, single phase
ode – see description in appropriate chapter below..
In the case of indirect connection via the measuring voltage transformers, it is necessary to enter this
matter ( connection Mode ) and the values of the VT ratios during the setup of the instrument.
2.2.2.2 Measured Currents
The instruments are designed for indirect current measurement via external CTs only. Proper current
signal polarity (S1 & S2 terminals) must be observed. You can check the polarity by the sign of phase
active powers on the instrument display (in case of energy transfer direction is known, of course).
The CT-ratio must be set. in the Installation group of parameters (see below).
The I2 terminals stay free in case of the Aron (A) connection.
To get better precision when using overweighted CTs, you can apply ore windings of
easured wire through the transfor er. Then you ust set the ultiplier para eter (see
below). For standard connection with 1 winding, the ultiplier ust be set to 1.
The current signals from 5A or 1A (or 0.1A for the „X/100mA“ models) instrument current transformers
must be connected to the CURRENT connector terminal pairs I11 – I12, I21 – I22, I31 – I32 (No. 1÷6).
A particular connector is provided with a screw lock to prevent an accidental pullout and possible
unwanted disconnection of the current circuit.
A connection cable maximum cross section area is 2.5 mm2.
2.2.3 Outputs
Instruments can have up to 18 relay (“R”- models) or transistor (“T”-models) outputs. For models with
more than 9 outputs, the outputs are arranged in two output groups. The groups are isolated from
each other.
Each group has one relay common pole terminal C1, C2 ( No.15 and 25 ) and up to nine individual
relay output terminals 1.1 through 1.9 ( No.16 ÷ 24 ) for group No. 1 and 2.1 through 2.9 ( No.26 ÷
34 ) for group No. 2.
10

NOVAR 2600 Operating Manual
2.2.3.1 Re ay Outputs
Any combination of compensation capacitors or chokes (three-phase, two-phase or single -phase) can
be connected to the instrument outputs via appropriate contactors.
Fig. 2.2: Output connection, various types of capacitors
If not of all outputs used, you can use upper three relay outputs for alarm signalling or for
heating/cooling control ( see example wirings further below).
2.2.3.2 Transistor Outputs
The “T”-models are equipped with up to 18 MOSFET-type transistor outputs.
These outputs are designed to connect to thyristor switches’ input otpocouplers via limiting resistors.
This is reflected in limit parameters of the transistor outputs as well (see technical specifications).
Voltage of agnitude usual for relay outputs connection is forbidden !!!
Otherwise, the instru ent can be da aged !!!
Respect axi u voltage and current rating - see technical specifications.
The transistor outputs must be powered from the switching module’s power supply or from an external
power supply giving about 24 V DC and protected with a 1 A. It is recommended to connect negative
pole of the supply to the common terminals C1, C2 ( No.15 and 25 ), but the polarity is free generally.
Any combination of compensation capacitors or chokes (three-phase, two-phase or single -phase) can
be connected to the instrument outputs via appropriate switching modules. If not of all outputs used,
you can use upper three outputs for alarm signalling or for heating/cooling control ( due to the nature
of outputs commonly via an auxiliary relay).
2.2.4 Digita Input
The models with 7 or 16 outputs are equipped with the digital input. It can be used for the 2nd tariff
control of power factor control process, for time synchronization or for electricity meter tariff control.
11

NOVAR 2600 Operating Manual
Use terminals D1A (No. 23) and D1B (No. 24) for the digital input connection – see wiring examples in
appropriate chapter further below. The input is isolated from other instrument circuitry.
To activate the output apply voltage of specified range to the terminals.
ATTENTION !!! The “T”-output type odels input voltage range of the digital input is
custo ized for 12 to 48 V DC control voltage - see table of technical para eters. It differs
fro the “R”-output type odels and it ust be taken into account.. Voltage exceeding
axi u allowable ay cause the instru ent da age !!!
2.2.5 Externa Temperature Sensor
Some models are equipped with the EXT. TEMP external temperature sensor connector for
measurement of external temperature.
The input is designed for three-wire connection to a resistive temperature Pt100-type sensor. Connect
the sensor to the terminals No. 44 (TA), 45 (TB) and 46 (G) according example drawing below.
In case of two-wire connection, connect the sensor to the terminals TA and TB and short-circuit the
TB terminal with the G terminal. Note that the sensor cable loop impedance must be as low as
possible ( each 0.39 Ohms means additional measurement error of 1 ºC).
The temperature sensor can be ordered as the instrument’s optional accessory.
12

NOVAR 2600 Operating Manual
3. Commissioning
3.1 Setup
When switching on the power supply, the instrument will display manufacturer's logo for short time and
after that, usually the power factor control screen is displayed :
As neither output types nor reactive power sizes of individual outputs are known now, the instrument
gets into the standby mode, which is signalled by flashing -indicator in the upper right corner of the
screen.
If both all of measuring voltages are present and all of measured currents reach at least minimum
level, the instrument tries to start auto atic output recognition ( AOR ) process that is presented with
„Auto atic Output Recognition will be started in XX seconds“ message; if the message appears,
cancel the process with the -button.
At this moment, before we let this process run it is necessary to set group of parameters - so called
Installation group - that are essential for proper operation of the instrument :
•mode of connection ( direct measuring or via metering voltage transformers )
•type of connection ( star, delta, Aron )
•ratios of CT and VT and their multipliers (if used)
•nominal voltage UNOM and nominal frequency fNOM
•INOM, PNOM (not mandatory, but recommended)
3.1.1 Measured E ectrica Quantities Insta ation Setup
For the proper data evaluation it is necessary to set all of the Installation Setting group
parameters.
•Connection Mode determines if voltage signals are connected directly or if voltage
transformers are used.
•Connection Type needs to be set according network configuration – wye (or star, Y ) or
delta ( D , if neutral voltage potential not connected ). Usually, all of three phases are
connected so choose 3-Y or 3-D. For Aron connection set 3-A. For single-phase connection,
set 1Y3 or 1D3.
•CT- ratios must be specified, in case of “via VT” connection mode VT-ratios too.
The VT-ratios must be set in form No inal pri ary voltage / No inal secondary voltage . For
higher primary voltage values the U- ultiplier must be used too.
CT ratios can be set in form either …/ 5A or …/ 1A.
•I- and U-Mu tip ier - You can modify the CT- / VT-ratio with this parameter. For example, to
get better precision when using overweighted CTs, you can apply more windings of
measured wire through the transformer. Then you must set the multiplier. For example, for 2
windings applied, set the multiplier to 1/2 = 0.5 .
For standard connection with 1 winding, the multiplier must be set to 1.
13

NOVAR 2600 Operating Manual
•Nomina frequency fNOM - the parameter must be set in compliance with the measurement
network nominal frequency to either 50 or 60 Hz.
• Nomina Vo tage UNOM, Nomina Current INOM, Nomina Power PNOM - For the presentation
of quantities in percent of nominal value, alarms operation, voltage events detection and
other functions it is necessary to enter also the nominal ( primary ) voltage UNOM, nominal
current INOM and nominal apparent three-phase power (input power) of the connected load
PNOM ( in units of kVA ) Although the correct setup has no effect on measuring operation of the
instrument, it is strongly recommended to set at least the UNOM correctly.
Correct setting of the INOM and the PNOM is not critical, it influences percentage representation
of powers and currents and statistical processing of measuring in the software only. If
measured network node rating is not defined, we recommend to set their values, for example,
to the nominal power of source transformer or to the maximum supposed power estimated
according current transformers ratio, etc.
The UNOM is displayed in form of phase/line voltage.
3.1.1.1 Setup Examp e
Following example explains how to adjust the CT ratio :
Assuming that the conversion of used CT for inputs of current L1 to L3 is 750/5 A. To edit the
parameters, press the button, navigate to the Menu-Settings with the buttons ►and ◄ and
then choose it with the button. In the Setting window choose Setting-Insta ation option. The
Setting-Insta ation window appears :
In the window navigate down to the current transformer ratio parameter ( CT ) and choose with the
button.
Now you can type new value of the parameter : with the ►button you can move from a digit to
another one and to set each digit to target value using the ▲and ▼buttons. At the end press the
button and the parameter is set.
You can set other parameters in the same way.
After all of the parameters correctly set, return back to the power factor control screen with the
(escape) button and confirm saving of changes with he -button.
Now you can browse through displayed actual values in the right part of the screen with ▲and
▼buttons and check if they correspond with reality.
For proper CT connection checking, you can use phasor diagra screen (see the eter
block) or the CT connection test (see description further below).
After all of measured quantities checked, it is time to set the power factor control (PFC) parameters.
14

NOVAR 2600 Operating Manual
3.1.2 PFC Setup
In the Setting menu, navigate to and select the PFC Setting. Or, from main PFC screen, simply push
the button.
3.1.2.1 PFC Contro Setup
In the PFC Control Setting window you can set basic control parameters such like target power factor
etc. But first at this phase, it is essential to set the power factor control strategy :
•3p+1p … set this strategy if both three-phase and individual single phase power factors need
to be controlled
•3p … set this strategy if three-phase power factor control only is required
•3*1p … set this strategy if all of single-phase power factors to be controlled individually
without any relation to each other (3 separately running single-phase control processes,
usable for single phase outputs only)
Other parameters can be modified later. Escaping the window you must confirm made changes again.
Finally, the last step is PFC output setup.
3.1.2.2 PFC Output Setup
In the PFC Output Setting window, scroll down and - if required - modify preset discharge
ti e for set 1. It is necessary especially at high voltage compensation systems where
discharge time in range of minutes must be set.
Optionally, you can set any of three highest outputs as alarm or fan or heating switch (for details see
description further below).
Now you can finally set output types and sizes. The most comfortable way to do this is by using
Auto atic Output Recognition (AOR) process : scroll to Recognizer and edit its value to Run . After
confirmation, a message informing about the process to be started appears and 10 seconds interval
starts to count down. If not cancelled the AOR process starts after the interval expires.
If load is low or disconnected at all, the default undercurrent ( I< ) alar actuation forces the
controller into the standby state. In such case the AOR process cannot be started. Therefore,
it is necessary to switch this alar actuation te porarily off ( and to return it back after the
AOR-process passes).
3.1.2.3 AOR Process
After being started, the AOR screen appears. First of all, all of control outputs (i.e. excluding the fixed
ones and optional alarm/fan/heating ones ) are disconnected, step by step.
Then the instrument waits until discharge time of the outputs just disconnected expires - such not-
discharged outputs are identified with decreasing shadow filling. During this, Output 1.1 message
flashes in the headline, that means that the instrument waits till output No. 1.1 is ready to use.
After all of the outputs discharged, the instrument starts to switch the outputs step by step. After each
of the step is switched off, its type and size is displayed for short time :
After the process passes, new recognized output data are stored into the instrument's memory.
15

NOVAR 2600 Operating Manual
Then, in case that :
•at least one valid output ( capacitor or choke ) was found
•the instrument is not switched into the anual mode
•no alarm action is active
• voltage and current higher than measurable minimums at least in one of phases
the instrument starts to control power factor to preset value.
If the undercurrent ( I< ) alar was disabled for the AOR-process to be able to pass without
any load in the network do not forget to reenable it back !!!
You can found detailed AOR process description in appropriate chapter below.
The instrument includes a row of other parameters – their description is stated in following chapters.
16

NOVAR 2600 Operating Manual
4. PFC B ock
4.1 Basic Functions
NOVAR 2600 power factor controllers are fully automatic instruments that allow optimum control of
reactive power compensation.
Control is provided in all four quadrants and its speed depends on both control deviation value and its
polarization (overcompensation / undercompensation). Connecting and disconnecting power factor
capacitors is carried out in such a way that achieving the optimum compensation condition is by a
single control intervention at minimum number of sections connected. At the same time, the
instrument chooses relay sections with regard to their even load and preferably connects those that
have been disconnected for the longest time and the remanent charge of which is thus minimum.
Within the control process the instrument continually checks the relay compensation sections. If a
section’s outage or change in value is detected, the section is temporarily disabled from control under
relevant setting. The section temporarily disabled is periodically tested and enabled for control again
when possible.
Wide assortment of the instrument's alarms can be used both for indication and protection of the
compensation elements. It is, for example, possible to preset the THD and the CHL threshold levels at
which the controller disconnects all compensation sections thus preventing their damage. Besides
that, the most adverse values are recorded into the instrument’s memory for subsequent analysis.
Besides the power factor capacitors, it is possible to connect power factor chokes (power system
decompensation). Any output can be set as fixed, the three highest outputs can also be used as alarm
output or to connect the cooling or heating circuits.
The controllers can be equipped with different numbers of outputs up to 18.
4.2 Manipu ation and Setting
4.2.1 PFC Screen
For power factor control checking, special PFC screen serves. It gets complex and well-
arranged information about the compensation system actual state.
To show the screen, select appropriate icon from the Main Menu.
The PFC screen comprises following groups :
•outputs state … actual state of the outputs
•PF gauges … gauges indicating actual single-phase and three-phase power factor values
•actual data&status panel … multifolder panel with all of quantities' actual values necessary
for power factor control checking
•event indicator … indicates important events (flashing)
•actual te perature panel … actual internal & optionally external temperature
•reactive power deviation flags … individual phase & total three-phase PF-control deviation
flags combined with control time bargraph(s)
•toolbar … determines actual function of individual buttons
17

NOVAR 2600 Operating Manual
Fig. 4.1: PFC Screen
4.2.1.1 Outputs & Digita Input State
There are two columns of icons indicating actual state of individual outputs (and the digital input,
optionally) on the left side of the screen. The first (left) column corresponds to the output group No. 1,
the second column corresponds to the output group No. 2.
The icons primary information is actual output state ( the output additional information removed from
the icons for this example ) :
• … open output
• … closed output
The models with 7 and 16 outputs are equipped with one digital input too. Its state is indicated as
follows :
• … inactivated digital input
• … activated digital input
4.2.1.2 Outputs State Additiona Information
Icons bear additional information of particular outputs.
Firstly, the icon design determines the output type :
• … zero (or unknown) output; the output has zero reactive power (probably unconnected
output or with reactive power below the instrument sensitivity)
• , , … single-phase capacitors C1, C2, C3 (the number corresponds to appropriate
phase number)
• , , … two-phase capacitors C12, C23, C31
• … three-phase capacitor C123
• , , ...single-phase chokes L1, L2, L3
• , , … two-phase chokes L12, L23, L31
• … three-phase choke L123
18
outputs
state
actual
data & status
panel
PF
gauges
actual
temperature
panel
toolbar
reactive power
deviation flags control time
bargraph
event
indicator

NOVAR 2600 Operating Manual
• … general impedance Z (individual phase impedance components do not match to any
above noted standard C- or L-type outputs)
• … alarm output
• … fan output
• … heater output
Secondly, actual discharge time of any disconnected output can be checked from appropriate output
icon ( output type information removed from the icons for this example again ) :
• … open output, fully discharged
• … open output, not fully discharged
At the not-discharged output icon, the dark filled area represents remanent charge of the output – it
corresponds to the output actual discharge ti e and gradually drops down. This scheme is relevant
for capacitor, general and unknown impedance type outputs only, not used for choke type outputs.
If the output error detection alarm is set, outputs with unmatched size ( wrong or damaged ) are
detected and temporary removed from control process. Then the alarm gets active and appropriate
outputs are marked with crossing :
• … defective output
Finally, fixed outputs, i.e. the outputs permanently switched off or on, are marked with shadowed
icons :
• … fixed output, permanently off
Such outputs are not used for power factor control.
4.2.1.3 Power Factor Gauges
For permanent and easy survey of actual power factor, both individual phase ( L1, L2, L3 )
power factor gauges and three-phase ( ΣL ) power factor gauge are displayed in the central
part of the screen.
If a power factor value is out of the gauge range, the gauge pointer stops at the scale
margin. If the power factor cannot be evaluated at all ( for example at zero load ), the
pointer is suppressed.
Furthermore, the power factor actual value is displayed inside the gauge pointer. The value
format can be either cos φ , tan φ or φ - you can switch to desired format with the
button as described further below.
The second additional information is actual relative load. Level of apparent power of the phase (S1,
S2, S3) or total three phase apparent power ( 3S ) relative to preset nominal power PNOM is displayed
as shadowed column at background of the gauge.
For example, if the PNOM (three-phase) is set to 100 kVA, equivalent nominal phase apparent power is
33.3 kVA that would represent full L1, L2 and L3 gauge height. As about one third of the column
height only on the L1 example above, the actual load of the phase L1 is about 33.3 / 3, i.e. 10 kVA,
approximately.
19

NOVAR 2600 Operating Manual
4.2.1.4 Contro Deviation F ags
Just below the power factor gauges there are control deviation flags – three particular ones for
each phase L1, L2, L3 a one total three-phase ( ΣL ) flag.
These flags show the magnitude of deviation of the instantaneous reactive power in the power system
from tolerable reactive power range defined by the specified value of required power factor and control
bandwidth. Numeric value of this quantity, the ΔQfh, can be viewed at appropriate folder of the actual
data&status panel ( described further below).
If the deviation is smaller than a half of the reactive power value of the smallest output, the flag is
suppressed (balanced state). If the deviation is greater than a half of, but smaller than the reactive
power value of the smallest output, the corresponding flag flashes — if lagging (undercompensation,
positive ΔQfh value ), the (choke) flag flashes; if leading (overcompensation, negative ΔQfh
value ), the (capacitor) flag flashes. If the deviation exceeds the value of the smallest output, the
corresponding flag is shown permanently.
The flags are evaluated both individually for each phase by corresponding phase deviation
( considering the smallest corresponding phase reactive power component ) and for total three-phase
outlet.
Exceptions to these flags’ meanings occur at the following situations when the ΔQfh deviation cannot
be evaluated :
•if corresponding measurement phase voltage is below instrument sensitivity, the U=0
message is displayed instead
•if corresponding measurement phase voltage is correct, but corresponding measurement
current is below instrument sensitivity, the I=0 message is displayed instead
•if both corresponding measurement phase voltage and current are correct, but no control
output with non-zero reactive power value is preset, the C=0 message is displayed instead
During all of the situations above, the power factor control cannot be executed and the controller gets
into the Standby mode.
4.2.1.5 Contro Time Bargraph
At the control deviation flags' background, actual state of control time in form of horizontal
bargraph is displayed.
Power factor control passes discontinuously as a sequence of control interventions. The period
between two consecutive control interventions is called control ti e.
Depending on preset control strategy (see further below), one control time only or more times are
counted down. If the 3p strategy is set, one common (“three-phase”) control time is evaluated and its
bargraph shown in the ΣL control deviation flag field. For the 3p+1p or 3x1p strategies, three
individual control times for each independently controlled phase are evaluated and their bargraphs
shown in corresponding L1, L2, L3 control deviation flag fields.
As soon as the control deviation exceeds one half of appropriate smallest output power, the control
time counter is filled with appropriate preset control time value (depending on the deviation polarity)
and starts to count down. At the same time, appropriate control time bargraph starts to grow to the
right. Over time, the control deviation flag field background is fully filled, that means that the control
time counter has expired. Just after that new control intervention occurs and the control process
continues again from the beginning.
If the control deviation drops down below one half of the smallest output power, the control time
counter is refilled with the preset control time, the countdown stops and the appropriate bargraph is
cleared. But there are two exceptions to this – if :
•either at least one control choke (or, generally, inductive character section) is switched on,
•or there is very low load in the network
the control time counts down at minimum rate even during balanced state.
20
Other manuals for NOVAR 2600
1
Table of contents
Other KMB Controllers manuals