Ouster OS1 User manual

OS1UserGuide
Release v1.14.0-beta.12
OusterOS1HighResolutionImagingLidar
Sep01,2020

SafetyandLegal
1 Safety&LegalNotices 4
2 ProperAssembly,MaintenanceandSafe Use 5
2.1 Assemblagecorrectet utilisationsûre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3 OS1Overview 7
3.1 What’sinthebox ........................................... 7
4 OS1ProductModels 8
5 ConnectingtoSensorOverview 9
6 NetworkConfiguration 10
7 SensorVisualization 10
8 CoordinateFramesandXYZCalculation 11
8.1 LidarCoordinateFrame ....................................... 11
8.2 LidarRangetoXYZ.......................................... 11
8.3 SensorCoordinateFrame...................................... 13
8.4 CombiningLidar andSensor CoordinateFrame . . . . . . . . . . . . . . . . . . . . . . . . . 14
8.5 LidarIntrinsicBeamAngles.....................................14
8.6 Lidar Range DataToSensorXYZ CoordinateFrame . . . . . . . . . . . . . . . . . . . . . . . 14
8.7 IMUData ToSensor XYZCoordinateFrame . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
9 LidarData 16
9.1 LidarDataFormat........................................... 16
9.2 LidarData PacketSizeCalculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
10 IMUData 18
10.1IMUDataFormat ........................................... 18
11 DataRates 19
12 MechanicalInterface 21
12.1IncludedComponents ........................................ 21
12.2MountingGuidelines.........................................22
12.3ThermalRequirements........................................23
13 ElectricalInterface 23
13.1InterfaceBox..............................................23
13.2 DirectCable Connectionand Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
14 DigitalIO 26
14.1SYNC_PULSE_IN...........................................26
14.2MULTIPURPOSE_IO(M_IO).....................................27
15 Web Interface 28
16 HTTPAPIReference 29
2

16.1 system/firmware ............................................30
16.2 system/network .............................................30
16.3 system/time ...............................................33
17 TCPAPI 39
17.1 Querying SensorInfoand IntrinsicCalibration . . . . . . . . . . . . . . . . . . . . . . . . . . 39
17.2 Querying ActiveorStaged Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
17.3 SettingConfigurationParameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
18 Troubleshooting 53
19 CommonIssues 55
20AlertsandErrors 55
21 NetworkingGuide 62
21.1Networking101 ............................................62
21.2Windows................................................63
21.3macOS .................................................68
21.4Linux ..................................................73
22Ouster Studio 80
23Open SourceDrivers 80
24OS1CAD files 81
25Time Synchronization 81
25.1TimingOverviewDiagram...................................... 81
25.2SensorTimeSource .........................................82
25.3SettingOusterSensor Time Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
25.4ExternalTriggerClockSource . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
25.5NMEAMessageFormat .......................................85
26PTPQuickstartGuide 87
26.1Assumptions..............................................88
26.2PhysicalNetworkSetup.......................................88
26.3ThirdParty GrandmasterClock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
26.4LinuxPTPGrandmasterClock ...................................89
26.5VerifyingOperation..........................................97
26.6TestedGrandmasterClocks.....................................98
27 UpdatingFirmware 99
28BestPractices 99
29Changelog 99
HTTPRoutingTable 100
3

1 Safety&LegalNotices
The OS1-128, OS1-64, and OS1-32 have been evaluated to be Class 1 laser products per 60825-1:
2014 (Ed. 3) andoperatein the865nm band.
L’OS1-128,l’OS1-64,etl’OS1-32répondentauxcritèresdesproduitslaserdeclasse1,selonlanorme
IEC60825-1: 2014(3èmeédition)etémettentdansledomainedel’infrarouge,àunelongueurd’onde
de865nm environ.
FDA 21CFR1040 Notice: OS1-128, OS1-64, and OS1-32 comply with FDA performance standards for
laserproductsexcept fordeviations pursuanttoLaser NoticeNo. 56, datedJanuary 19,2018.
Notice FDA 21CFR1040: L’OS1-128, l’OS1-64, et l’OS1-32 sont conformes aux exigences de perfor-
mances établies par la FDA pour les produits laser, à l’exception des écarts en application de l’avis
nº56,datédu 19 janvier2018.
CAUTIONS:
TheOS1 isa hermeticallysealed unit, andis nonuser-serviceable.
Useofcontrols,oradjustments,orperformanceofproceduresotherthanthosespecifiedherein,
mayresultin hazardousradiationexposure.
Youruse of theOS1 is subjectto theTermsofSale that yousigned with Ousteror yourdistribu-
tor/integrator. Included inthese termsis theprohibition on:
Removingor otherwise opening the sensor housing
Inspectingthe internalsof the sensor
Reverse-engineeringanypart of thesensor
Permittinganythirdpartytodo anyofthe foregoing
Operating the sensor without either the attached mount with which the sensor is shipped, or
attaching the sensor to a surface of appropriate thermal capacity runs the risk of having the
sensoroverheatunder certain circumstances.
4

PRECAUTIONS:
L’OS1 est une unité hermétiquement scellée, qui ne peut être entretenue ou modifiée par
l’utilisateur.
L’utilisation de commandes, de réglages, ou l’exécution de procédures autres que celles spéci-
fiéesdans leprésent document peuvententraîner des rayonnementslaser dangereux.
L’utilisation de l’OS1 est soumise aux conditions de vente signées avec Ouster ou le distribu-
teur/intégrateur, incluantl’interdictionde:
Retirerou ouvrir dequelque façonle boîtierdu capteur
Analyserlescomposants internesducapteur
Pratiquerlarétro-ingénieriede touteoupartieducapteur
Autoriserune tiercepersonneà mener lesactions listéesci-dessus
EquipmentLabel: Notethattheequipmentlabel,whichincludesmodelandserialnumberandnotice
thattheunitisaClass1LaserProduct,isaffixedtotheundersideoftheSensorEnclosureBaseitself.
It is only visible after the attached mount with which the Sensor is shipped, is removed. Please refer
tolocationdetails inMechanical Interface.
L’étiquettedel’équipement,comprenantlemodèle,lenumérodesérie,etlaclassificationduproduit
laser (ici, classe 1), est apposée au dessous de la base du boîtier du capteur. Il n’est visible qu’après
avoir retiré le diffuseur de chaleur avec lequel le capteur est expédié. L’emplacement est décrit avec
précisiondansle Guide de l’Utilisateur,dansla section«Mechanical Interface».
Electromagnetic Compatibility: The OS1 is an FCC 47 CfR 15 Subpart B device. This device complies
with part 15 of the FCC Rules. Operation is subject to the following conditions: (1) This device may
not cause harmful interference, and (2) this device must accept any interference received, including
interferencethat maycause undesired operation
“Ouster” and “OS1” are both registered trademarks of Ouster, Inc. They may not be used without
expresspermissionfrom Ouster,Inc.
Ifyouhaveanyquestions aboutthe abovepoints,contactus at legal@ouster.io.
2 Proper Assembly, Maintenance and
SafeUse
TheOS1maybeeasilysetupbymountingtothebasetoamountingwiththecorrectmountingholepat-
tern,and followingtheinterconnectioninstructionsdelineatedinMounting Guidelines. Anymounting
orientationisacceptable. Eachsensorisshippedattachedtoamountfortestornormalusespecified
operatingtemperaturerange,butthesensormaybemounteddirectlytoanyappropriatemountwith
Thermal Capacity appropriate for the application of the user. Please contact Ouster for assistance
withapprovingthe useof userspecific mounting arrangements.
5

Any attempt to utilize the sensor outside the Environmental parameters delineated in the OS1 data
sheetmayresult invoidingof the warranty.
When power is applied, the sensor powers up and commences boot-up with the laser disabled. The
bootup sequence is approximately 60s in duration, after which the internal sensor optics subassem-
bly commences spinning, and the laser is activated, and the unit operates in the default 1024 x 10
Hz mode. When the sensor is running, and the laser is operating, a faint red flickering light may be
seenbehind the optical window. Notethat theOS1 utilizes an 865nminfraredlaser that is only dimly
discernabletothenakedeye,whiletransmittingalasereye-safefundamentalsignalinthe865nmIR
band. WhilethesensorisfullyClass1eyesafe,Ousterstronglyrecommendsagainstpeeringintothe
opticalwindowatcloserangewhilethesensorisoperating. TheOS1isahermeticallysealedunit,and
isnotuser-serviceable. Anyattempttounsealtheenclosurehasthepotentialtoexposetheoperator
tohazardouslaser radiation.
Ouster sensors are equipped with a multi-layer series of internal safety interlocks to ensure compli-
ance to Class 1 Laser Eye Safe limits. The Sensor Software User interface may be used configure
the sensor to a number of combinations of scan rates and resolutions other than the default values
of 1024 x 10 Hz resolution. In all available combinations, the unit has been evaluated by an NRTL to
remainwithinthe classification of a Class1 LaserDevice asper IEC60825-1:2014 (Ed. 3).
2.1 Assemblagecorrectetutilisationsûre
L’OS1s’installefacilementenfixantlabasesurunsupportpercédetrousconcordants,etensuivantles
instructionsd’interconnexiondécritesdansleGuidedel’Utilisateur«MountingGuidelines». Touteori-
entationdemontageest acceptable. Chaquecapteurestexpédié équipé d’undissipateurdechaleur,
utilisable en phase de test et en conditions normales. Néanmoins tout autre support présentant une
capacité thermique appropriée pour l’application de l’utilisateur peut être utilisé. Veuillez contacter
Ousterdansle cas où un montagespécifique àvotreapplication seraitnécessaire.
Toute tentative d’utilisation du capteur en dehors des paramètres environnementaux définis dans la
fichetechniquede l’OS1peut entraînerl’annulationde lagarantie.
Lorsque l’on observe le capteur en cours d’utilisation, on peut apercevoir une faible lumière rouge
vacillantederrièrelavitreteintée. Cettelumière,àpeineperceptibleàl’œilnuestinoffensivepourl’oeil:
elleaccompagnelesrayonnementslaserdeclasse1del’OS1émisdansledomainedel’infrarouge,eux-
même sans danger pour l’oeil humain. Cependant, bien que les rayonnements laser de class 1 soient
sans danger dans des conditions raisonnablement prévisibles, Ouster recommande fortement de ne
pasregarderfixement lavitreteintéependant quele capteurest enmarche.
L’OS1 est une unité hermétiquement scellée, qui ne peut pas être entretenue, modifiée ou réparée.
Toutetentatived’ouvertureduboîtierapourrisqued’exposerl’opérateuràunrayonnementlaserdan-
gereux.
LescapteursOustersontéquipésd’unesériededispositifsdesécuritéàplusieursniveaux,defaçonà
assureren toutescirconstances lerespect deslimites d’irradiancecorrespondantaux rayonnements
lasersdeclasse 1, sans danger pourles yeux.
L’interfaceutilisateurdulogiciel ducapteurpeutêtreutilisée pourconfigurerlecapteurselon uncer-
tainnombredecombinaisonsdevitessesdebalayageetderésolutionsautresquelesvaleursutilisées
pardéfaut,respectivementde 1024x10 Hz.
6

3 OS1Overview
The OS1 offers an industry-leading combination of price, performance, reliability, size, weight, and
power. It is designed for indoor/outdoor all-weather environments and long lifetime. As the smallest
high performance lidar on the market, the OS1 can be directly integrated into vehicle facias, robots,
anddrones.
The OS1 family of sensors consist of three models, the OS1-128, OS1-64, and OS1-32, with differing
resolution,butof identical mechanical dimensions.
HIGHLIGHTS
Fixedresolutionper frameoperatingmode
Camera-gradeintensity, ambient,and rangedata
Multi-sensorcrosstalkimmunity
Simultaneousand co-calibrated2Dand 3Doutput
Industryleading intrinsic calibration
Exampleclient codeavailable
Forthepurposesofthisdocument,theterm“OS1”referstothefamilyofsensors,andonlywherethere
isa differenceinperformancewill eachmodel bereferredto byitsspecific model designation.
3.1 What’s in thebox
TheOS1isshippedwiththefollowingitems:
OS1lidar sensor
24VAC/DCpowersupply
InterfaceBox
RJ45gigabit Ethernet cable
Mountingguidelines
Baseplateheatsink
Pleasecontactyoursalesrepresentativeorlocaldistributorforcustomaccessoriesincludingoptional
mountsandinterface boxeswith differentlengthcables.
7

5 ConnectingtoSensorOverview
TheOS1requiresacomputerwithagigabitEthernetconnectionanda24Vsupply. Optionallyyoumay
timesynchronizethe sensorthrough anexternaltime sourceor throughthe computerviaPTP.
9

6 NetworkConfiguration
The sensor is designed to communicate with a host machine through a variety of different methods
sucha DHCP, IPv6/IPv4link-local,and static IP.
On most systems you should be able to connect the sensor into your network or directly to a host
machineand simpleuse thesenor hostname tocommunicatewith it.
Thesensor hostnameis, os-991234567890.local,where 991234567890 isthe sensorserial number.
Formoredetailedguidanceoncommunicatingwiththesensoronvariousoperatingsystemsandnet-
worksetttingsplease referencethe Networking Guide.
CommandsforsettinganddeletingastaticIPaddresscanbefoundintheHTTPAPIReferencesection.
7 SensorVisualization
Afterconnectingtoyoursensors,youcanquicklyvisualizethepointcloudthrougheitherOusterStudio
or with our sample drivers. Both Ouster Studio and our sample drivers are available for Linux, Mac,
andWindows. PleasecontactyoursalesrepifyoudonotalreadyhavelinkstoeitherthelatestOuster
Studioor thesample drivers.
Currently the latest public Ouster Studio drivers are found at https://www.paraview.org/
ousterstudio/and thelatest sampledriversarereleased onwww.github.com/ouster. Notethatwhile
firmwarev1.14 isstill inbeta, the latestpublicvisualization toolsarestill meant forGen1 sensors.
10

8 Coordinate Frames and XYZ Calcula-
tion
8.1 Lidar CoordinateFrame
The Lidar Coordinate Frame follows the right-hand rule convention and is defined at the intersection
ofthelidaraxisofrotationandthelidaropticalmidplane(aplaneparalleltoSensorCoordinateFrame
XYplane andcoincident withthe 0° elevationbeamangle of thelidar).
TheLidarCoordinateFrameaxes arearrangedwith:
positivex-axispointedat encoderangle 0° andthe redexternalconnector
positivey-axispointed towardsencoder angle90°
positivez-axispointed towardsthe topofthe sensor
TheLidar CoordinateFrameismarkedin both diagrams belowwith XL, YL, andZL.
8.2 LidarRangetoXYZ
Giventhefollowinginformation,rangedatamaybetransformedinto3DcartesianXYZcoordinatesin
theLidar CoordinateFrame:
Fromanazimuth data block fromtheUDPpacket:
encoder_count ofthe azimuthblock
range_mm valueof thedata blockof the i-thchannel
Fromtheget_beam_intrinsics TCPcommand:
lidar_origin_to_beam_origin_mm value
beam_altitude_angles array
beam_azimuth_angles array
11

Thecorresponding3D point can be computedby
r=range_mm
n=lidar_origin_to_beam_origin_mm
θencoder = 2π·(1−
encoder_count
90112 )
θazimuth =−2πbeam_azimuth_angles[i]
360
ϕ= 2πbeam_altitude_angles[i]
360
x= (r−n)cos(θencoder +θazimuth)cos(ϕ) + ncos(θencoder )
y= (r−n)sin(θencoder +θazimuth)cos(ϕ) + nsin(θencoder )
z= (r−n)sin(ϕ)
FiguresFig.8.1 andFig. 8.2 show, respectively,a top-downandside viewof thesensor.
Figure8.1: Top-down viewof Lidar CoordinateFrame
Figure8.2: Sideviewof LidarCoordinateFrame
12

8.3 SensorCoordinateFrame
The Sensor Coordinate Frame follows the right-hand rule convention and is defined at the center of
thesensorhousingonthebottom,withthex-axispointedforward,y-axispointedtotheleftandz-axis
pointed towards the top of the sensor. The external connector is located in the negative x direction.
TheSensor CoordinateFrameismarkedin the diagram belowwith XS, YS, ZS.
Figure8.3: Top-downviewof Sensor CoordinateFrame
Figure8.4: Sideviewof SensorCoordinateFrame
13

8.4 CombiningLidarandSensor CoordinateFrame
The Lidar Coordinate Frame’s positive x-axis (0 encoder value) is opposite the Sensor Coordinate
Frame’s positive x-axis to center lidar data about the Sensor Coordinate Frame’s positive x-axis. A
single measurement frame starts at the Lidar Coordinate Frame’s 0° position and ends at the 360°
position. This is convenient when viewing a “range image” of the Ouster Sensor measurements, al-
lowing the “range image” to be centered in the Sensor Coordinate Frame’s positive x-axis, which is
generallyforwardfacinginmost roboticsystems.
The Ouster Sensor scans in the clockwise direction when viewed from the top, which is a negative
rotationalvelocityaboutthez-axis. Thus,asencoderticksincreasesfrom0to90,111,theactualangle
aboutthe z-axisin theLidar CoordinateFramewill decrease.
8.5 LidarIntrinsicBeamAngles
The intrinsic beam angles for each beam may be queried with a TCP command get_beam_intrinsics
to provide an azimuth and elevation adjustmen offset to the each beam. The azimuth adjustment is
referenced off of the current encoder angle and the elevation adjustment is referenced from the XY
planein theSensor andLidar CoordinateFrames.
8.6 LidarRange Data ToSensorXYZ CoordinateFrame
ForapplicationsthatrequirecalibrationagainstaprecisionmountorusetheIMUdataincombination
with the lidar data, the XYZ points should be adjusted to the Sensor Coordinate Frame. This requires
a Z translation and a rotation of the X,Y,Z points about the z-axis. The z translation is the height of
thelidaraperturestopabovethesensororigin,whichis36.180mmfortheOS1,andthedatamustbe
rotated180°aroundthez-axis. ThisinformationcanbequeriedoverTCPintheformofahomogeneous
transformationmatrix inrow-majorordering.
ExampleJSON formattedquery using theTCPcommand get_lidar_intrinsics:
{
"lidar_to_sensor_transform": [
-1,
0,
0,
0,
0,
-1,
0,
0,
0,
0,
1,
74.296,
0,
0,
0,(continuesonnext page)
14

(continuedfrompreviouspage)
1
]
}
Whichcorrespondsto thefollowingmatrix
M_lidar_to_sensor =
−1 0 0 0
0−1 0 0
0 0 1 74.296
0 0 0 1
The table below lists all product lines’ distances of the aperture stop above the sensor origin for use
inthe ztranslation.
ProductLine Lidaraperturestopabovesensororigin
OS0 36.180mm
OS1 36.180mm
OS2 74.296mm
8.7 IMUDataTo Sensor XYZCoordinateFrame
The IMU is slightly offset in the Sensor Coordinate Frame for practical reasons. The IMU origin in the
Sensor Coordinate Frame can be queried over TCP in the form of an homogeneous transformation
matrixin row-majorordering.
ExampleJSON formattedquery using theTCPcommand get_imu_intrinsics:
{
"imu_to_sensor_transform": [
1,
0,
0,
6.253,
0,
1,
0,
-11.775,
0,
0,
1,
7.645,
0,
0,
0,
1(continuesonnext page)
15

(continuedfrompreviouspage)
]
}
Whichcorrespondsto thefollowingmatrix
M_imu_to_sensor =
1 0 0 6.253
0 1 0 −11.775
0 0 1 7.645
0 0 0 1
9 LidarData
9.1 LidarDataFormat
Note: The calculations and illustrations of the lidar data in this section presupposes the use of the
latest firmware v1.14.0or v2.0.0. Previous firmware did not scale lidar data packet size with number
ofchannelsinasensor. Pleasecontact[email protected]ifyouneedanolderversionoftheguideto
lidardata format.
Lidardatapacketsconsistof16azimuthblocksandvariesinlengthrelativetothenumberofchannels
inthesensor. Thepacketrateisdependentontheoutputmode. Wordsare32bitsinlengthandlittle
endian. Bydefault,lidar UDP data is forwardedtoPort7502.
Eachazimuth blockcontains:
Timestamp [64bit unsigned int] -timestamp ofthe measurementin nanoseconds.
Measurement ID [16 bit unsigned int] - a sequentially incrementing azimuth measurement
countingup from0 to 511,or0 to1023,or 0to2047dependingon lidar_mode.
Frame ID [16 bit unsigned int] - index of the lidar scan. Increments every time the sensor com-
pletesarotation, crossingthezeropoint of theencoder.
EncoderCount [32bitunsignedint]-an azimuthangleasarawencodercount, startingfrom0
withamaxvalueof90,111-incrementing44tickseveryazimuthanglein2048mode,88ticksin
1024mode,and 176ticksin 512mode.
Data Block [96 bits]- 3 datawordsforeachpixel, each containing:
Range [32 bit unsigned int - only 20 bits used] - range in millimeters, discretized to the
nearest3millimeters.
SignalPhotons[16bitunsignedint]-signalintensityphotonsinthesignalreturnmeasure-
mentarereported.
16

Reflectivity [16 bit unsigned int] - sensor signal_photon measurements are scaled based
on measured range and sensor sensitivity at that range, providing an indication of target
reflectivity. Calibrationofthismeasurementhasnotcurrentlybeenrigorouslyimplemented,
butthis willbe updatedin afuture firmwarerelease.
Ambient Photons [16 bit unsigned int] - ambient photons in the ambient return measure-
mentarereported.
Azimuth Data Block Status [32 bits]- indicates whether the azimuth block contains valid data
initschannels’DataBlocks. Good=0xFFFFFFFF,Bad=0x0. IftheAzimuthDataBlockStatusis
bad (e.g. in the case of column data being dropped), words in the data block will be set to 0x0,
butTimestamp,MeasurementID,FrameID, andEncoder Countwill remainvalid.
17

9.2 LidarData PacketSizeCalculation
The table below shows the lidar data packet size breakdown for all products. Since the size of the
azimuth block varies proportional the number of channels in a sensors, all sensors with the same
numberof channelshavethesame lidar packet data structureand size.
Product Number of words in az-
imuthblock Size of single azimuth
block(Bytes) Size of lidar
packet(Bytes)
OS1-16 53 212 3,392
OS0-32, OS1-32,
OS2-32 101 404 6,464
OS0-64, OS1-64,
OS2-64 197 788 12,608
OS0-128, OS1-128,
OS2-128 389 1,556 24,896
10 IMUData
10.1 IMUDataFormat
IMU UDP Packets are 48 Bytes long and by default are sent to Port 7503 at 100 Hz. Values are little
endian.
EachIMU datablock contains:
IMUDiagnosticTime[64bitunsignedint]-timestampofmonotonicsystemtimesincebootin
nanoseconds.
AccelerometerReadTime[64bit unsigned int]- timestampforaccelerometertime relativeto
timestamp_mode innanoseconds.
Gyroscope Read Time [64 bit unsigned int] - timestamp for gyroscope time relative to times-
tamp_mode innanoseconds.
AccelerationinX-axis[32bitfloat] - accelerationing.
AccelerationinY-axis [32bit float] -acceleration in g.
AccelerationinZ-axis[32bit float] -accelerationin g.
Angular Velocity about X-axis [32bit float] -Angular velocityin degper sec.
AngularVelocity about Y-axis[32bit float]- Angularvelocity indeg persec.
AngularVelocity about Z-axis [32bit float]- Angular velocity indeg persec.
18

Note that the first timestamp (Words 0,1) is for diagnostics only and is rarely used under normal op-
eration.
Thesecondtwotimestamps,(Words2,3)and(Words4,5),aresampledonthesameclockasthelidar
data,so shouldbe usedformost applications.
Ousterprovidestimestampsforboththegyroandaccelerometerinordertogiveaccesstothelowest
levelinformation. Inmost applicationsit is acceptabletouse the averageofthe twotimestamps.
11 DataRates
The table below calculates the data of all products operating at the highest lidar modes, 2048x10 or
1024x20 (*).
Product Lidar packet
size(Bytes) Lidar packets
rate*(Hz) IMU packet
size(Bytes) IMU packets
persecond Data rate
(Mbps)
OS1-16 3,392 1,280 48 100 34.77
OS0-32, OS1-
32,OS2-32 6,464 1,280 48 100 66.23
OS0-64, OS1-
64,OS2-64 12,608 1,280 48 100 129.14
OS0-128, OS1-
128,OS2-128 24,896 1,280 48 100 254.97
19

Lidar packets account for >99% of data coming from the sensor. For most applications, a gigabit
Ethernetnetworkconnection isrequiredforreliableperformance.
20
Other manuals for OS1
1
Table of contents
Popular Radar manuals by other brands

Furuno
Furuno WR-2100 Operator's manual

Hensoldt
Hensoldt Kelvin Hughes SBS-800 Series Operator & Planned Maintenance Handbook

OmniPreSense
OmniPreSense OPS242 user manual

icoms
icoms TMA 3B3 user guide

Endress+Hauser
Endress+Hauser Levelflex M FMP41C technical information

MicRadar
MicRadar R24BBD1 Applications manual