IMS IB462H User manual

-~
ARTISAN
®
~I
TECHNOLOGY
GROUP
Your definitive source
for
quality
pre-owned
equipment.
Artisan Technology
Group
Full-service,
independent
repair
center
with
experienced
engineers
and
technicians
on staff.
We
buy
your
excess,
underutilized,
and
idle
equipment
along
with
credit
for
buybacks
and
trade-ins
.
Custom
engineering
so
your
equipment
works
exactly as
you
specify.
•
Critical
and
expedited
services
•
Leasing
/
Rentals/
Demos
• In
stock/
Ready-to-ship
•
!TAR-certified
secure
asset
solutions
Expert
team
ITrust
guarantee
I
100%
satisfaction
All
tr
ademarks,
br
a
nd
names, a
nd
br
a
nd
s a
pp
earing here
in
are
th
e property of
th
e
ir
r
es
pecti
ve
ow
ner
s.
Visit our website - Click HERE

T
in t e l l ig e n t m o t io n s y s t e m s , in c .
Excellencein M otionTM
TM
IB462H
HIGH PERFORMANCE MICROSTEPPING DRIVE
FEATURING THE INT-462H INTERFACE BOARD
AND THE OSC-462H VARIABLE SPEED CONTROL
O P E R A T IN G IN S T R U C T IO N S
370 N. MAIN ST., PO BOX 457, MARLBOROUGH, CT 06447
PH. (860) 295-6102, FAX (860) 295-6107

©2002 by Intelligent Motion Systems, Inc.
All Rights Reserved
The information in this book has been carefully checked and is
believed to be accurate; however, no responsibility is assumed for
inaccuracies.
Intelligent Motion Systems, Inc., reserves the right to make changes
without further notice to any products herein to improve reliability,
function, or design. Intelligent Motion Systems, Inc., does not assume
any liability arising out of the application or use of any product or circuit
described herein; niether does it convey any license under its patent
rights of others. Intelligent Motion Systems and are
trademarks of Intelligent Motion Systems, Inc.
Intelligent Motion Systems, Inc.’s general policy does not recommend
the use of it’s products in life support or aircraft applications wherein a
failure or malfunction of the product may directly threaten life or injury.
Per Intelligent Motion Systems, Inc.’s terms and conditions of sales, the
user of Intelligent Motion Systems, Inc. products in life support or
aircraft applications assumes all risks of such use and indemnifies
Intelligent Motion Systems, Inc., against all damages.
TM
IB462H Half/Full Step Driver Hybrid Operating Instructions
Revision 12.19.2002

1
462
Table of Contents
Part 1: IB462H
Section 1.1: The IB462H ........................................................................ 6
Features and Benefits ................................................................................................... 6
The Product Manual ...................................................................................................... 7
Notes and Warnings ...................................................................................................... 7
Section 1.2: Hardware Specifications .................................................. 8
Section Overview .......................................................................................................... 8
Mechanical Specifications ............................................................................................. 8
Electrical Specifications ................................................................................................. 9
Thermal Specifications .................................................................................................. 9
Pin Assignment and Description .................................................................................. 10
Section 1.3: Mounting the IB462H ...................................................... 11
Section Overview ......................................................................................................... 11
Direct Mounting the IB462H to a PC Board ..................................................................11
Mounting the IB462H using a Receptacle ................................................................... 12
Section 1.4: Theory of Operation ....................................................... 13
Section Overview ........................................................................................................ 13
Circuit Operation .......................................................................................................... 13
Output Wave Sequences ............................................................................................ 14
Timing ..........................................................................................................................15
Section 1.5: Power Supply Requirements ......................................... 16
Section Overview ........................................................................................................ 16
Selecting Power Supplies ............................................................................................ 16
Selecting a +5VDC Supply .......................................................................................... 18
Recommended Wiring ................................................................................................. 18
AC Line Filtering .......................................................................................................... 19
Section 1.6: Motor Requirements ...................................................... 20
Section Overview ........................................................................................................ 20
Selecting a Motor ......................................................................................................... 20
Motor Wiring ................................................................................................................ 23
Connecting the Motor .................................................................................................. 24
Section 1.7: Interfacing to the IB462H ............................................... 27
Section Overview ........................................................................................................ 27
Layout and Interface Guidelines .................................................................................. 27
Motor Power ................................................................................................................ 28
+5 VDC Input ............................................................................................................... 29
Interfacing the Current Adjust Input ............................................................................. 29
Interfacing the Logic Inputs .......................................................................................... 31
Interfacing the Sense A & B Outputs ........................................................................... 31
Minimum Required Connections ................................................................................. 32
Section 1.8: Troubleshooting ............................................................. 33
Section Overview ........................................................................................................ 33
Basic Troubleshooting ................................................................................................. 33
Problem Symptoms and Possible Causes .................................................................. 33
Contacting Application Support ................................................................................... 35
The IMS Web Site ....................................................................................................... 36
Returning Your Product to IMS .................................................................................... 36

2
462
Part 2: Options And Accessories
Section 2.1: The INT-462 Interface Board .......................................... 39
INT-462 Features ........................................................................................................ 39
Mechanical Specifications ........................................................................................... 39
Pin Assignment and Description .................................................................................. 40
Thermal Specifications ................................................................................................ 41
Electrical Specifications ............................................................................................... 41
Mounting the INT-462 .................................................................................................. 42
Connecting and Configuring the INT-462 .................................................................... 42
Section 2.2: The OSC-462H Variable Speed Control ....................... 50
Section Overview ........................................................................................................ 50
OSC-462H Features ................................................................................................... 50
OSC-462H Specifications ........................................................................................... 51
Mounting the OSC-462H ............................................................................................. 54
OSC-462H Wiring and Connections ........................................................................... 56
Configuring the OSC-462H ......................................................................................... 61
Configuration Parameters Explained ........................................................................... 62
Setting the Configuration Parameters ......................................................................... 64
Application Example #1: Connection and External Step/Direction .............................. 67
Application Example #2: Connection of OSC-462 to Additional Half/Full Step Driver 68
List of Figures
Figure 1.2.1 IB462H Dimensions ............................................................................. 8
Figure 1.3.1 PCB Hole/Pad Pattern ....................................................................... 11
Figure 1.3.2 Direct PCB Mounting ......................................................................... 12
Figure 1.3.3 PCB Mounting using a Receptacle .................................................... 12
Figure 1.4.1 IB462H Block Diagram ...................................................................... 13
Figure 1.4.2 Normal Mode Phase Sequence ........................................................ 14
Figure 1.4.3 Wave Mode Phase Sequence .......................................................... 15
Figure 1.4.4 Half Step Mode Phase Sequence ..................................................... 15
Figure 1.4.5 Timing Diagram ................................................................................. 15
Figure 1.6.1 Per Phase Winding Inductance ......................................................... 21
Figure 1.6.2 8 Lead Series Motor Configuration ................................................... 24
Figure 1.6.3 8 Lead Parallel Motor Configuration.................................................. 25
Figure 1.6.4 6 Lead Half Coil Motor Configuration ................................................ 25
Figure 1.6.5 6 Lead Full Coil Motor Configuration ................................................. 26
Figure 1.6.6 4 Lead Motor Configuration ............................................................... 26
Figure 1.7.1 Power Interface ................................................................................. 28
Figure 1.7.2 Current Adjust/Reduction Circuit ....................................................... 30
Figure 1.7.3 Internal Input Pull-up Resistor Values ................................................ 31
Figure 1.7.4 Over Current Trip Circuit ................................................................... 31
Figure 1.7.5 Minimum Required Connections ....................................................... 32
Figure 2.1.1 INT-462 Dimensional Information ...................................................... 39
Figure 2.1.2 Mounting the INT-462H ..................................................................... 42
Figure 2.1.3 Current and Reduction Adjustment Resistor Connection ................. 45
Figure 2.1.4 Optically Isolated Input Circuitry ........................................................ 46
Figure 2.1.5 Powering the Opto-couplers using the On-board +5 VDC ................ 47
Figure 2.1.6 Jumper JP1 Showing Full Step Mode Selected ................................ 48
Figure 2.1.7 Minimum Required Connections ....................................................... 49
Figure 2.2.1 OSC-462H Dimensional Information ................................................. 51

3
462
Figure 2.2.2 OSC-462H Connector P1 Pin Configuration ..................................... 53
Figure 2.2.3 OSC-462H Connector P3 Pin Configuration ..................................... 54
Figure 2.2.4 Inserting the IB462H into the OSC-462H .......................................... 55
Figure 2.2.5 Mounting the IB462H/OSC-462H Assembly ..................................... 55
Figure 2.2.6 Connecting the SPI Interface ............................................................ 56
Figure 2.2.7 Interfacing the Speed Control Input with a Potentiometer ................. 57
Figure 2.2.8 OSC-462H Minimum Connections .................................................... 60
Figure 2.2.9 OSC-462H Configuration Utility Screen ............................................ 61
Figure 2.2.10 OSC-462H Configuration Utility Screen ............................................ 65
Figure 2.2.11 Initialization Mode .............................................................................. 66
Figure 2.2.12 OSC-462H Application Example #1 .................................................. 67
Figure 2.2.13 OSC-462H Application Example #2 .................................................. 68
List of Tables
Table 1.2.1 IB462H Electrical Specifications ......................................................... 9
Table 1.2.2 IB462H Thermal Specifications ........................................................... 9
Table 1.2.3 IB462H Pin Assignment and Description .......................................... 10
Table 1.7.1 Current Adjust Reference Voltage/Output Current ............................ 29
Table 2.1.1 INT-462 Pin Assignment and Description ......................................... 40
Table 2.1.2 INT-462 Electrical Specifications ...................................................... 41
Table 2.1.3 INT-462 Thermal Specifications ........................................................ 41
Table 2.1.4 Current Adjust Resistor Values ......................................................... 43
Table 2.1.5 Jumper JP3 Shunt Placement Options ............................................. 44
Table 2.1.6 Jumper JP2 Shunt Placement Options ............................................. 47
Table 2.1.7 Jumper JP1 Shunt Placement Options ............................................. 48
Table 2.2.1 OSC-462H Thermal Specifications ................................................... 52
Table 2.2.2 OSC-462H Electrical Specifications .................................................. 52
Table 2.2.3 Connector P1 Pin Assignment and Description ................................ 53
Table 2.2.4 Connector P3 Pin Assignment and Description ................................ 54
Table 2.2.5 OSC-462H Required Connections .................................................... 59
Table 2.2.6 OSC462H Parameter Summary ....................................................... 62
Table 2.2.7 Range Parameter Values .................................................................. 64

4
462
Page Intentionally Left Blank

5
462
IB4 6 2 H
Part I
Section 1 .1 –Introduction
Section 1 .2 –Hardware Specifications
Section 1 .3 –M ounting
Section 1 .4 –Theory of Operation
Section 1 .5 –Power Supply Requirements
Section 1 .6 –M otor Requirements
Section 1 .7 –Interfacing
Section 1 .8 –Troubleshooting

6
462
Features and Benefits
■Very Low Cost
■Ultra Miniature (1.2” x 2.4” x 0.28”) (30 x 61 x 7 mm)
■Advanced Hybrid Design
■High Input Voltage (+12 to +40 Volts)
■High Output Current (2A per Phase)
■20 kHz chopping rate
■Full or Half Step
Section 1.1
The IB4 6 2 H
The IB462H is a low cost, high performance alternative to larger drives. The
small size of the IB462H makes it ideal for system designs where space is at a
premium without having to sacrifice performance as a result.
The IB462H operates between +12 and +40VDC. This high voltage allows
for increased torque at higher speeds. Combine this with 2 amps per phase of
output current and 160 watts of power and you have a low cost alternative to
chipsets. All contained in a package that minimizes expensive real estate!
The IB462H reduces time to market and increases reliability, and comes with
a 2 year warranty. The IB462H represents affordable, state-of-the-art
technology for the competitive edge needed in today’s market.
M iniature Package
The IB462H packs a powerful 160 Watts into an area of .806 cu. in.
High Current
The IB462H will effortlessly output up to 2 amps per Phase.
High Voltage
The IB462H operates from +12 to +40 volts. This high voltage allows for greater
speeds at higher torque without resorting to expensive drives or larger motors.
The high efficiency of the IB462H chopper drive, along with its miniature
size, makes it ideally suited to replace the less efficient L/R drives. In
addition, the low cost and off-the-shelf availability if the IB462H permits an
immediate cost effective solution to chip sets.

7
462
The Product M anual
The IB462H/INT-462 Product Manual in its electronic format (IB462H.pdf)
can be downloaded from the IMS website at www.imshome.com. This version
includes a Bookmark feature that allows the reader to link
from a Bookmarked Topic in the Table of Contents to a full
description of that feature’s attributes and functions. You
can also select a Topic directly from the Table of Contents
Pages. Topics with a Bookmark function are further
identifiable because the cursor changes from a normal
pointer to a “finger” pointer when placed over the word.
Notes and W arnings
The following notes and warnings must be observed when handling or using
the IB462H driver hybrid.
WARNING! The IB462H and INT-462 components are sensitive to
Electrostatic Discharge (ESD). All handling should be done at an
ESD protected workstation.
WARNING! Hazardous Voltage Levels may be present if using an
open frame power supply to power the IB462H/INT-462!
WARNING! Ensure that the Power Supply output voltage does not
exceed the maximum input voltage of the IB462H/INT-462!
WARNING! The IB462H rear plate MUST be kept to 70° or below
or damage may occur to the device! Use of an external heat sink
and the included thermal pad is required to maintain a rear plate
temperature of 70°C or below!
WARNING! The rear mounting surface of the IB462H contains
different voltages and must be kept isolated when attached to a
conductive surface!

8
462
Figure 1.2.1: IB462H Dimensions
Section 1.2
Hardware Specifications
Section Overview
This section will acquaint you with the dimensional information, pin descrip-
tion, power, environmental and thermal requirements of the IB462H. It is
broken down as follows:
Mechanical Specifications
Electrical Specifications
Thermal Specifications
Pin Description
M echanical Specifications
NOTE: Dot on lower left of label indicates the location
of pin 1.
0.113
( 2.87)
1.895
( 48.13)
2.120
( 53.85)
0.113
( 2.87)
0.585
( 14.86)
0.020
( 0.51)
R 0.125
( R 3.18)
Ø 0.150
( Ø 3.81)
0.270
( 6.86)
0.079 T Y P
( 2.00 T Y P )
0.020 S Q P I N
( 0.51 S Q P I N)
1.169
( 29.69)
0.189 T Y P
( 4.80 T Y P )
0.065
( 1.65)
0.284
( 7.21)
HE AT SI NK
THIS SIDE

9
462
Electrical Specifications
Thermal Specifications
Table 1.2.1: IB462H Electrical Specifications
snoitacificepSlamrehTH264BI
noitacificepS tinU
erutarepmeTtneibmAC°05+ot0
erutarepmeTegarotS C°521+ot04-
erutarepmeTetalPmumixaMC°07
Table 1.2.2: IB462H Thermal Specifications
WARNING! The IB462H rear plate MUST be kept to
70° or below or damage may occur to the device!
USe of an external heat sink and the included
thermal pad is required to maintain a rear plate
temperature of 70°C or below!
WARNING! The rear mounting surface of the IB462H
contains different voltages and must be kept isolated
when attached to a conductive surface!
NOTE: When choosing a heat sink, ensure that there is
good thermal flow, otherwise hot spots may occur in the
IB462H, reducing the effectiveness of the thermal
protection.
snoitacificepSlacirtcelEH264BI
noitacificepS noitidnoCtseT .niM .pyT .xaM tinU
egatloVtupnI2104V
tnerruCtuptuOesahP esahPreP 2 A
)V+(tnerruCtnecseiuQgnitaolFstuptuO4Am
)tupnIV5+(tnerruCtnecseiuQ gnitaolFstuptuO 05 08 Am
egatloVtupnItsujdAtnerruC 0.1V
egatloVtupnIleveLwoL teseR,F/H,RID,KLCS 6.0 V
egatloVtupnIleveLhgiHteseR,F/H,RID,KLCS25V
tnerruCtupnIleveLwoL elbanE,F/H,RID,KLCS 2.1- Am
tnerruCtupnIleveLwoLylnOtupnIteseR002- µA
tnerruCtupnIleveLhgiH elbanE,F/H,RID,KLCS 01 µA
egatloVtupnIleveLwoLelbanEylnOtupnIelbanE3.1V
egatloVtupnIleveLhgiHelbanE ylnOtupnIelbanE 2 5 V
ecnatsiseRpu-lluPtupnIelbanE,F/H,RID,KLCS5.47.49.4kΩ
ecnatsiseRpu-lluPtupnI ylnOtupnIteseR 05 15 25 kΩ

10
462
Pin Assignment and Description
NOTE: Dot on lower left of label indicates the
location of pin 1.
Table 1.2.3: IB462H Pin Assignment and Description
noitarugifnoCniPH264BI
#NIP NOITCNUF SLIATED
1tsujdAtnerruC deilppaebtsumegatlovA.niptnemtsujdatnerrucesahP
.tnerructuptuoesahpehttesotnipsihtot
2teseR ehtstesertupnisihtnoeslupWOLevitcanA.tupniteseR
.revird
3petSlluF/flaH
.revirdehtrofnoitarepopetsllufroflahstceleS
.noitarepOpetSflaH-HGIH:setatScigoL
.noitarepOpetSlluF-WOL
4kcolCpetS
tupnisihtnoeslupWOLevitcanA.tupnikcolcpetS
nosruccopetsehT.tnemercnienorotomehtsecnavda
.langissihtfoegdegnillafeht
5tupnICDV5+.tupniylppusCDV5+
6noitceriD
.tupnilortnocnoitceridesiwkcolcretnuoc/esiwkcolC
ehtnosdnepednoitatorrotomfonoitceridlacisyhP
.dezinorhcnysyllanretnI.sgnidniwrotomehtfonoitcennoc
7elbanE
ninehW.revirdehtfonoitcestuptuoehtselbasid/selbanE
erastuptuorevirdeht)detcennocton(etatsHGIHcigola
.stuptuorevirdehtelbasidlliwtupnisihtgnikniS.delbane
8BesneS .tuptuoesnestnerrucBesahP
01&9 BesahP.rotomgnippetsehtfoBesahP
21&11 BesahP .rotomgnippetsehtfoBesahP
41&31 V+.tupniylppusrewopCDV04+ot21
61&51 DNG .)dnuorg(nruterylppusrewoP
81&71 AesahP.rotomgnippetsehtfoAesahP
02&91 AesahP .rotomgnippetsehtfoAesahP
12 AesneS.tuptuoesnestnerrucAesahP

11
462
Section 1.3
M ounting the IB4 6 2 H
Section Overview
This section covers the following:
Direct Mounting the IB462H to a PC board.
Mounting the IB462H to a PC Board using a receptacle.
Direct M ounting the IB4 6 2 H to a PC Board
The IB462H is designed to be soldered directly into a PC board. The follow-
ing diagram contains the hole pattern and recommended pad sizes for direct
mounting of the IM483H/IM805H.
Heatsinking and use of the included insulating thermal pad are absolutely
REQUIRED for the IB462H at all power levels. See the Thermal Specifica-
tions subsection of Section 1.2 of this document for notes, warnings and
thermal specifications.
Recommended Soldering Practices
Max. Soldering Temp .................................................................... 300°C
Max. Soldering Time .................................................................... 10 sec.
Recommended Solder Recommended Cleaning Solvent
Kester “245” No Clean Tech Spray “Envirotech 1679”
Alpha Metals “Telecore Plus” Chemtronics “Flux-off NR 2000”
Multicore “X39B” No Clean
Figure 1.3.1: PCB Hole/Pad Pattern
WARNING! The IB462H rear plate MUST be kept to 70° or below or damage
may occur to the device! The use of both an external heat sink AND the
included thermal pad is required to maintain a rear plate temperature of 70°C
or below at ALL power levels!
PIN #1
1.580
0.079 TYP
(2.00 TYP) 0.064 PAD, 0.031 HOLE
(1.6 PAD, 0.78 HOLE)
(40.13)
1.560
(39.62)
0.219
(5.56)
Ø 0.166 +.003/-0
(Ø 4.22 +0.8/-0)
2 PLACES
0.78 (19.81)
Reference
0.79 (20.10)
Reference
C
L

12
462
Spacer
(KF2-440)
D
IB462H
TI-462H Isolating
Thermal Pad (Included)
H-462 Heat Sink
PCB
#6-32 Threaded
AB
E
C
M ounting the IB4 6 2 H using a Receptacle
If desired, a receptacle may be used to connect the IB462H to the user’s PCB.
The receptacle shown in the diagram is a HY462-CN021.
The recommended soldering practices from Direct Mounting the IB462H to a
PC Board also apply here.
Figure 1.3.2: Direct PCB Mounting
Figure 1.3.3: PCB Mounting using a Receptacle
H-462 Heat Sink
#6-32
Threaded
A
B
C
Spacer
(Not Supplied)
HY462-CN021
Right Angle Adapter
(Receptacle)
TI-462H Isolating
Thermal Pad (Included)
IB462H Driver
User PCB
WARNING! The Heat Sink mounting surface must be a smooth, flat surface
with no burrs, protrusions, cuttings or other foreign objects.
WARNING! If you are planning to wash your PCB it must be done prior to
adding the IB462H Driver or damage will occur.
A. 6 -3 2 x0 .6 2 5 ” Pan Head Scr ew*
B. # 6 Split Lock W asher
C. # 6 Flat W asher, 0 .2 5 ” OD, 0 .0 3 ” Thick
A. 6 -3 2 x0 .6 2 5 ” Pan Head Scr ew*
B. # 6 Split Lock W asher
C. # 6 Flat W asher, 0 .2 5 ” OD, 0 .0 3 ” Thick
D. 8 -3 2 x1 .6 2 5 ” Pan Head Screw
E. # 8 Split Lock W asher
* The t orque specificat ion for t he 6 -3 2 mounting scr ews is 5 .0 t o 7 .0 lb-in (0 .6 0 to 0 . 8 0 N -m).

13
462
Section 1.4
Theory of Operation
Section Overview
This section will cover the circuit operation for the IB462H Half/Full Step
driver hybrid.
Circuit Operation
Output Wave Sequences
Timing
Circuit Operation
The IB462H is a bipolar chopping stepper motor drive. It receives step clock,
direction and mode signals from the system controller to generate constant
phase currents which are adjustable in magnitude.
The principal function blocks are: a translator which generates the motor
phase sequences, a dual PWM chopper circuit which regulates the current in
Figure 1.4.1: IB462H Block Diagram
TRANSLATOR
DRIVE
LOGIC
20kHz
OSCILLATOR
SR
Q
+
-
SR
Q
+
-
DQ
C
ENABLE PIN 7
HALF/FULL STEP PIN 3
STEP CLOCK PIN 4
DIRECTION PIN 6
CURRENT ADJUST PIN 1
RESET PIN 2
PINS 19 & 20 PHASE A
PINS 13 & 14 +V
PINS 17 & 18 PHASE A
PIN 21 SENSE A
PINS 9 & 10 PHASE B
PINS 11 & 12 PHASE B
PIN 8 SENSE B
PINS 15 & 16 GROUND
FILTER
FILTER
+5V SUPPLY INPUT PIN 5
+5VDC
4.7k
4.7k
51k
4.7k
4.7k

14
462
the motor windings and a power stage to drive the motor. The translator
generates three different sequences selected by the half/full step input. These
are normal (two phases energized), wave drive (one phase energized) and half
step (alternately one phase energized/two phases energized).
A common on-board oscillator drives the dual chopper. It supplies pulses
which set two flip-flops. When the current in a winding reaches the set peak
value a corresponding comparator resets its flip-flop, shutting down the output
stage until the next oscillator pulse comes along.
Because the windings in the motor store energy, current will continue to flow
through the windings during the off period. The peak current for both windings
is set by the current adjust input.
The output stage consists of dual full bridge drivers. The IB462H can be
disabled by a logic LOW signal on the enable input. Ultra fast recovery
flyback rectifiers are used to improve efficiency and help reduce noise.
Output W ave Sequences
The IB462H generates phase sequences for normal, wave, and half step
modes. The state diagram and output waveforms are shown below. In all
modes the transition occurs on the falling edge of the Step Clock signal.
Normal M ode
In normal drive mode two phases are energized at all times. This mode is
selected by sinking the Half/Full Step input.
W ave M ode
In wave drive mode one phase is energized at a time. This mode is enabled by
selecting full step mode when the IB462H is in an even numbered state. To
select this mode, power the IB462H, send a single step clock pulse then sink
the Half/Full Step input.
Figure 1.4.2: Normal Mode Phase Sequence
1
35
7
2
4
6
8
13571
3571
STEP CLOCK
PHASE A
PHASE B
PHASE A
PHASE B

15
462
Figure 1.4.3: Wave Mode Phase Sequence
Half Step M ode
In half step mode the phasing alternates from one phase energized to two phases
energized. Half step mode is selected by a high on the Half/Full Step input.
Figure 1.4.5: Timing Diagram
1
35
7
2
4
6
8
24682
4682
STEP CLOCK
PHASE A
PHASE B
PHASE A
PHASE B
1
35
7
2
4
6
8
12345
6781
STEP CLOCK
PHASE A
PHASE B
PHASE A
PHASE B
Figure 1.4.3: Half Step Mode Phase Sequence
Timing
t
CLK
t
S
t
H
t
R
t
RCLK
CLOCK
CW/CCW
HALF/FULL STEP
RESET
Parameter Minimum
t - Clock Time.......................0.5µs
t - Set up time..............................1µs
t - Hold Time.................................4µs
CL CK
S
H
t - Reset to Clock Delay...........3µs
t - Reset Time...............................1µs
RLCK
R

16
462
Section 1.5
Power Supply Requirements
Section Overview
This section covers the power supply requirements the IB462H. Precise wiring
and connection details may be found in Section 1.7, Interfacing to the
IB462H. The following is covered by this section:
Selecting power supplies.
Recommended wiring.
AC line filtering.
Selecting Power Supplies
Selecting a M otor Supply (+V)
Proper selection of a power supply to be used in a motion system is as
important as selecting the drive itself. When choosing a power supply for a
stepping motor driver there are several performance issues that must be
addressed. An undersized power supply can lead to poor performance and
possibly even damage to your drive.
The Power Supply - M otor Relationship
Motor windings can be basically viewed as inductors. Winding resistance and
inductance result in an L/R time constant that resists the change in current. To
effectively manipulate the rate of charge, the voltage applied is increased. When
traveling at high speeds there is less time between steps to reach current. The
point where the rate of commutation does not allow the driver to reach full
current is referred to as Voltage Mode. Ideally you want to be in Current Mode,
which is when the drive is achieving the desired current between steps. Simply
stated, a higher voltage will decrease the time it takes to charge the coil and,
therefore, will allow for increased torque at higher speeds.
Another characteristic of all motors is back EMF. Back EMF is a source of
current that can push the output of a power supply beyond the maximum
operating voltage of the driver and, as a result, could damage the stepper
driver.
The Power Supply - Driver Relationship
The IB462H is very current efficient as far as the power supply is concerned.
Once the motor has charged one or both windings of the motor, all the power
supply has to do is replace losses in the system. The charged winding acts as
an energy storage in that the current will recirculate within the bridge, and in
and out of each phase reservoir. This results in a less than expected current
draw on the supply.

17
462
Stepping motor drivers are designed with the intention that a user’s power
supply output will ramp up to greater or equal to the minimum operating
voltage. The initial current surge is quite substantial and could damage the
driver if the supply is undersized. The output of the power supply could fall
below the operating range of the driver upon a current surge if it is undersized.
This could cause the power supply to start oscillating in and out of the voltage
range of the driver and result in damage to either the supply, the driver, or
both. There are two types of supplies commonly used, regulated and unregu-
lated, both of which can be switching or linear. All have their advantages and
disadvantages.
Regulated vs. Unregulated
An unregulated linear supply is less expensive and more resilient to current
surges, however, the voltage decreases with increasing current draw. This can
cause problems if the voltage drops below the working range of the drive.
Also of concern is the fluctuation in line voltage. This can cause the unregu-
lated linear supply to be above or below the anticipated or acceptable voltage.
A regulated supply maintains a stable output voltage which is good for high
speed performance. They are also not bothered by line fluctuations, however,
they are more expensive. Depending on the current regulation, a regulated
supply may crowbar or current clamp and lead to an oscillation that, as
previously stated, can cause damage to the driver and/or supply. Back EMF
can cause problems for regulated supplies as well. The current regeneration
may be too large for the regulated supply to absorb. This could lead to an over
voltage condition which could damage the output circuitry of the IB462H.
Non IMS switching power supplies and regulated linear supplies with
overcurrent protection are not recommended because of their inability to
handle the surge currents inherit in stepping motor systems.
Power Supply Specifications
Recommended type ............................................... Unregulated DC
Ripple Voltage ................................................................ ±10%
Output Voltage ....................................................... +12 to +40VDC
*Output Current ............................................................ 2A Peak
* The output current needed is dependant on the power supply voltage, motor
selection and load.
WARNING! Verify that the power supply wiring is correct
prior to power application. If +V and GND are connected in
reverse order catastrophic damage to the IB462H may
occur! Ensure that the power supply output voltage does not
exceed +40VDC, the maximum input voltage of the IB462H!
WARNING! Hazardous voltage levels may be present if
using an open frame power supply to power the IB462H!
Table of contents
Other IMS DC Drive manuals
Popular DC Drive manuals by other brands

Infineon
Infineon TLE94112ES quick start guide

YASKAWA
YASKAWA GA80U4720ABM manual

Peter electronic
Peter electronic FUS EV Series Assembly and commissioning instructions

Parker
Parker AC20F Series Hardware installation manual

Tsubaki
Tsubaki TD Series instruction manual

Siemens
Siemens SINAMICS G120 installation manual