ALTHEN FDRF603 Series User manual

05.2017 | version 20150618 Rev 4.1
Laser Triangulation sensors FDRF603 Series
Manual
FDRF603 Series
Certified according to ISO 9001:2008
Valid for sensors with serial numbers 19300 and higher

1. Safety precautions ...................................................................................................................….……………........4
2. Electromagnetic compatibility...................................................................................................….…………........4
3. Laser safety.............................................................................................................................….…….………...........4
3.1. Class 3B sensors......................................................................................….…….……….............................4
3.2. Class 3R sensors ..................................................................................................….…..………...................5
3.3. Class 2 sensors ........................................................................................................….……………..............5
3.4. Class 1 sensors ......................................................................................................….…………….................5
4. General information...........................................................................................................….…..……….................6
5. Basic technical data ........................................................................................….…..………...................................6
6. Example of item designation when ordering .....................................................….….…................................7
7. Structure and operating principle .........................................................................….….……..............................7
8. Dimensions and mounting......................................................................................….…………............................8
8.1. Overall and mounting dimensions ....................................................................….……….......................8
8.2. Mounting of the sensors for mirror surface control.....................................….……..........................9
8.3. Overall demands for mounting ......................................................................................….………...........9
9. Connection ...............................................................................................................................….……………….........9
9.1. Designation of connector contacts .........................................................….……….................................9
9.2. Cables..................................................................................................................….……..………....................10
10. Configuration parameters.............................................................................................….…..………....................11
10.1. Time limit for integration ..................................................................................….….……….....................11
10.2. Sampling mode.......................................................................................................….….….………..............11
10.3. Sampling period.......................................................................................................….……………...............11
10.4. The point of zero..........................................................................................….…….……….........................12
10.5. Line AL operation mode ......................................................................................….….………..................12
10.6. Time lock of the result ..........................................................................................….….….…….................13
10.7. Method of results averaging ......................................................................….…………............................13
10.8. Number of averaged values/time of averaging ...........................................….……..........................13
10.9. Factory parameters table......................................................................................….….………..................13
11. Description of RS232 and RS485 interfaces ..........................................................….….….….........................14
11.1. RS232 port ..........................................................................................................….……..….……...................14
11.2. RS485 port ..................................................................................................….…….….……............................14
11.3. Modes of data transfer.......................................................................................….….…..……....................14
11.4. Configuration parameters..................................................................................….….…..……...................14
11.4.1. Rate of data transfer through serial port..........................................….…….............................14
11.4.2. Net address.........................................................................................….…….………..........................14
11.4.3. Factory parameters table..........................................................................….…..…….....................14
11.5. Interfacing protocol .......................................................................................….…….………........................15
11.5.1. Serial data transmission format ......................................................….………..............................15
11.5.2. Communication sessions types .........................................................….………............................15
11.5.3. Request.......................................................................................................….……………....................15
11.5.4. Message ..................................................................................................….…………….......................15
11.5.5. Answer .....................................................................................................….…………….......................15
11.5.6. Data stream ............................................................................................….……………......................16
11.5.7. Output Rate....................................................................................................….…..…..……...............16
11.5.8. Request codes and list of parameters ..................................................….….….........................16
12. Description of CAN interface..........................................................................................….….…………................16
12.1. Modes of data transfer............................................................................................….….….……...............16
12.2. Configuration parameters...................................................................................….…………....................16
12.2.1. Data transmission rate via CAN interface..................................................….……....................16
12.2.2. Identifiers .............................................................................................................….…………….........16
12.2.3. Factory parameters table...........................................................................….…………..................17
12.2.4. Format of transmitted data.......................................................................….………......................17
13. Description of Ethernet interface..........................................................................................….…….……...........17
13.1. Modes of data transfer..............................................................................................….……………............17
13.2. Factory parameters table.........................................................................................….…………….............17
13.3. Data packet format .......................................................................................................….……………..........17
13.4. Data structure ...............................................................................................................….……………...........18
14. Analog outputs ..................................................................................................................….………………..............18
Page 2/34
Contents

14.1. Currentoutput4…20mA...............................................................................................….…..…...….........18
14.2. Voltage output .....................................................................................................….……………....................19
14.3. Configuration parameters............................................................................….…….……...........................19
14.3.1. Range of the analog output ..............................................................….……….............................19
14.3.2. Analog output operation mode......................................................................….………................19
14.4. Factory parameters table.....................................................................................….….….……...................19
15. Request codes and list of parameters ......................................................................….…..….….......................19
15.1. Request codes table........................................................................................….…..…..…….......................19
15.2. List of parameters.............................................................................................….……………......................20
15.3. Notes .......................................................................................................….…..…..….……...............................21
15.4. Examples of communication sessions ................................................….………….................................22
16. Parameterization program.........................................................................................….…..…..…….......................24
16.1. Function.............................................................................................................….…..…..…...……...................24
16.2. Program setup ................................................................................................….….…….…….........................24
16.3. Obtaining connection to sensor (RS232/RS485) .......................….….…..….......................................24
16.4. Checking of the sensor operability ............................................................................….….………...........25
16.5. Connection through Ethernet interface.....................................................................….………...............26
16.6. Display, gathering and scanning of data .................................................................……..……...............27
16.7. Setting and saving parameters of the sensor.....................................................….………..................27
16.7.1. Setting parameters ..................................................................................................….……………....27
16.7.2. Automatic data stream mode after power switch on..........................................….…............29
16.7.3. Saving parameters................................................................................................….……………........29
16.7.4. Saving and writing a group of parameters.........................................................….…….............29
16.7.5. Recovery of default parameters...........................................................................….….……...........29
17. RFSDK. ................................................................................................................................….…..….….….………..........29
18. Appendix ..................................................................................................................................….….……………….......30
18.1. Protective housing ........................................................................................................….………………........30
18.2. Spray guard ....................................................................................................................….……………….........31
18.3. Size of the laser spot and mounting space ....................................................................….…….…........31
18.4. Connector mounting options ...............................................................................................….….………....32
19. Warranty policy..........................................................................................................................….………………….....34
20. Revisions......................................................................................................................................….……….…………....34
Page 3 /34

1. Safety precautions
• Use supply voltage and interfaces indicated in the sensor specifications.
• In connection/disconnection of cables, the sensor power must be switched off.
• Do not use sensors in locations close to powerful light sources.
• To obtain stable results, wait about 20 minutes after sensor activation to
achieve uniform sensor warm-up.
2. Electromagnetic compatibility
The sensors have been developed for use in industry and meet the requirements
of the following standards:
• EN 55022:2006 Information Technology Equipment. Radio disturbance characteristics.
Limits and methods of measurement.
• EN 61000-6-2:2005 Electromagnetic compatibility (EMC). Generic standards.
Immunity for industrial environments.
• EN 61326-1:2006 Electrical Equipment for Measurement, Control, and Laboratory Use.
EMC Requirements. General requirements.
3. Laser safety
The sensors correspond to the following laser safety classes according to IEC
60825-1:2007
Model of the sensor FDRF603-R FDRF603L FDRF603 FDRF603P
Wavelength 660 nm
Output power ≤0,2 mW ≤0,95 mW ≤3 or ≤4,8 mW ≤20 mW
Laser safety class 1 2 3R 3B
3.1. Class 3B sensors
The sensors make use of an c.w. 660 nm wavelength semiconductor laser. Maximum
output power is 20 mW. The sensors belong to the 3B laser safety class. The following
warning label is placed on the laser body:
The following safety measures should be taken while operating the sensor:
• Do not target laser beam to humans;
• Avoid staring into the laser beam through optical instruments;
• Mount the sensor so that the laser beam is positioned above or below the
eyes level;
• Mount the sensor so that the laser beam does not fall onto a mirror surface;
• Use protective goggles while operating the sensor;
• Avoid staring at the laser beam going out of the sensor and the beam reflected
from a mirror surface;
• Do not disassemble the sensor;
Page 4 /34

• Use the protective screen mounted on the sensor for the blocking of the outgoing
beam;
• Use the laser deactivation function in emergency.
3.2. Class 3R sensors
The sensors make use of an c.w. 660 nm wavelength semiconductor laser. Maximum
output power is 5 mW. The sensors belong to the 3R laser safety class. The following
warning label is placed on the laser body:
The following safety measures should be taken while operating the sensor:
• Do not target laser beam to humans;
• Avoid staring into the laser beam through optical instruments;
• Mount the sensor so that the laser beam is positioned above or below the
eyes level;
• Use protective goggles when operating the sensor;
• Avoid staring into the laser beam;
• Do not disassemble the sensor.
3.3. Class 2 sensors
The sensors make use of an c.w. 660 nm wavelength semiconductor laser. Maximum
output power is 1 mW. The sensors belong to the 2 laser safety class. The following warning
label is placed on the laser body:
The following safety measures should be taken while operating the sensor:
• Do not target laser beam to humans;
• Do not disassemble the sensor;
• Avoid staring into the laser beam.
3.4. Class 1 sensors
The sensors make use of an c.w. 660 nm wavelength semiconductor laser. Max-
imum output power is <0,2 mW. The sensors belong to the 1 laser safety class.
The following warning label is placed on the laser body.
The following safety measures should be taken while operating the sensor:
• Avoid staring into the laser beam during a prolonged time period;
• Do not disassemble the sensor
Page 5 /34

4. General information
The sensors are intended for non-contact measuring and checking of position,
displacement, dimensions, surface profile, deformation, vibrations, sorting and sensing
of technological objects as well as for measuring levels of liquid and bulk materials.
The series includes 26 sensors with the measurement range, from 2 to 1250 mm
and the base distance from 10 to 260 mm.
There are two options of laser mounted in the sensor, RED or BLUE laser. The
use of blue lasers instead of conventional red lasers greatly enhances capabilities of the
sensors, in particular, for such uses as control of high-temperature objects and organic
materials. Custom-ordered configurations are possible with parameters different from
those shown below.
5. Basic technical data
FDRF603- R-
X/4 X/2 X/5 X/10 X/15 X/25 X/30 X/50 X/100 X/250 X/500 X/750 X/1000 X/1250
Base distance X, MM 39 15 15 15, 25 15, 30 25, 45 35, 55 45, 65 60, 90
60 65 80 95 105 140 80 125 145 245 260
Measurementrange,mm 4 2 5 10 15 25 30 50 100 250 500 750 1000 1250
Linearity, % ±0.05 of the range ±0.1
Resolution, % 0.01 of the range (for the digital output only) 0.02
Temperature drift 0,02% of the range/ C
0
Max. measurement
frequency, Hz 9400
Light source red semiconductor laser, 660 nm wavelength or
UV semiconductor laser 405 nm wavelength (BLUE version)
Light source
model FDRF603
output power ≤0,2 ≤3 mW
laser safety Class 1 3R (IEC60825-1)
model FDRF603L
output power ≤0,95 mW
laser safety Class 2 (IEC60825-1)
model FDRF603P
output power ≤20 mW
laser safety Class 3B (IEC60825-1)
Output
interface
digital RS232 (max. 460,8 kbit/s) or RS485 (max. 921,6 kbit/s) or RS232 and CAN V2.0B (max 1Mbit/s)
or Ethernet and (RS32 or RS485)
analog 4…20 mA (£500Ωload) or 0…10 V
Synchronization input 2,4 – 5 V (CMOS, TTL)
Logic output programmed functions, NPN: 100 mA max; 40 V max for output
Power supply, V 9 …36
Power consumption, W 1,5..2
Environment re-
sistance
Enclosure rating IP67 ( for the sensors with cable connector only)
Vibration 20g/10…1000Hz, 6 hours, for each of XYZ axes
Shock 30 g / 6 ms
Operation tem-
perature,°C
-10…+60,(-30…+60 for the sensors with in-built heater),
(-30…+120 for the sensors with in-built heater and air cooling housing)
Permissible am-
bient light, lx 10000 – RF603L, 30000 – RF603, >30000 – RF603P
Relative humidity 5-95% (no condensation)
Storage tempera-
ture -20…+70 ,°C
Housing material aluminum
Weight (without cable), 100 gram
Note 1: RF603-R-39/4 sensor is designed to use with mirror surfaces and glass
Page 6 /34

6. Example of item designation when ordering
FDRF603(BLUE)(L/P)-X/D(R)-SERIAL-ANALOG-IN-AL-CC(R)(90)-M-H-P-B
Symbol Description
(BLUE) Blue (405 nm) laser option
L L or P – attribute showing Laser safety Class 2 or Class 3B
X Base distance (beginning of the range), mm
D Measurement range, mm
(R) Round shape laser spot (see p.19.3.)
SERIAL The type of serial interface: RS232-232 or RS485-485 or (CAN and RS232) - CAN,
or (Ethernet and RS232) –232-ET or (Ethernet and RS485) – 485-ET
ANALOG Attribute showing the presence of 4…20mA ( I ) or 0…10V ( U )
Note: 1) I output – only for sensors with RS232 or RS485
2) U output – only for sensors with RS232 or RS485 or CAN
IN Trigger input (input of synchronization) presence
AL User programmed signal, which has several purposes. It can be used as
1) logical output (indication of run-out beyond the range);
2) line of mutual synchronization of two and more sensors
3) line of hardware zero setting
4) hardware laser switch ON/OFF
Note: option AL is not available for sensors with in-built heater
CC(90X)(R) Cable gland - CG, or cable connector - CC (Binder 712, IP67)
Note 1: sensors with CAN or Ethernet interfaces have 2 connectors or two cable glands.
Note 2: 90(X) option – angle cable connector (see. p. 19.4)
Note 3: R option – robot cable
M Cable length, m
H Sensor with in-built heater
P Sensor with protect air cooling housing (see p.19.1)
B Sensor with spray guard (see p.19.2.)
Example: FDRF603L-140/100R-232-I-IN-AL-24-CCR90A-3 – Class 2 laser, base distance – 140 mm, range
– 100mm, round shape laser spot, RS232 serial port, 4…20mA analog output, trigger input and AL input
are available, cable connector, angle type, position "A", robot cable, 3 m cable length.
7. Structure and operating principle
Operation of the sensors is based on the principle of optical triangulation (Figure
1.). Radiation of a semiconductor laser 1 is focused by a lens 2 onto an object 6. Radiation
reflected by the object is collected by a lens 3 onto a linear CMOS array 4. A signal
processor 5 calculates the distance to the object from the position of the light spot on the
array 4.
WORKING RANGEBASE DISTANCE
Figure 1
Page 7/34

8. Dimensions and mounting
8.1. Overall and mounting dimensions
Overall and mounting dimensions of the sensors are shown in Figure 2 and 2.1.
Sensor package is made of anodized aluminum. The front panel of the package has two
Glass windows: one is output, the other for receiving radiation reflected from the object
under control. The package also contains mounting holes.
Sensors are equipped by cable gland or connector. Sensors with CAN or Ethernet interface
are equipped by two connectors, Figures 3 and 3.1.
Figure 2. Sensor with cable gland (CG) Figure 2.1. Sensor with connector (CC)
Figure 3. Sensor with two cable glands (CG) Figure 3.1. Sensor with two connector (CC)
Page 8/34

8.2. Mounting of the sensors for mirror surface control
Fig. 4 shows the requirements for the mounting of the RF603-R-39/4 sensor for
control of mirror objects and glass. The special mounting device is included into the
shipping, figure 5.
Figure 4 Figure 5
8.3. Overall demands for mounting
The sensor is positioned so that of object under control should place in this working range.
In addition, no foreign objects should be allowed to stay on the path of the incident and
reflected laser radiation. Necessary free space for the sensor mounting is shown in p. 19.3.
Where objects to be controlled have intricate shapes and textures, the incidence
of mirror component of the reflected radiation to the receiving window should be
minimized.
9. Connection
9.1. Designation of connector contacts
View from the side of connector contacts used in the sensor is shown in the following
figures. One connector sensors have connector #1
Connector #1 (Binder 712 Series, #09-0427-80-08 ) Connector #2 (Binder 712 Series, #09-0412-80-04 )
71
2
3
4
8
6
5
Page 9/34

Designation of contacts is given in the following tables:
Connector #1
Model of the sensor Pin number Assignment
(CAN/ET)-232-U/I-IN-AL
1
2
3
4
5
6
7
8
IN
Gnd (power supply)
TXD
RXD
Gnd (Common for signals)
AL
U/I
Power U+
(ET)-485-U/I-IN-AL
1
2
3
4
5
6
7
8
IN
Gnd (power supply)
DATA+
DATA-
Gnd (Common for signals)
AL
U/I
Power U+
Connector #2
Model of the sensor Pin number Assignment
ET
1
2
3
4
TX+
TX-
RX+
RX-
CAN
1
2
3
4
CAN_H
CAN_L
GND
9.2. Cables
Designation of cable wires is given in the table below:
Cable #1
Model of the sensor Pin number Assignment Wire color
(CAN/ET)-232-U/I-IN-AL
free lead
free lead
DB9
DB9
free lead
free lead
free lead
DB9
-
-
2
3
-
-
-
5
Power U+
Gnd (power)
TXD
RXD
U/I
IN
AL
Gnd (Common for signals)
Red
Brown
Green
Yellow
Blue
White
Pink
Gray
(ET)-485-U/I-IN-AL free leads
Power U+
Gnd (power)
DATA+
DATA-
U/I
IN
AL
Gnd (Common for signals)
Red
Brown
Green
Yellow
Blue
White
Pink
Gray
Cable #2
Model of the sensor Pin number Assignment Wire color
Page 10/34

ET RJ-45
1
2
3
4
5
6
7
8
TX+
TX-
RX+
RX-
White-orange
Orange
White-green
Green
CAN free leads
CAN_H
CAN_L
Gnd
White-orange
Orange
Green
10. Configuration parameters
The nature of operation of the sensor depends on its configuration parameters
(operation modes), which can be changed only by transmission of commands through
serial port RS232 or RS485. The basic parameters are as follows:
10.1. Time limit for integration
Intensity of the reflected radiation depends on the surface characteristic of objects under
control. Therefore, output power of the laser and the time of integration of radiation
incident onto the CMOS-array are automatically adjusted to achieve maximum
measurement accuracy.
Parameter "time limit for integration" specifies maximum allowable time of integration.
If the radiation intensity received by the sensor is so small that no reasonable result is
obtained within the time of integration equal to the limiting value, the sensor transmits a
zero value.
Note 1. The measurement frequency depends on the integration time of the receiving array.
Maximum frequency (9,4 kHz) is achieved for the integration time ≤106μs
(minimumpossibleintegrationtimeis0,1μs). Astheintegrationtimeincreasesabove
106 μs,theresultupdatingtime increases proportionally.
Note 2.Increasing of this parameter expands the possibility of control of low-reflecting (diffuse
component) surfaces; at the same time this leads to reduction of measurement
frequency and increases the effects of exterior light (background) on the
measurement accuracy. Factory setting of the limiting time of integration is 3200 us.
Note 3. Decreasing of this parameter lets to increase measurement frequency,
but can decrease measurement accuracy.
10.2. Sampling mode
This parameter specifies one of the two result sampling options in the case
where the sensor works in the data stream mode:
• Time Sampling;
• Trigger Sampling.
With Time Sampling selected, the sensor automatically transmits the measure-
ment result via serial interface in accordance with selected time interval (sampling
period).
With Trigger sampling is selected, the sensor transmits the measurement result
when external synchronization input (IN input of the sensor) is switched and taking the
division factor set into account.
10.3. Sampling period
If theTime Samplingmode is selected, the‘sampling period’parameter determines the
time interval in which the sensor will automatically transmit the measurement
Page 11/34

Result. The time interval value is set in increments of 0.01 ms. For example, for the
parameter value equal to 100, data are transmitted through bit-serial interface with a
period of 0,01*100 = 1 ms.
If the Trigger Sampling mode is selected, the ‘sampling period’ parameter determines
the division factor for the external synchronization input. For example, for the parameter
value equal to 100, data are transmitted through bit-serial interface when each 100th
synchronizing pulse arrives at IN input of the sensor.
Note 1. Itshouldbenotedthatthe‘samplingmode’and‘samplingperiod’parameters
control only the transmission of data. The sensor operation algorithm is so built that
measurements are taken at a maximum possible rate determined by the integration time
period, the measurement results is sent to buffer and stored therein until a new result
arrives. The above-mentioned parameters determine the method of the readout of the
result form the buffer.
Note 2. If the bit-serial interface is used to receive the result, the time required for data
transmission at selected data transmission rate should be taken into account in the
case where small sampling period intervals are used. If the transmission time exceeds
the sampling period, it is this time that will determine the data transmission rate.
10.4. The point of zero
This parameter sets a zero point of absolute system of coordinates in any point
within the limits of a working range. You can set this point by corresponding command or
by connecting AL input to the ground line (this input must preliminarily be set to mode 3).
When the sensor is fabricated, the base distance is set with a certain uncertainty, and, if
necessary, it is possible to define the point zero more accurately.
10.5. Line AL operation mode
This line can work in one of the four modes defined by the configuration parameter value:
• mode 1: indication of run-out beyond the range ("0" – object is beyond the
range (beyond the selected window in the range), "1" – object is within the
range (within the selected window in the range);
• mode 2: mutual synchronization of two or more sensors;
• mode 3: hardware zero-set line;
• mode 4: hardware laser switch OFF/ON
In the "Indication of run-out beyond the range" mode, logical“1”occursonthe
AL line if an object under control is located within the working range of the sensor (within
the selected window in the range), and logical "0" occurs if the object is absent in the
Working range (within the selected window). For example, in such mode this line can be
used for controlling an actuator (a relay) which is activated when the object is present
(absent) within the selected range (Fig.6.1).
The "Mutual synchronization” mode makes it possible to synchronize measurement times
of two and more sensors. It is convenient to use this mode to control one object
with several sensors, e.g., in the measurement of thickness. On the hardware level,
synchronization of the sensor is effected by combining AL lines (Fig.6.2.).
In the "Hardware zero-set" mode connection AL input to the ground potential sets
beginning of coordinates into current point (Fig.6.3.).
In the "Hardware laser switch OFF/ON' mode connection AL input to the ground potential
switch laser ON/OFF (Fig.6.3)
Page 12/34

Out of the range indication Mutual synchronization Hardware zero-set/
Hardware laser ON/OFF
+24VDC
AL
FDRF603
100mA max
+24VDC
AL
FDRF603
FDRF603
AL
IN
IN
FDRF603
AL
Figure 6.1 Figure 6.2 Figure 6.3
10.6. Time lock of the result
If the sensor does not find out object or if the authentic result cannot be received,
zero value is transferred. The given parameter sets time during which is transferred the
last authentic result instead of zero value.
10.7. Method of results averaging
This parameter defines one of the two methods of averaging of measurement results
implemented directly in the sensor:
• Averaging over a number of results
• Time averaging
When averaging over a number of results is selected, sliding average is calculated.
When time averaging is selected, the results obtained are averaged over the
time interval chosen.
10.8. Number of averaged values/time of averaging
This parameter specifies the number of source results to be averaged for deriving the
output value or time of the averaging .
The use of averaging makes it possible to reduce the output noise and increase the sensor
resolution.
Averaging over a number of results does not affect the data update in the sensor output
buffer.
In case of time averaging, data in the output buffer are updated at a rate equal to the
averaging period.
Note. Maximum parameters value is 127.
10.9. Factory parameters table
The sensors are supplied with the parameters shown in the table below:
Parameter Value
Time limit for integration 3200 (3,2 ms)
Sampling mode time
Sampling period 5000 (5 ms)
Point of zero Beginning of the range
Line AL operation mode 1
Time lock of the result 5 ms
Page 13/34

Page 14/34
Method of results averaging Over a number of results
Number of averaged values 1
The parameters are stored in nonvolatile memory of the sensor. Correct changing of the
parameters is carried out by using the parameterization program supplied with
the sensor or a user program.
11. Description of RS232 and RS485 interfaces
11.1. RS232 port
TheRS232portensuresa“point-to-point”connection and allows the sensor to
be connected directly to RS232 port of a computer or controller.
11.2. RS485 port
In accordance with the protocol accepted and hardware capability, the RS485
port makes it possible to connect up to 127 sensors to one data collection unit by a
common bus circuit.
11.3. Modes of data transfer
Through these serial interfaces measurement data can be obtained by two
methods:
• by single requests (inquiries);
• by automatic data streaming (stream).
11.4. Configuration parameters
11.4.1. Rate of data transfer through serial port
This parameter defines the rate of data transmission via the bit-serial interface in
increments of 2400 bit/s. For example, the parameter value equal to 4 gives the transmis-
sion rate of 2400*4 = 9600 bit/s.
Note. The maximum transmission rate for RS232 interface is 460,8 kbit/s, and for
RS485 interface the rate is 921,6 kbit/s
11.4.2. Net address
This parameter defines the network address of the sensor equipped with RS485
interface.
Note. Network data communications protocol assumes the presenceof‘master’
in the net, which can be a computer or other information-gathering device, and from 1 to
127 ‘slaves’(RF603Seriessensors)whichsupporttheprotocol.
Each‘slave’isassignedauniquenetworkidentificationcode – a device address.
The address is used to form requests or inquiries all over the net. Each slave receive
inquiriescontainingitsuniqueaddressaswellas‘0’addresswhichisbroadcast-oriented
and can be used for formation of generic commands, for example, for simultaneous
latching of values of all sensors and for working with only one sensor (with both RS232
port and RS485 port).
11.4.3. Factory parameters table
Parameter Value
Baud rate 9600 bit/s
Net address 1
Mode of data transfer request

11.5. Interfacing protocol
11.5.1. Serial data transmission format
Data message has the following format:
1 start-bit 8 data bits 1 even bit 1 stop-bit
11.5.2. Communication sessions types
The communications protocol is formed by communication sessions, which are
onlyinitiatedbythe‘master’ (PC, controller). There are two kinds of sessions with such
Structures:
1) “request”,[“message”] — [“answer”], square brackets include optional elements
2) “request” — “data stream” — [“request”].
11.5.3. Request
“Request” (INC) — is a two-byte message, which fully controls communication
session. The‘request’messageistheonlyoneofallmessagesinasessionwhere most
significant bit is set at 0, therefore, it serves to synchronize the beginning of the session.
In addition, it contains the device address (ADR), code of request (COD) and, optional,
the message [MSG].
"Request" format:
Byte 0 Byte 1 [ Bites 2…N ]
INC0(7:0) INC1(7:0) MSG
0 ADR(6:0) 1 0 0 0 COD(3:0)
11.5.4. Message
"Message’’isdataburstthatcanbetransmittedby‘master’inthecourseofthe
session.
All messages with a "message" burst contain 1 in the most significant digit. Data
in a message are transferred in tetrads. When byte is transmitted, lower tetrad goes first,
and then follows higher tetrad. When multi-byte values are transferred, the transmission
begins with lower byte.
The followingistheformatoftwo‘message’databurstsfortransmissionofbyte:
DAT(7:0)
Byte 0 Byte 1
1 0 0 0 DAT(3:0) 1 0 0 0 DAT(7:4)
11.5.5. Answer
"Answer’’isdataburstthatcanbetransmittedby‘slave’inthecourseofthesession.
All messages with a message burst contain 1 in the most significant digit. Data in
a message are transferred in tetrads. When byte is transmitted, lower tetrad goes first,
and then follows higher tetrad. When multi-byte values are transferred, the transmission
begins with lower byte.
When‘answer’istransmitted,themessagecontains:
• SB-bit, characterizes the updating of the result. If SB is equal to "1" this
means that the sensor has updated the measurement result in the buffer, if
SB is equal to "0" - then non-updated result has been transmitted (see. Note
1, p.10.3.). SB=0 when parameters transmit;
• two additional bits of cyclic binary batch counter (CNT). Bit values in the
batch counter are identical for all sendings of one batch. The value of batch
Page 15/34

counter is incremented by the sending of each burst and is used for formation
(assembly) of batches or bursts as well as for control of batch losses in receiving
data streams.
Thefollowingistheformatoftwo‘answer’databurstsfortransmissionof byte:
DAT(7:0)
Byte 0 Byte 1
1 SB CNT(1:0) DAT(3:0) 1 SB CNT(1:0) DAT(7:4)
11.5.6. Data stream
‘Datastream’isaninfinitesequenceofdataburstsorbatchestransmittedfrom
‘slave’to‘master’,whichcanbeinterruptedbyanew request. In transmission of ‘data
stream’ one of the ‘slaves’ fully holds data transfer channel, therefore, when ‘master’
produces any new request sent to any address, data streaming process is stopped. Also,
there is a special request to stop data streaming.
11.5.7. Output Rate
Output rate, "OR" depends on Baud rate of serial interface, "BR", and is calculated by
such a manner:
OR = 1 / (44/BR+1*10-5) Hz.
For example, for BR=460800 b/s, Output Rate = 9,4 kHz
11.5.8. Request codes and list of parameters
Request codes and list of parameters are presented in Chapter 15.
12. Description of CAN interface
CAN interface is used only for the reception of data from the sensor. Parameterization of
sensors is carried out via RS232 interface.
12.1. Modes of data transfer
The sensor can operate in the following modes:
• No transmission
• The request mode. In this mode, each sensor receives a frame of remote data
request (Remote Frame) containing frame identifier, and responds by sending
a data frame (Data Frame) with the same identifier.
• Automatic data streaming mode. When operating in this mode, each sensor
automatically transmits a data frame (Data frame) together with its identifier in
accordance with a sampling mode of Time or Trigger (see p.10.2.) and corresponding
sampling period (see p.10.3.)
12.2. Configuration parameters
12.2.1. Data transmission rate via CAN interface
This parameter defines data transmission rate through CAN interface in increments of
5000 bit/s. For example, the parameter value of 50 gives the transmission rate of
5000*50 = 250000 bit/s.
Note. Maximum transmissionrateviaCANinterfaceis1Mbit/s.
12.2.2. Identifiers
The sensor equipped with CAN 2.0B port supports data exchange using stand-
ard frames (with 11-bit identifiers) and extended frames (with 29-bit identifiers). Each
Page 16/34

sensor is set with standard or extended identifier which is unique for a network given.
The number of sensors in the network is up to 112.
12.2.3. Factory parameters table
Parameter Value
Data transmission rate 125 kb/s
Standard identifier 7FFh
Extended identifier 1FFFFFFFh
Interface condition ON
Mode of data transfer request
12.2.4. Format of transmitted data
The sensor transmits 8 byte long frame:
- byte 0: type of device
- byte 1: = 0 - reserved
- byte 2: low byte of serial number
- byte 3: high byte of serial number
- byte 4: low byte of operating range
- byte 5: high byte of operating range
- byte 6: low byte of the result
- byte 7: high byte of the result
Calculation of the result is made according to formula (1), (see par. 15.3)
13. Description of Ethernet interface
Ethernet interface is used only for the reception of data from the sensor. Parameterization
of sensors is carried out via RS232 or RS485 interface.
13.1. Modes of data transfer
The sensor can be operated in the following modes:
• No transmission.
• Automatic data streaming mode. At the beginning, the internal data transmission
buffer of the sensor is filled with measurement data in accordance with a
selected sampling mode of Time or Trigger (see p.10. 2.) and corresponding
sampling period (see p.10.3.). After the internal buffer has been filled (buffer
size is 168 measurements), the sensor transmits data packet accumulated in
the transmission buffer to UDP network.
13.2. Factory parameters table
Parameter name Value
Destination IP Address 255.255.255.255
Gateway IP address 192.168.0.1
Subnet Mask 255.255.255.255
Source IP address 192.168.0.3
Interface condition ON
Mode of data transfer stream
13.3. Data packet format
The sensor sends 512 byte data packet to IP port 6003:
- byte 0, byte 1: 1st measurement
- byte 2, : status word for the 1st measurement
- byte 3, byte 4: 2nd measurement
- byte 5, : status word for the 2nd measurement
Page 17/34

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
- byte 501, byte 502: 168th measurement
- byte 503, : status word for the 168th measurement
- byte 504, byte 505: serial number of the sensor
- byte 506, byte 507: base distance
- byte 508, byte 509: measurement range
- byte 510, : cyclic counter of packet number
- byte 507, byte 508: reserved
- byte 509, byte 510: reserved
- byte 511, : packet checksum
13.4. Data structure
• The result of measurement is transmitted as a 16-bit word and calculation of
the result is performed according to formula (1), see par. 16.3.
• Thestatuswordsizeis1byte.Thebitstatus“0”characterizestheupdatingof
the result. If the bit equal to "1", this means that the sensor has updated the
measurement result by the time of arrival of the external synchronization
pulse (beginning of a new sampling period). If the bit is equal to "0", then
non-updatedresulthasbeentransmitted.Thebits7…1ofthestatuswordare
reserved and equal to "0";
• The base distance of the sensor is transmitted as a 16-bit word with discrete-
ness of 1 mm
• The sensor measurement range is transmitted as a 16-bit word with discrete-
ness of 1 mm;
• Cyclic counter of packet number has a one-byte size. The counter value is incremented
with transmission of each packet and is used to control packet loss
in the course of data reception;
• The packet checksum has a one-byte size and is calculated as XOR of all the
bytes of packet
14. Analog outputs
Changing of the signal at analog output occurs in synchronism with the changing
of the result transferred through the bit-serial interface
14.1. Currentoutput4…20mA
The connection scheme is shown in the figure. The value of load resistor should
not be higher than 500 Om. To reduce noise, it is recommended to install RC filter
before the measuring instrument. The filter capacitor value is indicated for maximum
sampling frequency of the sensor (9,4 kHz) and this value increases in proportion to the
frequency reduction.
FDRF603
Blue
Gray
500 Om
10 kOm
1 nF
Voltmeter
Page 18/34

14.2. Voltage output
The connection scheme is shown in the figure. To reduce noise, it is recom-
mended to install RC filter before the measuring instrument. The filter capacitor value is
indicated for maximum sampling frequency of the sensor (9,4 kHz) and this value in-
creases in proportion to the frequency reduction.
FDRF603
Blue
Gray
10 kOm
1 nF
Voltmeter
14.3. Configuration parameters
14.3.1. Range of the analog output
While working with the analog output, resolution can be increased by using the
‘Windowintheoperatingrange’functionwhichmakesitpossibletoselectawindowof
required size and position in the operating range of the sensor within which the whole
range of analog output signal will be scaled.
If the beginning of the range of the analog signal is set at a higher value than the
end value of the range, this will change the direction of rise of the analog signal.
Note. If the beginning of the range of the analog signal is set at a higher value
than the end value of the range, this will change the direction of rise of the analog signal.
14.3.2. Analog output operation mode
Whenusing‘windowintheoperatingrange’function,thismodedefinestheana-
log output operation mode.
Analog output can be:
• in the window mode or
• in the full mode.
"Window mode". The entire range of the analog output is scaled within the se-
lected window. Outside the window, the analog output is "0".
"Full mode". The entire range of the analog output is scaled within the selected
Window (operating range). Outside the selected window, the whole range of the analog
output is automatically scaled onto the whole operating range of the sensor (sensitivity
range).
14.4. Factory parameters table
Range of the analog output Measuring range of sensor
Analog output operation mode Window
15. Request codes and list of parameters
15.1. Request codes table
Request
code
Description Message
(size in bytes)
Answer
(size in bytes)
01h Device identification — –device type (1)
–firmware release (1)
–serial number (2)
–base distance (2)
Page 19/34

–range (2)
02h Reading of parameter - code of parameter (1) - value of parameter (1)
03h Writing of parameter - code of parameter (1)
- value of parameter (1)
—
04h Storing current parameters to
FLASH-memory
- constant AAh (1) - constant AAh (1)
04h Recovery of parameter default
values in FLASH-memory
- constant 69h (1) - constant 69h (1)
05h Latching of current result — —
06h Inquiring of result — - result (2)
07h Inquiring of a stream of results — - stream of results (2)
08h Stop data streaming — —
15.2. List of parameters
Code of
parameter
Name Values
00h Sensor ON 1 — laser is ON, measurements are taken (default state);
0 — laser is OFF, sensor in power save mode
01h Analog output ON 1/0 — analog output is ON/OFF; if a sensor has no analog output, this
bit will remain in 0 despite all attempts of writing 1 into it.
02h Averaging, sampling and AL output x,x,M,C,M1,M0,R,S – control byte which determines averaging mode –
control bit M, CAN interface mode - bit C, logical output mode - bit M1,
analog output mode - bit R, and sampling mode - bit S;
bites x – do not use;
bit M:
0 — quantity sampling mode (by default);
1 — time sampling mode
bit C:
0 – request mode of CAN interface (by default);
1 – synchronization mode of CAN interface.
bit M1 and M0:
00 – out of the range indication (by default):
01 – mutual synchronization mode.
10 – hardware zero set mode
11 – laser turn OFF/ON
bit R:
0 – window mode (default);
1 – full range.
bit S:
0 – time sampling (default)
1 – trigger sampling.
03h Network address 1…127(default — 1)
04h Rate of data transfer through serial
port
1…192,(default — 4) specifies data transfer rate in increments of
2400 baud; e.g., 4 means the rate of 4´2400=9600baud. (NOTE: max
baud rate = 460800)
05h Reserved
06h Number of averaged values 1…128,(default — 1)
07h Reserved
08h Lower byte of the sampling period 1)10…65535,(default — 500)
the time interval in increments of 0.01 ms with which sensor au-
tomatically communicates of results on streaming request (priority
of sampling = 0);
2) 1…65535,(default — 500)
divider ratio of trigger input with which sensor automatically com-
municates of result on streaming request (priority of sampling = 1)
09h Higher byte of the sampling period
0Ah Lower byte of maximum integration
time
2…65535,(default — 200) specifies the limiting time of integration by
CMOS-array in increments of 1mks
0Bh Higher byte of maximum integration
time
0Ch Lower byte for the beginning of
analog output range
0…4000h,(default — 0) specifies a point within the absolute range of
transducer where the analog output has a minimum value
Page 20/34
This manual suits for next models
4
Table of contents
Other ALTHEN Measuring Instrument manuals