Elotech R2000 User manual

Manual: Data Transfer
Profibus DP,
EN 50170
Multizones Temperature Controller
Series: R2000, R2100, R2200
Content:
Series: R2000, R2100, R2200...................................................................................................................1
1. Disclaimer of liability...................................................................................................................................2
2. Interface, general.......................................................................................................................................2
2.1 Line routing, screening and measures to combat interference voltage................................................3
2.2 Shielding of lines...................................................................................................................................4
2.3 Connection guide ................................................................................................................................5
2.3.1 PROFIBUS - Connections: ..........................................................................................................5
2.3.2 PROFIBUS - Adjustments: ...........................................................................................................5
2.3.3 PROFIBUS - Diagnostic displays:..................................................................................................6
3. Data Transfer, general...............................................................................................................................6
3.1 The Communication:............................................................................................................................6
3.2 Process reflection.................................................................................................................................7
3.2.1 From master to slave: ...................................................................................................................7
3.2.2 From slave to master: ...................................................................................................................8
3.2.3 Transmission example...................................................................................................................9
3.3 Configuration channel.........................................................................................................................11
3.3.1 Data transmission, general..........................................................................................................11
3.3.2 Terms..........................................................................................................................................11
3.3.3 Parameter ranges........................................................................................................................11
3.3.4 Configuration of the parameters via the configuration channel...................................................11
3.3.5 Parameter list...............................................................................................................................13
3.3.6 Transmission examples...............................................................................................................15
3.3.6.1 Configuration channel, Instruction code: 10 H.....................................................................15
3.3.6.2 Configuration channel, Instruction code: 20 H.....................................................................16
3.3.6.3 Configuration channel, Instruction code: 21 H.....................................................................17
3.4 Process reflection and Configuration channel..................................................................................18
Manual R20-R21-R22-PB-E Release: 2.04 © Elotech GmbH Page 1/20
ELOTECH Industrieelektronik GmbH
Verbindungsstrasse 27
D – 40723 HILDEN
FON +49 2103 / 255 97 0 FAX +49 2103 / 255 97 29

1. Disclaimer of liability
We have checked the contents of the document for conformity with the hardware and software
described. Nevertheless, we are unable to preclude the possibility of deviations so that we are
unable to assume warranty for full compliance. The information given in the publication is reviewed
regularly. Necessary amendments are incorporated in the following editions.
We would be pleased to receive any improvement proposals which you may have.
This document may not be passed on nor duplicated, nor may its contents be used or disclosed
unless expressly permitted.
Note: Only in PROFIBUS-technology trained personnel following the safety regulations
may do the PROFIBUS-connections.
It is essential, that one has well experience in installing a Profibus device.
2. Interface, general
The ELOTECH – multizones temperature controller is equipped with a PROFIBUS DP interface.
SLAVE
MASTER Profibus – DP Temperature
Controller
The PROFIBUS -interface allows the slave to be monitored and controlled by a PROFIBUS master.
The data transfer between the slave and master takes place with the aid of the PROFIBUS-DP-protocol
acc. to EN 50170.
The communication is always controlled by the PROFIBUS-DP master.
The temperature controller actuates as a slave.
Each slave has its own device address.
If there are transmission or other errors detected by the slave, it doesn't accept this data.
The old parameter values are still valid.
Please take attention to the manual of the specific temperature controller.
GDS - data file:
Will be delivered with the slave on CD or download: www.elotech.de
FAQ's:
see www.elotech.de (downloads)
Manual R20-R21-R22-PB-E Release: 2.04 © Elotech GmbH Page 2/20

2.1 Line routing, screening and measures to combat interference voltage
This chapter deals with line routing in the case of bus, signal and power supply lines, with the
aim of ensuring an EMC-compliant design of your system.
General information on line routing
- Inside and outside of cabinets:
In order to achieve EMC-compliant routing of the lines, it is advisable to split the lines into the
following line groups and to lay these groups separately.
Group A: •shielded bus and data lines (e.g. for PROFIBUS-DP, RS232C and printers etc.)
•shielded analogue lines
•unshielded lines for DC voltages ≥ 60 V
•unshielded lines for AC voltage ≥ 25 V
•coaxial lines for monitors
Group B: •unshielded lines for DC voltages ≥ 60 V and ≥ 400 V
•unshielded lines for AC voltage ≥ 24 V and ≥ 400 V
Group C: •unshielded lines for DC voltages > 400 V
The table below allows you to read off the conditions for laying the line groups on the basis of the
combination of the individual groups.
Line laying instructions as a function of the combination of line groups:
Group A Group B Group C
Group A 1 2 3
Group B 2 1 3
Group C 3 3 1
1) Lines may be laid in common bunches or cable ducts.
2) Lines must be laid in separate bunches or cable ducts (without minimum clearance).
3) Lines must be laid in separate bunches or cable ducts inside cabinets but on separate cable
racks with at least 10 cm clearance outside of cabinets but inside buildings .
Manual R20-R21-R22-PB-E Release: 2.04 © Elotech GmbH Page 3/20

2.2 Shielding of lines
Shielding is intended to weaken (attenuate) magnetic, electrical or electromagnetic interference
fields.
Interference currents on cable shields are discharged to earth via the shielding bus which is connected
conductively to the chassis or housing. A low-impedance connection to the PE wire is
particularly important in order to prevent these interference currents themselves becoming an
interference source.
Wherever possible, use only lines with braided shield. The coverage density of the shield should
exceed 80 %. Avoid lines with foil shield since the foil can be damaged very easily as the result
of tensile and compressive stress on attachment. The consequence is a reduction in the shielding
effect.
In general, you should always connect the shields of cables at both ends. The only way of achieving
good interference suppression in the higher frequency band is by connecting the shields at
both ends.
The shield may also be connected at one end only in exceptional cases. However, this then
achieves only an attenuation of the lower frequencies. Connecting the shield at one end may be
more favourable if
• it is not possible to lay an equipotential bonding line
• analogue signals (a few mV resp. mA) are to be transmitted
• foil shields (static shields) are used.
In the case of data lines for serial couplings, always use metallic or metallised plugs and connectors.
Attach the shield of the data line to the plug or connector housing. Do not connect the shield
on the connector of the slave (controller).
If there are potential differences between the earthing points, a compensating current may flow
via the shield connected at both ends. In this case, you should lay an additional equipotential
bonding line.
Please note the following points when shielding:
• Use metal cable clips to secure the shield braiding. The clips must surround the shield over a
large area and must have good contact.
• Downstream of the entry point of the line into the cabinet, connect the shield to a shielding bus.
Continue the shield as far as the module, but do not connect it again at this point!
Manual R20-R21-R22-PB-E Release: 2.04 © Elotech GmbH Page 4/20

2.3 Connection guide
Note: Only in PROFIBUS-technology trained personnel following the safety regulations
may do the PROFIBUS - connections.
It is essential, that one has well experience in installing a Profibus device.
You will require the following components to connect the slave:
•Connector for Profibus connection to the slave
•PROFIBUS cable (this cable is generally already installed on site!)
•GSD file
•Project planning tool for the PROFIBUS-Master
It is essential, that you perform the following during connecting in order to ensure that
the slave operates correctly:
2.3.1 PROFIBUS - Connections:
Connect the slave with the PROFIBUS. Take care to the terminals.
See: connection diagram of the specific controller type.
The terminals VP and GND have to be used to connect the terminating-resistors.
There is no further load allowed.
The terminating resistors have to be connected on the first and the last device of the Profibus line.
Terminating-Resistors (Tol. +/-2%): VP +5V
390 R RxTxP
220 R
RxTxN
390 R
GND
CNT
Termination resistors are integrated in the standard Sub-D9 Profibusconnectors.
They can be activated by a switch.
2.3.2 PROFIBUS - Adjustments:
Adjust the following parameters (slave):
Series R2000, R2100:
Parameter „Address“: Adr Adjustment of the Profibus-Address.
Parameter „Baudrate“: baud No adjustment possible.
The baudrate will detected and monitored automatically.
Display: „ndEt“ = no baudrate detected.
Series R2200: Parameter „Address“: see DIP switches in front of the instrument.
Parameter „Baudrate“: baud No adjustment possible.
The baudrate will detected and monitored automatically.
Manual R20-R21-R22-PB-E Release: 2.04 © Elotech GmbH Page 5/20

2.3.3 PROFIBUS - Diagnostic displays:
Series R2000 and R2100: See the lightened decimal point in the left display of the
zones indication display (Zone).
Series R2200: See the green “BUS-LED”
Function:
Dec.-point or LED are “on”: Data exchange:
The device is in the “data-exchange-modus”.
The communication is OK..
The data exchange takes place.
Dec.-point or LED “flashing”: Wait:
The bus connection has been detected.
The device is waiting to be configured or programmed by the master.
Dec.-point or LED are “off”: No connection:
Please check the wiring and the bus connections.
Check if the master works OK.
There is no communication.
3. Data Transfer, general
3.1 The Communication:
The master sends it´s data to the slave.
The data will be overtaken only if the instrument is programmed to “remote”-action.
After this the slave sends an answer to the PROFIBUS DP - master.
This takes place cyclic and will be controlled by the master.
The configuration of the slave takes place with the help of the GSD-file.
The following modules are available for the slave:
1. Process reflection: Module: „x – channel process data“
2. Configuration channel: Module: „parameter channel“
3. Process reflection and Configuration channel: Module: „x – channel process + parameter“
x = 2, 4, 6, 8, 10, 12 or 16 (zones)
Example for 8-zones controllers: x = 8 channel module, also if only 1 or 6 zones are in action.
If the device is an 8-zones controller and if there are only 4 or 6 zones in operation, an 8-channel module
has to be used.
Manual R20-R21-R22-PB-E Release: 2.04 © Elotech GmbH Page 6/20

3.2 Process reflection
Parameter transfer according to the process reflection module:
3.2.1 From master to slave:
Transfer of Setpoint 1 and Status word 1
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6
Zone 1:
Setpoint 1
High Byte
Zone 1:
Setpoint 1
Low Byte
Zone 1:
Control byte Zone 2:
Setpoint 1
High Byte
Zone 2:
Setpoint 1
Low Byte
Zone 2:
Control -byte . . .
aso.
Byte 46 Byte 47 Byte 48
. . . Zone 16:
Setpoint 1
High Byte
Zone 16:
Setpoint 1
Low Byte
Zone 16:
Control -byte
If there are instruments with controller zones lower than 16 (e.g. 8 or 12 zones) the number of the
transmitted data bytes is lower too.
WARNING: Every change of the setpoint is stored in the internal non-
volatile memory. It permits max. 1.000.000 write cycles!
Setpoint / process value: The parameter value consists out of 2 data bytes within the process
reflection.
First the high- and than the low-byte will be transmitted.
Setpoint and actual process values will be transmitted always with a
decimal digit, although the measuring range has no decimal digit.
Example: °C Dec. Hex. High-Byte Low-Byte
Measuring range with dec. point: act. value 23,0 230 00E6 00 E6
Measuring range with dec. point: Setpoint 170,0 1700 06A4 06 A4
Measuring range without dec. point: act. value 23 230 00E6 00 E6
Measuring range without dec. point: Setpoint 170 1700 06A4 06 A4
Control byte: The parameter consists out of one data byte:
Bit 0: controller zone 0=on, 1=off
Bit 1: self tuning 0=off, 1=on
Changing this bit from „0“ to „1“ will force the controller to do one self tuning action.
Set this bit to „0“, before starting a new self tuning action.
Bit 2: 0
Bit 3: actual setpoint 0 = setpoint SP1, 1 = setpoint SP2
Bit 4: 1 = delete warning „self tuning error“ in the status byte
Bit 5: 0
Bit 6: 0
Bit 7: 1 = delete warning „system error“ into the status byte
Manual R20-R21-R22-PB-E Release: 2.04 © Elotech GmbH Page 7/20

3.2.2 From slave to master:
Transfer of the process data
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6
Status
Setpoint
High Byte
Status
Setpoint
Low Byte
Zone 1
Process
value
High Byte
Zone 1
Process
value
Low Byte
Zone 1
Controller
Status
Zone 1
Alarm
Status
Byte 7 Byte 8 Byte 9 Byte 10
Zone 2
Process
value
High Byte
Zone 2
Process
value
Low Byte
Zone 2
Controller
Status
Zone 2
Alarm
Status . . .
Byte 63 Byte 64 Byte 65 Byte 66
. . . Zone 16
Process
value
High Byte
Zone 16
Process
value
Low Byte
Zone 16
Controller
Status
Zone 16
Alarm
Status
If there are instruments with controller zones lower than 16 (e.g. 8 or 12 zones) the number of the
transmitted data bytes is lower too.
Status setpoint: Indicates, if a range error has been detected, when writing the setpoint:
Bit 0: 0 = Zone 1: setpoint value OK.
1 = setpoint value not OK. (out of range ?)
Bit 1: 0 = Zone 2: setpoint value OK.
1 = setpoint value not OK. (out of range ?)
Bit 2: 0 = Zone 3: setpoint value OK.
1 = setpoint value not OK. (out of range ?)
Bit 15: 0 = Zone 16: setpoint value OK.
1 = setpoint value not OK. (out of range ?)
Alarm Status: Bit 0: 1 = alarm 1 active
Bit 1: 1 = alarm 2 active
Bit 2…: 7 = 0 (no function)
Controller Status: The parameter consists out of one data byte:
Bit 0: controller zone 0=on, 1=off
Bit 1: self tuning 0=off, 1=on
Bit 2: remote action 0=on, 1=off, operation via keyboard
Bit 3: actual setpoint 0=setpoint SP1, 1=setpoint SP2
Bit 4: 1 = self tuning error
Bit 5: 1 = setpoint ramp function active
Bit 6: 1 = sensor error
Bit 7: 1 = system error
Manual R20-R21-R22-PB-E Release: 2.04 © Elotech GmbH Page 8/20

3.2.3 Transmission example
From master to slave: transfer of setpoint 1 and control byte
Byte 1 + 2: Zone 1 The setpoint 50,0°C should be send to the slave.
Setpoint: 500 decimal = 0x01F4 hexadecimal as a 16 bit integer-value
Byte 3: Zone 1 The slave should be switched „on“ (Bit 0 = 0).
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6
Zone 1:
Setpoint 1
High Byte
0x01
Zone 1:
Setpoint 1
Low Byte
0xF4
Zone 1:
Control Byte
0x00
Zone 2:
Setpoint 1
High Byte
0x..
Zone 2:
Setpoint 1
Low Byte
0x..
Zone 2:
Control Byte
0x.. . . .
Byte 46 Byte 47 Byte 48
. . . Zone 16:
Setpoint 1
High Byte
0x..
Zone 16:
Setpoint 1
Low Byte
0x..
Zone 16:
Control Byte
0x..
If there are instruments with controller zones lower than 16 (e.g. 8 or 12 zones) the number of the
transmitted data bytes is lower too.
Manual R20-R21-R22-PB-E Release: 2.04 © Elotech GmbH Page 9/20

Answer from slave to master:
Transmission of the process reflection
The slave sends the following parameter-values:
Byte 1 + 2: status setpoint transmission: the last instruction was OK.
Byte 3 + 4: Zone 1 Act. process temp. value:55,0°C 550dec.=0x0226hex., 16 bit integer-value
Byte 5: Zone 1 Controller status: controller = on
Byte 6: Zone 1 Alarm status: alarm = no alarm
Byte 7 + 8: Zone 2 Act. process temp. value:56,0°C 560dec.=0x0230hex, 16 bit integer-value
Byte 9: Zone 2 Controller status: controller = on
Byte 10: Zone 2 Alarm status: alarm = Alarm 2 active
.
.
.
.
Byte63 + 64: Zone 16 Act. process temp. value
Byte 65: Zone 16 Controller status
Byte 66: Zone 16 Alarm status
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6
Status
Setpoint
High Byte
0x00
Status
Setpoint
Low Byte
0x00
Zone 1
Process
Value
High Byte
0x02
Zone 1
Process
Value
Low Byte
0x26
Zone 1
Controller
Status
0x00
Zone 1
Alarm
Status
0x00
Byte 7 Byte 8 Byte 9 Byte 10
Zone 2
Process
Value
High Byte
0x02
Zone 2
Process
Value
Low Byte
0x3A
Zone 2
Controller
Status
0x00
Zone 2
Alarm
Status
0x02
. . .
Byte 63 Byte 64 Byte 65 Byte 66
. . . Zone 16
Process
Value
High Byte
0x..
Zone 16
Process
Value
Low Byte
0x..
Zone 16
Controller
Status
0x..
Zone 16
Alarm
Status
0x..
If there are instruments with controller zones lower than 16 (e.g. 8 or 12 zones) the number of the
transmitted data bytes is lower too.
Manual R20-R21-R22-PB-E Release: 2.04 © Elotech GmbH Page 10/20

3.3 Configuration channel
With the help of the configuration channel each parameter can be addressed individually.
The sequence of the described bytes is valid for „request“ and „answer“.
3.3.1 Data transmission, general
The PROFIBUS – master is allowed to monitor and control all parameters of the slave.
The transfer of instructions and parameter values takes place with the aid defined data blocks.
3.3.2 Terms
Instruction-code [BC]: "tells" the device/slave, what to do (1 byte)
Parameter-code [PC]: designates each individual parameter of the device (1 byte)
Parameter-value [PW]:shows the value of a parameter (3 bytes)
3.3.3 Parameter ranges
Instruction-code [BC]: 0x10, 0x20, 0x21
Parameter-code [PC]: 0x00...0xFF
Parameter-value [PW]: 16 bit integer, mantissa PWH and PWL and decimal point PWK base 10
Parameter-value High-Byte [PWH]
Parameter-value Low- Byte [PWL]
Parameter-exponent [PWK]
3.3.4 Configuration of the parameters via the configuration channel.
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8
Current
number
0x00 ... 0xFF
Number of
Zone
0x01…0xFF
Instruction
code
BC
0x10, 0x20 or
0x21
Always:
0x00
Parameter-
code
PC
0x00 ... 0xFF
Parameter-
value
PWH
High-Byte
Parameter-
value
PWL
Low-Byte
Decimal point
PWK
0x00 ... 0xFF
Byte 1
Current Number: The master should pre-set a current number before every new task.
This number will be repeated from the slave with every answer.
So it is possible to find out, which instruction and which answer belong together.
Manual R20-R21-R22-PB-E Release: 2.04 © Elotech GmbH Page 11/20

Byte 2: Number of controller zone of the addressed instrument (slave).
All parameters, which are necessary to configure the instrument,
will be transmitted and addressed via zone no. 1.
Byte 3
Instruction code, BC: 0x10 : Read parameter
0x20 : Write parameter
0x21 : Write parameter and store with power fail protection
WARNING: The nonvolatile memory allows only app.
1.000.000 write cycles!
Byte 4: always 0x00
Byte 5
Parameter code, PC: Request:
Addresses the parameter which should be configured.
Answer:
If the read-proceeding to the slave was OK., than, in the answer of the slave,
byte 5 shows the parameter-code PC.
If the write-proceeding to the slave was OK., than, in the answer of the slave,
byte 5 shows the value 00H (acknowledge).
If the communication was not OK., the following error-warnings are shown in
byte 5:
03 H - Procedure error (instruction code not valid)
04 H - Non-compliance with specified range (value to low or to high)
05 H - Number of the zone not allowed
06 H - The addressed parameter is a read-only parameter
07 H - Writing of data not possible. Slave status is not „remote“.
08 H - Parameter-code not valid
09 H - It is not possible, to execute the instruction
(e.g., the auto tuning can´t be started)
FEH - Error during writing into the power fail storage
FFH - General error
Bytes 6, 7 and 8
Parameter value: The parameter value comprises three data bytes:
2 data byte (mantissa), 1 data byte (decimal point).
Byte 6: Parameter value PWH
Byte 7: Parameter value PWL
Byte 8: Parameter value PWK
Examples: Dec. Hex. Mantissa Dec. point
Process value (°C): 215 00D7 00D7 00
Setpoint (°C): 230 00E6 00E6 00
Output ratio, cooling (%) -16 FFF0 FFF0 00
Setpoint ramp (°C/min.): 2,2 0016 0016 01
The parameter value is calculated as follows: Dec.: 2,2 = 22 + 1 dec. point
Hex.: = 0016 (mantissa)
= 01 (1 dec. point)
Negative mantissa / negative Exponent:Built binary two´s complement.
Manual R20-R21-R22-PB-E Release: 2.04 © Elotech GmbH Page 12/20

3.3.5 Parameter list
Ps see istructi aua fr detaied paraeter descriptis
Depedig the device cfigurati t every paraeter is avaiabe
Parameter MnemonicsParameter-
Code R2000 R2100 R2200
Actual process values:
Act. temperature value 0x10 RO RO RO
Act. heater current value cur 0x11 RO RO RO
Act. leakage current value c. 0x12 RO RO RO
Temperature offset value OFSt 0x18 RW RW RW
Sensor configuration SEn 0x1a RW RW RW
Measuring range, dec. point r. dP 0x1d RO RO RO
Linear input; decimal points r. dP 0x1d RW RW RW
Linear input; bottom end value r. Lo 0x1e RW RW RW
Linear input; top end value r. Hi 0x1f RW RW RW
Setpoints:
Actual setpoint SP, act. 0x20 RO RO RO
Setpoint 1 SP1 0x21 RW RW RW
Setpoint 2 SP2 0x22 RW RW RW
Setpoint limitation, low range SP.Lo 0x2b RW RW RW
Setpoint limitation, high range SP.Hi 0x2c RW RW RW
Setpoint ramp, rising SP ↑0x2f RW RW RW
Setpoint range, falling SP ↓0x2d RW RW RW
Alarms:
Heater current, detect. interval Cu.CY 0x31 RW RW RW
Min. leakage current value Cu.SP 0x32 RW RW RW
Alarm 1, Configuration Co.A1 0x34 RW RW RW
Alarm 2, Configuration Co.A2 0x35 RW RW RW
Alarm value 1 A1 0x38 RW RW RW
Alarm value 2 A2 0x39 RW RW RW
Switching behaviour A1 rE.A1 0x3c RW RW RW
Switching behaviour A2 rE.A2 0x3d RW RW RW
Delay time A1 dL.A1 0x3e RW RW RW
Delay time A2 dL.A2 0x3f RW RW RW
PID parameters „heating“:
Proportional range (P) 1 P 0x40 RW RW RW
Rate time (D) 1 d 0x41 RW RW RW
Reset time (I) 1 I 0x42 RW RW RW
Cycle time 1 C 0x43 RW RW RW
Control sensitivity 1 Sd 0x47 RW RW RW
Dead band /
switch-point difference
(only for 3-point-controller)
SH 0x46 RW RW RW
PID parameters „cooling“:
Proportional range (P) 2 P 0x50 RW RW RW
Rate time (D) 2 d 0x51 RW RW RW
Reset time (I) 2 I 0x52 RW RW RW
Cycle time 2 C 0x53 RW RW RW
Control sensitivity 2 Sd 0x57 RW RW RW
Manual R20-R21-R22-PB-E Release: 2.04 © Elotech GmbH Page 13/20

Parameter Mnemonic
sParameter-
Code R2000 R2100 R2200
Output ratio:
Actual output ratio Y 0x60 RO RO RO
Manual output ratio HAnd 0x62 RW RW RW
Output ratio limit (heating) 1LY 0x64 RW RW RW
Output ratio limit (cooling) 2LY 0x69 RW RW RW
Soft start output ratio So. Y 0x6a RW RW RW
Soft start setpoint So.Sp 0x6b RW RW RW
Soft start duration time So.ti 0x6c RW RW RW
Soft start function on/off So.St 0x6d RW RW RW
Controller configuration:
Control action:
heat-only
heating-off-cooling
ConF 0x80 RW RW RW
Adjustment lock LOC 0x85 RW RW -
Configuration of key “F1” Co.F1 0x86 RW RW -
Self tuning OPt 0x88
0 = off
1 = on
RW RW RW
Zone offset Zo.OF 0x89 RW RW RW
Manual output ratio:
configuration Hand 0x8b
0 = control
action
1 = auto
2 = manual
operation
RW RW RW
Unit of measuring zone Unit 0x8d RW RW -
Sensor configuration P tc 0x8e RW RW RW
Controller zone off/on ZonE 0x8f
0 = off
1 = on
RW RW RW
Manual R20-R21-R22-PB-E Release: 2.04 © Elotech GmbH Page 14/20

3.3.6 Transmission examples
3.3.6.1 Configuration channel, Instruction code: 10 H
The slave is asked to send the parameter „Process value, 10 H“ of zone no.1 to the master.
The process value is 225 °C. 225 (Decimal) = 0xE1 (Hex)
Master to slave: Dec. Hex
Current number: 1 0x01
Zone no.: 1 0x01
Send parameter: 16 0x10
Always: 0 0x00
Parameter code (process value): 16 0x10
Parameter value (High-Byte): 0 0x00
Parameter value (Low -Byte): 0 0x00
Decimal point: 0 0x00
Transmission to slave: 0x01, 0x01 0x10, 0x00, 0x10, 0x00, 0x00, 0x00
Slave to master: Dec. Hex
Current number of instruction: 1 0x01
Zone no.: 1 0x01
Send parameter: 16 0x10
Always: 0 0x00
Parameter code (process value): 16 *) 0x10
Parameter value (High-Byte): 0 0x00
Parameter value (Low -Byte): 225 0xE1
Decimal point 0 0x00
Transmission to master: 0x01, 0x01 0x10, 0x00, 0x10, 0x00, 0xE1, 0x00
*) Repetition of the parameter code (PC = 16), because the read-process was OK.
Manual R20-R21-R22-PB-E Release: 2.04 © Elotech GmbH Page 15/20

3.3.6.2 Configuration channel, Instruction code: 20 H
The slave gets the instruction:
"Store parameter „prop.-band heating“ (parameter code: 40H, parameter value: 5,0 %) of zone no. 2
in RAM".
Master to slave: Dec. Hex
Current number: 2 0x02
Zone no.: 2 0x02
Instruction code: 32 0x20
Always: 0 0x00
Parameter code: 64 0x40
Parameter value (High-Byte): 0 0x00
Parameter value (Low -Byte): 50 0x32
Decimal point 1 0x01
Transmission to slave: 0x02, 0x02, 0x20, 0x00, 0x40, 0x00, 0x32, 0x01
Slave to master: Dec. Hex
Current number of instruction: 2 0x02
Zone no.: 2 0x02
Instruction code: 32 0x20
Always: 0 0x00
Parameter code (Prop-band, heating): 0 *) 0x00
Parameter value (High-Byte): 0 0x00
Parameter value (Low -Byte): 0 0x00
Decimal point 0 0x00
Transmission to master: 0x02, 0x02, 0x20, 0x00, 0x00, 0x00, 0x00, 0x00
*) If the slave has understood the instruction of the master, it answers always with the
parameter code (PC) = 00, because the writing-process was OK.
If there are transmission or other errors the slave answers with the corresponding error code.
Manual R20-R21-R22-PB-E Release: 2.04 © Elotech GmbH Page 16/20

3.3.6.3 Configuration channel, Instruction code: 21 H
The slave gets the instruction:
" Store parameter setpoint 1 / SP1 = 200°C (paramet er code: 21H) of zone no. 1
power fail safe in EEPROM“.
Master to slave: Dec. Hex
Current number: 3 0x03
Zone no.: 1 0x01
Instruction code: 33 0x21
Always: 0 0x00
Parameter code (SP1): 33 0x21
Parameter value (High-Byte): 0 0x00
Parameter value (Low -Byte): 200 0xC8
Decimal point 0 0x00
Transmission to slave: 0x03, 0x01, 0x21, 0x00, 0x21, 0x00, 0xC8, 0x00
Slave to master: Dec. Hex
Current number of instruction: 3 0x03
Zone no.: 1 0x01
Instruction code: 33 0x21
Always: 0 0x00
Parameter code: 0 *) 0x00
Parameter value (High-Byte): 0 0x00
Parameter value (Low -Byte): 0 0x00
Decimal point 0 0x00
Transmission to master: 0x03, 0x01, 0x21, 0x00, 0x00, 0x00, 0x00, 0x00
*) If the slave has understood the instruction of the master, it answers always with the
parameter code (PC) = 00, because the writing-process was OK.
If there are transmission or other errors the slave answers with the corresponding error code.
Manual R20-R21-R22-PB-E Release: 2.04 © Elotech GmbH Page 17/20

3.4 Process reflection and Configuration channel
It is possible, to transmit process reflection and configuration channel simultaneously.
In this case the bytes of the configuration channel have to be fit together with the process reflection.
Master to slave:
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6
Zone 1:
Setpoint 1
High Byte
Zone 1:
Setpoint 1
Low Byte
Zone 1:
Control Byte Zone 2:
Setpoint 1
High Byte
Zone 2:
Setpoint 1
Low Byte
Zone 2:
Control Byte . . .
Byte 46 Byte 47 Byte 48
. . . Zone 16:
Setpoint 1
High Byte
Zone 16:
Setpoint 1
Low Byte
Zone 16:
Control Byte
Byte 49 Byte 50 Byte 51 Byte 52 Byte 53 Byte 54 Byte 55 Byte 56
Current
Number Controller
Zone Instruction
Code
BC
Always:
0x00
Parameter
Code
PC
Parameter
Value
PWH
High Byte
Parameter
Value
PWL
Low Byte
Dec. Point
PWK
If there are instruments with controller zones lower than 16 (e.g. 8 or 12 zones) the number of the
transmitted data bytes is lower too.
Manual R20-R21-R22-PB-E Release: 2.04 © Elotech GmbH Page 18/20

Slave to Master:
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6
Status
Setpoint
High Byte
Status
Setpoint
Low Byte
Zone 1
Process
Value
High Byte
Zone 1
Process
Value
Low Byte
Zone 1
Controller
Status
Zone 1
Alarm
Status
Byte 7 Byte 8 Byte 9 Byte 10
Zone 2
Process
Value
High Byte
Zone 2
Process
Value
Low Byte
Zone 2
Controller
Status
Zone 2
Alarm
Status
Byte 11 Byte 12 Byte 13 Byte 14
Zone 3
Process
Value
High Byte
Zone 3
Process
Value
Low Byte
Zone 3
Controller
Status
Zone 3
Alarm
Status . . .
Byte 63 Byte 64 Byte 65 Byte 66
. . . Zone 16
Process
Value
High Byte
Zone 16
Process
Value
Low Byte
Zone 16
Controller
Status
Zone 16
Alarm
Status
Byte 67 Byte 68 Byte 69 Byte 70 Byte 71 Byte 72 Byte 73 Byte 74
Current
Number Controller
Zone Instruction
Code
BC
Always:
0x00
Parameter
Code
PC
Parameter
Value
PWH
High Byte
Parameter
Value
PWL
Low Byte
Dec. Point
PWK
Manual R20-R21-R22-PB-E Release: 2.04 © Elotech GmbH Page 19/20

Manual R20-R21-R22-PB-E Release: 2.04 © Elotech GmbH Page 20/20
This manual suits for next models
2
Table of contents
Other Elotech Temperature Controllers manuals