Hemisphere GPS P306 Assembly Instructions

P306/P307 Integrator’s Guide Page 1 of 39
875-0343-0
Integrator’s Guide
Revision: A3
July 20, 2017
P306/P307 Eclipse
OEM Modules

P306/P307 Integrator’s Guide Page 2 of 39
This device complies with part 15 of the FCC Rules. Operation is subject to the following two
conditions:
(1)
This device may not cause harmful interference, and
(2)
this device must accept any interference received, including interference that may cause
undesired
operation.
ThisproductcomplieswiththeessentialrequirementsandotherrelevantprovisionsofDirective2014/53/EU.Thedeclarationofconformitymaybeconsultedat
https://hemispheregnss.com/About‐Us/Quality‐Commitment.
Copyright Notice
Copyright Hemisphere GNSS, Inc. (2017). All rights reserved.
No part of this manual may be reproduced, transmitted, transcribed, stored in a retrieval system or
translated into
any language or computer language, in any form or by any means, electronic,
mechanical, magnetic, optical,
chemical, manual or otherwise, without the prior written
permission of Hemisphere GNSS.
Trademarks
Hemisphere GNSS®, the Hemisphere GNSS logo, TRACERTM, Crescent®, EclipseTM, e-Dif®, L-DifTM,
miniEclipseTM, PocketMax3™ ,PCTM, PocketMax3TM, M, S320TM, SBX-4TM, VectorTM, XF1TM, and XF2TM are
proprietary trademarks of Hemisphere GNSS, Inc. Other trademarks are the
properties of their respective
owners.
Patents
Hemisphere GNSS products may be covered by one or more of the following patents:
U.S. Patents Australia Patents
6111549 6876920 7400956 8000381 8214111 2002244539
6397147 7142956 7429952 8018376 8217833 2002325645
6469663 7162348 7437230 8085196 8265826 2004320401
6501346 7277792 7460942 8102325 8271194
6539303 7292185 7689354 8138970 8307535
6549091 7292186 7808428 8140223 8311696
6711501 7373231 7835832 8174437 8334804
6744404 7388539 7885745 8184050 RE41358
6865465 7400294 7948769 8190337
Other U.S. and foreign patents pending.
Notice to Customers
Contact your local dealer for technical assistance. To find the authorized dealer near you:
Hemisphere GNSS, Inc8515 East
Anderson Drive
Scottsdale, AZ
85255 USA
Phone: (480) 348-6380
Fax: (480) 270-5070
Email:
precision@hemispheregnss.com
www.hgnss.com
Technical Support
If you need to contact Hemisphere GNSS Technical Support:
Hemisphere GNSS, Inc.
8515 East
Anderson Drive
Scottsdale, AZ
85255 USA
Phone: (480) 348-6380
Fax: (480) 270-5070
Documentation Feedback
Hemisphere GNSS is committed to the quality and continuous improvement of our products and
services. We
urge you to provide Hemisphere GNSS with any feedback regarding this guide by
writing to the following email
address: [email protected].

P306/P307 Integrator’s Guide Page 3 of 39
Table of Contents
Copyright Notice .......................................................................................................................................... 2
Trademarks ................................................................................................................................................. 2
Patents ........................................................................................................................................................ 2
Notice to Customers .................................................................................................................................... 2
Technical Support ....................................................................................................................................... 2
Documentation Feedback ........................................................................................................................... 2
Chapter 1: Introduction ................................................................................................................................ 5
Eclipse OEM Board Options .................................................................................................................... 6
P306/P307 Integration ............................................................................................................................. 6
Common Features of Eclipse Boards ...................................................................................................... 7
Message Interface ................................................................................................................................... 7
Using PocketMax3™ to Communicate with the P306/P307 ................................................................... 8
Chapter 2: Board Overview ......................................................................................................................... 9
P306/P307 OEM Board Key Features .................................................................................................. 10
Mechanical Layout ................................................................................................................................. 11
Connectors ............................................................................................................................................ 13
Mounting Options .................................................................................................................................. 13
Direct Electrical Connection Method .................................................................................................. 13
Indirect Electrical Connection (Cable) Method .................................................................................. 14
Header Layouts and Pinouts ................................................................................................................. 14
Eclipse 34-Pin Header Layout/Pinout ................................................................................................ 14
Eclipse 20-Pin Header Layout/Pinout ................................................................................................ 16
Signals ................................................................................................................................................... 17
RF Input ............................................................................................................................................. 17
Serial Ports ........................................................................................................................................ 17
Communication Port D ....................................................................................................................... 17
USB Ports .......................................................................................................................................... 17
LED Indicators ................................................................................................................................... 19
1PPS Timing Signal ........................................................................................................................... 20
Event Marker Input ............................................................................................................................. 20
Grounds ............................................................................................................................................. 20
Speed Radar Output .......................................................................................................................... 20
Shielding ................................................................................................................................................ 21
Receiver Mounting ................................................................................................................................. 21
Thermal Concerns ................................................................................................................................. 21
Chapter 3: Operation ................................................................................................................................. 22
Powering the P306/P307 ....................................................................................................................... 23

P306/P307 Integrator’s Guide Page 4 of 39
Communicating with the P306/P307 ..................................................................................................... 23
Configuring the P306/P307 ................................................................................................................... 23
Firmware ................................................................................................................................................ 23
Configuring the Data Message Output .................................................................................................. 24
‘THIS’ Port and the ‘OTHER’ Port ...................................................................................................... 24
Saving the P306/P307 Configuration .................................................................................................... 24
Using Port D for RTCM Input ................................................................................................................ 24
Configuration Defaults ........................................................................................................................... 25
Appendix A: Frequently Asked Questions ................................................................................................ 26
Integration .............................................................................................................................................. 27
Support and Repair ............................................................................................................................... 28
Power, Communication, and Configuration ........................................................................................... 28
GNSS Reception and Performance ...................................................................................................... 29
SBAS Reception and Performance ....................................................................................................... 30
External Corrections .............................................................................................................................. 31
Installation ............................................................................................................................................. 31
Appendix B: Troubleshooting .................................................................................................................... 32
Appendix C: Technical Specifications ....................................................................................................... 34
P306 Specifications ............................................................................................................................... 35
P307 Specifications ............................................................................................................................... 37

P306/P307 Integrator’s Guide Chapter 1 - Introduction Page 5 of 39
Chapter 1: Introduction
P306/P307 OEM Board Options
P306/P307 Integration
Common Features of Eclipse Boards
Message Interface
Using PocketMax3™ to Communicate with the P306/P307

P306/P307 Integrator’s Guide Chapter 1 - Introduction Page 6 of 39
This manual does not cover receiver operation, the PocketMax3™ utility, or commands and messages
(NMEA 0183, NMEA2000® or HGPS proprietary). For information on these subjects refer to the
Hemisphere GNSS Technical Reference.
Eclipse OEM Board Options
The Eclipse™ OEM board is available in two form factors as shown in Table 1-1.
Table 1-1: Eclipse Board Options
Model GNSS
Systems
Compatibility Atlas Support
P306™ L1/L2 GPS,
GLONASS,
BEIDOU
and
Galileo
Hemisphere
GNSS
standard
pinout
configuration
(34-pin)
Yes - with optional Hemisphere GNSS
LX-3 OEM board
P307™ L1/L2 GPS,
GLONASS,
BEIDOU
and
Galileo
Compatible with
popular
aftermarket
products (20-pin)
No
P306/P307 Integration
Successful integration of the P306/P307 within a system requires electronics expertise that
includes:
Power supply design
Serial port level translation
Reasonable radio frequency competency
An understanding of electromagnetic compatibility
Circuit design and layout

P306/P307 Integrator’s Guide Chapter 1 - Introduction Page 7 of 39
The P306/P307 GNSS engine is a low-level module intended for custom integration with the
following general integration requirements:
Regulated power supply input (3.3 VDC ± 3%) and 700 mA continuous
Low-level serial port (3.3 V CMOS) and/or USB port communications
Radio frequency (RF) input to the engine from a GNSS antenna is required to be
actively amplified (10 to 40 dB gain)
GNSS antenna is powered with a separate regulated voltage source up to 15 VDC
maximum
Antenna input impedance is 50Ω
Common Features of Eclipse Boards
372-channel GNSS engine
Sub-meter horizontal accuracy 95%
Raw measurement output (via documented binary messages)
Position and heading update rates of 20 Hz max
COAST™ technology that provides consistent performance with correction data
e-Dif®-ready - a base station-free way of differentially positioning
L-Dif™-ready – Local differential is a proprietary Hemisphere GNSS method where a
specialized set of messages are relayed between two Eclipse receivers
Quick times to first fix
Four full-duplex serial ports
USB device port only (P307)
USB host and USB device ports (P306)
1 PPS timing output
Event marker input
Message Interface
The P306/P307 uses a NMEA 0183 interface, allowing you to easily make configuration changes by
sending text-type commands to the receiver.
The P306/P307 also supports a selection of binary messages. There is a wider array of information
available through the binary messages, plus binary messages are inherently more efficient with
data. If the application has a requirement for raw measurement data, this information is available
only in a binary format.
For more information on NMEA 0183 commands and messages as well as binary messages refer
to the Hemisphere GNSS Technical Reference.
Note:
For complete specifications of Eclipse boards, see Appendix C, “Technical Specifications.”

P306/P307 Integrator’s Guide Chapter 1 - Introduction Page 8 of 39
Using PocketMax3™ to Communicate with the P306/P307
Hemisphere’s PocketMax3™ is a free utility program that runs on your Windows PC or Windows
mobile device. Simply connect your Windows device to the P306/P307 via the COM port and open
PocketMax3™.
The screens within PocketMax3™ allow you to easily interface with the P306/P307 to:
Select the internal SBAS, external beacon, or RTCM correction source and monitor
reception (beacon optional)
Configure GNSS message output and port settings
Record various types of data
Monitor the receiver’s status and configuration
PocketMax3™ is available for download from the HGNSS website.

P306/P307 Integrator’s Guide Chapter 2: Board Overview Page 9 of 39
Chapter 2: Board Overview
Eclipse OEM Board Key Features
Mechanical Layout
Connectors
Mounting Options
Header Layouts and Pinouts
Signals
Shielding
Receiver Mounting
Thermal Concerns

P306/P307 Integrator’s Guide Chapter 2: Board Overview Page 10 of 39
P306/P307 OEM Board Key Features
With its small form factor, low power consumption, and simple on-board firmware, the
P306/P307 is an ideal solution for integrators, offering scalability and expandability from L1
GNSS with SBAS to L1/L2 GNSS, GLONASS BeiDou and Galileo (with RTK capability).
P306 is a drop-in replacement for Hemisphere GNSS’ Crescent® and mini
Eclipse receivers (34-pin) and provides Atlas support with the optional
Hemisphere GNSS LX-3™ OEM board
P307 has a mechanical design compatible with popular after-market products
(20-pin)
The reliable positioning performance of P306/P307 is further enhanced through Eclipse RTK
and COAST DGPS technology.
With P306/P307, RTK performance is scalable. Utilize the same centimeter-level accuracy
in either L1-only mode, or employ the full performance of fast RTK performance over long
distances with L1/L2 GNSS signals. Hemisphere GNSS’ SureTrack technology provides
peace-of-mind knowing the RTK rover is making use of every satellite it is tracking. Even
satellites not tracked at the base benefit from fewer RTK dropouts in congested
environments, faster reacquisition, and more robust solutions due to better cycle slip
detection.
Patented COAST software enables select Hemisphere GNSS receivers to utilize aging
DGPS correction data during times of interference, signal blockage, and weak signal. The
receiver will coast and continue to maintain sub-meter positioning for 40 minutes or more
without a DGPS signal.

P306/P307 Integrator’s Guide Chapter 2: Board Overview Page 11 of 39
Mechanical Layout
Figure 2-1 shows the mechanical layout for the Eclipse P306 OEM board. Figure 2-2 shows
the mechanical layout for the Eclipse P307 OEM board. Dimensions are in millimeters
(inches) for all layouts.
Figure 2-1: Eclipse P306 Mechanical Layout

P306/P307 Integrator’s Guide Chapter 2: Board Overview Page 12 of 39
40.6 mm
(1.60 in)
34.3 mm
(1.35 in)
3.2 mm
4.6 mm 3.2 mm
(.13 in)
(.18 in)
64.8 mm
(2.55 in)
72.6 mm
(2.85 in)
(.13 in)
7.4 mm
(.29 in)
4.2 mm
(.17 in)
1.5
mm
(.06 in)
5.9
mm
(.23 in)
11.2 mm
3.2 mm
(.13 in)
3.2 mm x 4
(.13 in)
(.44 in)
MCX JACK
RECEPTACLE
12.6 mm (.49 in)
4.8 mm (.19 in)
Figure 2-2 Eclipse P307 Mechanical Layout

P306/P307 Integrator’s Guide Chapter 2-Board Overview Page 13 of 39
Connectors
Table 2-1 describes Eclipse connectors and mating connectors. You can use different compatible
connectors; however, the requirements may be different. The antenna input impedance is 50Ω.
Table 2-1: P306/P307 Connectors
Eclipse Board and
Connector Type
Receiver SMT
Connector
Mating Connector
Eclipse
(P306)
RF MCX, female straight
jack Emerson
(Johnson) 133-3711-
202
MCX, male straight plug Samtec RSP-
127824-01
Power/
data
34-pin (17x2) male
header,
0.05 in (1.27 mm)
pitch
Samtec FTSH-117-
04-L-DV
17x2 female SMT header socket, 0.05 in
(1.27 mm) pitch
Samtec FLE-117-01-G-DV
Eclipse
(P307)
RF MCX, female straight
jack Emerson
(Johnson) 133-3711-
202
MCX, male straight plug Samtec RSP-
127824-01
Power/
data
20-pin (10x2) male
header,
0.08 in (2 mm) pitch
Samtec TMM-110-
01-T-D-SM
10x2 female SMT header socket, 0.08 in (2
mm) pitch
Samtec TLE-110-01-G-DV
Note: For the Samtec FTSH headers, ‘-04’ indicates 0.150” posts.
Mounting Options
There are two options for mounting the P306/P307:
1. Direct Electrical Connection method
2. Indirect Electrical Connection (Cable) method
Direct Electrical Connection Method
Place an RF connector, heading connector, and mounting holes on the carrier board and then
mount the P306/P307 on the standoffs and RF and header connectors. This method is very cost-
effective as it does not use cable assemblies to interface the P306/P307.
The P306/P307 uses a standoff height of 7.9 mm (0.312 in). With this height, there should be no
washers between either the standoff and the P306/P307 or the standoff and the carrier board;
otherwise, you must make accommodations. You may need to change the standoff height if you
select a different header connector.

P306/P307 Integrator’s Guide Chapter 2-Board Overview Page 14 of 39
If you want to use a right angle MCX connector, see Table 2-1 for P306/P307 connector
information.
Indirect Electrical Connection (Cable) Method
The second method is to mount the P306/P307 mechanically so you can connect a ribbon
power/data cable to the P306/P307. This requires cable assemblies and there is a reliability factor
present with cable assemblies in addition to increased expense.
Header Layouts and Pinouts
The P306/P307 uses a dual-row header connector to interface with power, communications, and
other signals.
Eclipse 34-Pin Header Layout/Pinout
To identify the first header pin, orient the board so the diamond is to the upper left of the pins; the
first pin is on the left directly below the diamond. The pins are then sequentially numbered per row
from top to bottom.
The P306 boards have a 34-pin header. Figure 2-3 shows the Eclipse 34-pin header layout and
Table 2-2 provides the Eclipse 34-pin header pinout.
Figure 2-3 Eclipse 34-Pin Header Layout

P306/P307 Integrator’s Guide Chapter 2-Board Overview Page 15 of 39
Table 2-2: Eclipse 34-pin header pinout
Pin Name Type Description
1 3.3 V Power Receiver power supply, 3.3 V
2 3.3 V Power Receiver power supply, 3.3 V
3 Antenna Pwr Power Antenna power, DC, 15 V max
4 Batt Backup Power Power, 1.5 to 5.5 V, 500 nA typical
5 USB DEV+ I/O USB device data +
6 USB DEV– I/O USB device data -
7 GND Power Receiver ground
8 GND Power Receiver ground
9 PATX Output Port A serial output, 3.3 V CMOS, idle high
10 PARX Input Port A serial input, 3.3 V CMOS, idle high
11 PBTX Output Port B serial output, 3.3 V CMOS, idle high
12 PBRX Input Port B serial input, 3.3 V CMOS, idle high
13 PDTX Output Port D serial output, 3.3 V CMOS, idle high
14 PDRX Input Port D serial input, 3.3 V CMOS, idle high
15 1 PPS Output Active high, rising edge, 3.3 V CMOS
16 Manual Mark Input Active low, falling edge, 3.3 V CMOS
17 GPS Lock Output Status indicator, 3.3 V CMOS, active low
18 Diff Lock Output Status indicator, 3.3 V CMOS, active low
19 DGPS Lock Output Status indicator, 3.3 V CMOS, active low
20 n/c n/c n/c
21 GPIO0 I/O General purpose input/output
22 GPIO1 I/O General purpose input/output
23 GPIO2 I/O General purpose input/output
24 GPIO3 I/O General purpose input/output
25 Speed Output Output 0 - 3 V variable clock output
26 Speed Ready Output Active low, speed valid indicator, 3.3 V CMOS
27 GND Power Receiver ground
28 GND Power Receiver ground
29 USB Host + I/O HOST USB+
30 USB Host - I/O HOST USB-
31 PCTX Output Port C serial output, 3.3 V CMOS, idle high
32 PCRX Input Port C serial input, 3.3 V CMOS, idle high
33 L-Band Enable Output Reserved
34 Reset Open
collector
Reset, open collector, 3.3 V typical, not required
Note: Pins are not 5 V tolerant. The pin voltage range is 0 to 3.3 VDC, unless otherwise noted.
Leave any data or I/O pins that will not be used unconnected.

P306/P307 Integrator’s Guide Chapter 2-Board Overview Page 16 of 39
Eclipse 20-Pin Header Layout/Pinout
The P307 boards have a 20-pin header. Figure 2-4 shows the Eclipse 20-pin header layout, and
Table 2-3 provides the Eclipse 20-pin header pinout.
Figure 2-4: Eclipse 20-pin header layout
Table 2-3: Eclipse 20-pin header pinout
Pin Name Type Description
1 Antenna Pwr Power Antenna power, DC, 15 V max
2 3.3 V Power Receiver power supply, 3.3 V
3 USB DEV– I/O USB device data -
4 USB DEV+ I/O USB device data +
5 Reset Open collector Reset, open collector, 3.3 V typical, not
required
6 PCRX Input Port C serial input, 3.3 V CMOS, idle high
7 PCTX Output Port C serial output, 3.3 V CMOS, idle high
8 PDRX Input Port D serial input, 3.3 V CMOS, idle high
9 PDTX Output Port D serial output, 3.3 V CMOS, idle high
10 GND Power Receiver ground
11 PATX Output Port A serial output, 3.3 V CMOS, idle high
12 PARX Input Port A serial input, 3.3 V CMOS, idle high
13 GND Power Receiver ground
14 PBTX Output Port B serial output, 3.3 V CMOS, idle high
15 PBRX Input Port B serial input, 3.3 V CMOS, idle high
16 GND Power Receiver ground
17 Manual Mark Input Active low, falling edge, 3.3 V CMOS
18 GND Power Receiver ground
19 1 PPS Output Active high, rising edge, 3.3 V CMOS
20 Position Valid
Indicator
Output Status indicator, 3.3 V CMOS, active low
Note: Pins are not 5 V tolerant. The pin voltage range is 0 to 3.3 VDC, unless otherwise noted.
Leave any data or I/O pins that will not be used unconnected.

P306/P307 Integrator’s Guide Chapter 2-Board Overview Page 17 of 39
Signals
This section provides information on the signals available via connectors.
RF Input
The P306/P307 is designed to work with active GNSS antennas with an LNA gain range of 10 to
40 dB. The purpose of the range is to accommodate for losses in the cable system. Essentially,
there is a maximum cable loss budget of 30 dB for a 40dB gain antenna. Depending on the
chosen antenna, the loss budget will likely be lower (a 24dB gain antenna would have a 14 dB loss
budget).
When designing the internal and external cable assemblies and choosing the RF connectors, do
not exceed the loss budget; otherwise, you will compromise the tracking performance of the
P306/P307.
Serial Ports
The P306/P307 has four serial communication ports:
Port A, Port B, Port C – main ports
Port D - Exclusively used to interface with the SBX beacon board or an external
corrections source. This port will not output normal GNSS-related NMEA messages.
When communicating into either Port A, B, or C, a virtual connection may be
established to the device on Port D using the $JCONN command. See
“Communication Port D” below for more information on Port D.
The P306/P307 serial ports’ 3.3 V CMOS signal level can be translated to interface to other
devices. For example, if serial Ports A, B, and/or C are used to communicate to external devices
(such as PCs) you must translate the signal level from 3.3 V CMOS to RS-232.
Communication Port D
Port D is exclusively for external DGPS correction input to the P306/P307, such as from
Hemisphere GNSS’ SBX beacon board.
USB Ports
The Eclipse P306 has both a USB host port and a USB device port while P307 has only a USB
device port, where:
USB device port (data communication) shown in Figure 2-5 serves as a high-speed data
communications port, such as for a PC
USB host port (data storage) shown in Figure 2-6 serves as a data storage port, such as
with a USB flash drive
The USB data lines are bidirectional and are differential pairs. The USB data lines should be laid
out on Printed Wire Board (PWB) with 90 Ω ±15% differential impedance. The traces should be
over a solid continuous ground plane. Maintain parallel traces and symmetry. There shall be no
traces or breaks in the ground plane underneath the D+ and D- traces. It is also recommended to
leave a minimum 100 mil spacing between USB signals and other signals. Treat the data lines as
if they are RF signals.

P306/P307 Integrator’s Guide Chapter 2-Board Overview Page 18 of 39
Figure 2-5 P306/P307 USB Device Design Example

P306/P307 Integrator’s Guide Chapter 2-Board Overview Page 19 of 39
Figure 2-6: P306/P307 Host Design Example
LED Indicators
The P306/P307 features the following surface-mounted diagnostic LEDs that indicate board status
(see Figure 2-7):
PWR - Power
GPS - GPS lock
DIFF - Differential lock
DGPS - DGPS position
Figure 2-7: Onboard LEDs
Except for the power LED, the signals that drive the LEDs are available via the header connector.
Refer to Table 2-2 through Table 2-3 for pin number descriptions for the P306/P307.

P306/P307 Integrator’s Guide Chapter 2-Board Overview Page 20 of 39
1PPS Timing Signal
The one pulse per second (1 PPS) timing signal is used in applications where devices require time
synchronization.
The 1 PPS signal is 3.3 V CMOS, active high with rising edge synchronization. The 1 PPS signal
is capable of driving a load impedance greater than 10 kΩ in parallel with 10 pF. The pulse is
approximately 1 ms.
Event Marker Input
A GNSS solution may need to be identified at a particular instance, not synchronized with GNSS
time depending on the application, such as indicating to the GNSS receiver when a photo is taken
from a camera used for aerial photography.
The event marker input is 3.3 V CMOS, active low with falling edge synchronization. The input
impedance and capacitance is higher than 10 kΩ and 10 pF respectively, with a threshold of lower
than 0.7 V required to recognize the input.
Grounds
You must connect all grounds together when connecting the ground pins of the P306/P307. Refer
to Table 2-2 through Table 2-3 for pinout ground information for the P306/P307.
Speed Radar Output
The following two pins on the P306 provide access to the Speed Radar option.
Speed Radar Pulse - Outputs a square wave with 50% duty cycle. The frequency of
the square wave varies directly with speed. 97 Hz represents a speed of 1 m/s (3.28
ft/s).
Speed Radar Ready Signal - Indicates when the speed signal on the Speed Radar
Pulse pin is valid. In static situations, such as when the vehicle has stopped, the
GNSS position may still have slight variations from one moment to the next. During
these instances, the signal on the Speed Radar Ready Signal pin is ‘high’ or +Vcc,
indicating the speed coming out of the Speed Radar Pulse pin is erroneous and not
truly indicative of the GNSS receiver’s actual speed. Therefore, it should not be
referred to or be used. Once the vehicle starts moving again and meets a minimum
threshold speed, the output on the Speed Radar Ready Signal pin will go ‘low,’
indicating valid speed information is present on the Speed Radar Pulse pin.
Table 2-4 provides the location of the Speed Radar Pulse and Speed Radar Ready Signal on the
P306/P307.
Note:
Each signal pin can offer only 1 mA of current and is active low. Since 1 mA of current may be
inadequate for the application, you may want to transistor-buffer these signals to provide more
current capacity for acceptable LED luminance.
This manual suits for next models
1
Table of contents
Other Hemisphere GPS Control Unit manuals