Gamry TDC5 User manual

i
TDC5™Temperature Controller
Operator’s Manual
Copyright ©2019 Gamry Instruments, Inc. All rights reserved. Printed in the USA.
Revision 1
January 21, 2019
Part # 988-00072

ii

1
Limited Warranty
Gamry Instruments, Inc. warrants to the original user of this product that it shall be free of defects resulting
from faulty manufacture of the product or its components for a period of two years from the date of
shipment.
Gamry Instruments, Inc. makes no warranties regarding either the satisfactory performance of the TDC5
Temperature Controller including the software used with this product or the fitness of TDC5-based systems
for any particular purpose. The remedy for breach of this Limited Warranty shall be limited solely to repair
or by replacement, as determined by Gamry Instruments, Inc., and shall not include other damages.
Gamry Instruments, Inc. reserves the right to make revisions to the TDC5 at any time without incurring any
obligation to install same on TDC5s previously purchased. All system specifications are subject to change
without notice.
There are no warranties which extend beyond the description herein. This warranty is in lieu of, and
excludes any and all other warranties or representations, expressed, implied or statutory, including
merchantability and fitness, as well as any and all other obligations or liabilities of Gamry
Instruments, Inc., including but not limited to, special or consequential damages.
This limited warranty gives you specific legal rights and you may have others which vary from state to state.
Some states do not allow for the exclusion of incidental or consequential damages.
No person, firm or corporation is authorized to assume for Gamry Instruments, Inc. any additional
obligation or liability not expressly provided herein except in writing duly executed by an officer of Gamry
Instruments, Inc.

2
If You Have Problems
Contact us at your earliest convenience. We can be contacted via:
Telephone (215) 682-9330 9:00 AM–5:00 PM US Eastern Standard Time
(877) 367-4267 Toll-free US & Canada Only
Fax (215) 682-9331
Mail Gamry Instruments, Inc.
734 Louis Drive
Warminster, PA 18974
USA
If you write to us about a problem, provide as much information as possible.
If you are having problems in installation or use of this TDC5 Temperature Controller, please call from a
telephone next to the instrument, where you can change instrument settings while talking to us.
We are happy to provide a reasonable level of free support for TDC5 purchasers. Reasonable support
includes telephone assistance covering the normal installation, use, and simple tuning of the TDC5.

3
Disclaimers
Gamry Instruments, Inc. cannot guarantee that the TDC5 will work with all computer systems, heaters,
cooling devices, or cells.
The information in this manual has been carefully checked and is believed to be accurate as of the time of
printing. However, Gamry Instruments, Inc. assumes no responsibility for errors that might appear.
Copyrights and Trademarks
Gamry Framework™Software Copyright ©1989–2019 Gamry Instruments, Inc.
CPT Software Copyright ©1992–2019 Gamry Instruments, Inc.
Explain Computer Language Copyright ©1989–2019 Gamry Instruments, Inc.
Gamry, Explain, Gamry Framework, CPT, and TDC5are trademarks of Gamry Instruments, Inc.
Windowsand Excel®are registered trademarks of Microsoft Corporation. OMEGA®is a registered
trademark of OMEGA ENGINEERING, INC.
No part of this document may be copied or reproduced in any form without the prior written consent of
Gamry Instruments, Inc.

4

5
Table of Contents
Limited Warranty...........................................................................................................................1
If You Have Problems ....................................................................................................................2
Disclaimers ....................................................................................................................................3
Copyrights and Trademarks ............................................................................................................3
Chapter 1: Safety Considerations....................................................................................................7
Introduction......................................................................................................................7
Inspection.........................................................................................................................7
Line Voltages ....................................................................................................................8
Switched AC Outlet Fuses .................................................................................................8
TDC5 Electrical Outlet Safety ............................................................................................8
Heater Safety....................................................................................................................9
RFI Warning......................................................................................................................9
Electrical Transient Sensitivity ............................................................................................9
Chapter 2:Installation...................................................................................................................11
Initial Visual Inspection .....................................................................................................11
Unpacking Your TDC5 ......................................................................................................11
Physical Location ..............................................................................................................11
Differences Between an Omega CS8DPT and a TDC5.......................................................12
Power-up Check ...............................................................................................................13
USB Cable ........................................................................................................................14
Using Device Manager to Install TDC5 ..............................................................................14
Connecting the TDC5 to a Heater or Cooler......................................................................16
Connecting the TDC5 to an RTD Probe.............................................................................17
Cell Cables from the Potentiostat.......................................................................................17
Setting up the TDC5 Operating Modes..............................................................................17
Checking TDC5 Operation................................................................................................18
Chapter 3:Use .............................................................................................................................19
Using Framework Scripts to Set Up and Control Your TDC5...............................................19
Thermal Design of Your Experiment ..................................................................................19
Tuning the TDC5 Temperature Controller: Overview.........................................................20
When to Tune ..................................................................................................................20
Restoring Factory Settings..................................................................................................21
Automatic versus Manual Tuning.......................................................................................22
Auto Tuning the TDC5......................................................................................................22
Appendix A: Default Controller Configuration.................................................................................23
Initialization Mode Menu ..................................................................................................23
Programming Mode Menu ................................................................................................27
Changes that Gamry Instruments Has Made to Default Settings..........................................31
Index.............................................................................................................................................33

6

Chapter 1: Safety Considerations
7
Chapter 1: Safety Considerations
Introduction
The Gamry Instruments TDC5 is based on a standard temperature controller, the Omega Engineering Inc.
Model CS8DPT. Gamry Instruments has performed slight modifications of this unit to allow easier incorporation
of it into an electrochemical test system.
Omega provides a User’s Guide that covers safety issues in detail. In most cases, the Omega information is not
duplicated here. If you do not have a copy of this document, contact Omega at http://www.omega.com.
Your TDC5 Temperature Controller has been supplied in a safe condition. Consult the Omega User’s Guide to
ensure continued safe operation of this device.
Inspection
When you receive your TDC5 Temperature Controller, inspect it for evidence of shipping damage. If you note
any damage, please notify Gamry Instruments Inc. and the shipping carrier immediately. Save the shipping
container for possible inspection by the carrier.
As defined in IEC Publication 348, Safety Requirements for Electronic Measuring Apparatus, the TDC5 is a Class
I apparatus. Class I apparatus is only safe from electrical shock hazards if the case of the apparatus is connected
to a protective earth ground.
In the TDC5 this protective ground connection is made via the ground prong in the AC line cord. When you
use the TDC5 with an approved line cord, the connection to the protective earth ground is automatically made
prior to making any power connections.
The TDC5 is supplied with a line cord suitable for use in the United States. In other countries, you may have to
replace the line cord with one suitable for your electrical outlet type. You must always use a line cord with a
Warning: If the protective ground is not properly connected, it creates a safety hazard,
which could result in personnel injury or death. Do not negate the protection of this earth ground by any
means. Do not use the TDC5 with a 2 wire extension cord, with an adapter that does not provide for
protective grounding, or with an electrical outlet that is not properly wired with a protective earth ground.
Warning: A TDC5 Temperature Controller damaged in shipment can be a safety hazard.
The protective grounding can be rendered ineffective if the TDC5 is damaged in shipment. Do not operate
damaged apparatus until a qualified service technician has verified its safety. Tag a damaged TDC5 to
indicate that it could be a safety hazard.

Chapter 1: Safety Considerations
8
CEE 22 Standard V female connector on the instrument end of the cable. This is the same connector used on
the US standard line cord supplied with your TDC5. Omega Engineering (http://www.omega.com) is one source
for international line cords, as described in their User’s Guide.
The wiring polarity of a properly wired connector is shown in the Table 1-1 for both US line cords and
European line cords that follow the “harmonized”wiring convention.
Table 1-1
Line Cord Polarities and Colors
If you have any doubts about the line cord for use with your TDC5, please contact a qualified electrician or
instrument service technician for assistance. The qualified person can perform a simple continuity check that
can verify the connection of the TDC5 chassis to earth and thereby check the safety of your TDC5 installation.
Line Voltages
The TDC5 is designed to operate at AC line voltages between 90 and 240 VAC, 50 or 60 Hz. No modification
of the TDC5 is required when switching between US and international AC line voltages.
Switched AC Outlet Fuses
Both of the switched outlets on the back of the TDC5 have fuses above and to the left of the outputs. In
accordance with international safety standards, both the line and neutral connections are fused. For Output 1,
the maximum allowed fuse rating is 3 A; for Output 2, the maximum allowed fuse is 5A.
The TDC5 is provided with 3 A and 5 A, fast-blow, 5 × 20 mm fuses in the switched outlets.
You may wish to tailor the fuses in each outlet for the expected load. For example, if you are using a 200 W
cartridge heater with a 120 VAC power line, the nominal current is a bit less than 2 A. You may want to use a
2.5 A or 3 A fuse in the switched outlet to the heater. Keeping the fuse rating just above the rated power can
prevent or minimize damage to an improperly operated heater.
TDC5 Electrical Outlet Safety
The TDC5 has two switched electrical outlets on the rear panel of its enclosure. These outlets are under the
control of the TDC5’s controller module or a remote computer. For safety considerations, whenever the TDC5
is powered, you must treat these outlets as being on.
Line
Neutral
Earth Ground
US
Black
White
Green
European
Brown
Light Blue
Green/Yellow
Warning: If you replace the line cord, you must use a line cord rated to carry at least 15 A
of AC current. If you replace the line cord you must use a line cord with the same polarity as that supplied
with the TDC5. An improper line cord can create a safety hazard, which could result in injury or death.

Chapter 1: Safety Considerations
9
In most cases, the TDC5 will power one or both of these outlets when it is first powered up.
Heater Safety
The TDC5 Temperature Controller is often used to control an electrical heating apparatus that is located on or
very near to an electrochemical cell filled with electrolyte. This can represent a significant safety hazard unless
care is taken to insure that the heater has no exposed wires or contacts.
RFI Warning
Your TDC5 Temperature Controller generates, uses, and can radiate radio-frequency energy. The radiated
levels are low enough that the TDC5 should present no interference problem in most industrial laboratory
environments. The TDC5 may cause radio-frequency interference if operated in a residential environment.
Electrical Transient Sensitivity
Your TDC5 Temperature Controller was designed to offer reasonable immunity from electrical transients.
However, in severe cases, the TDC5 could malfunction or even suffer damage from electrical transients. If you
are having problems in this regard, the following steps may help:
If the problem is static electricity (sparks are apparent when you touch the TDC5:
Placing your TDC5 on a static control work surface may help. Static-control work surfaces are now generally
available from computer supply houses and electronics tool suppliers. An antistatic floor mat may also help,
particularly if a carpet is involved in generating the static electricity.
Air ionizers or even simple air humidifiers can reduce the voltage available in static discharges.
Warning: An AC-powered heater connected to a cell containing electrolyte can represent a
significant electrical-shock hazard. Make sure that there are no exposed wires or connections in your heater
circuit. Even cracked insulation can be a real hazard when salt water is spilled on a wire.
Warning: The switched electrical outlets on the TDC5 rear panel must always be treated as
on whenever the TDC5 is powered. Remove the TDC5 line cord if you must work with a wire in contact
with these outlets. Do not trust that the control signals for these outlets, when off, remains off. Do not
touch any wire connected to these outlets unless the TDC5 line cord has been disconnected.

Chapter 1: Safety Considerations
10
If the problem is AC power-line transients (often from large electrical motors near the TDC5):
Try plugging your TDC5 into a different AC-power branch circuit.
Plug your TDC5 into a power-line surge suppressor. Inexpensive surge suppressors are now generally available
because of their use with computer equipment.
Contact Gamry Instruments, Inc. if these measures do not solve the problem.

Chapter 2: Installation
11
Chapter 2:Installation
This chapter covers normal installation of the TDC5 Temperature Controller. The TDC5 was designed to run the
experiments in the Gamry Instruments CPT Critical Pitting Test System, but it is also useful for other purposes.
The TDC5 is an Omega Engineering Inc., Model CS8DPT Temperature Controller. Please review the Omega
User’s Guide to familiarize yourself with the operation of the temperature controller.
Initial Visual Inspection
After you remove your TDC5 from its shipping carton, check it for any signs of shipping damage. If any damage
is noted, please notify Gamry Instruments, Inc. and the shipping carrier immediately. Save the shipping
container for possible inspection by the carrier.
Unpacking Your TDC5
The following list of items should be supplied with your TDC5:
Qty Gamry P/N Omega P/N Description
1 990-00491 Gamry TDC5 (modified Omega CS8DPT)
1 988-00072 Gamry TDC5 Operator’s Manual (this document)
1 720-00078 Main Power Cord, USA version
1 985-00192 USB 3.0 type A male/male cable, 6 ft.
1 M4640 Omega User’s Guide
1 990-00055 RTD Probe
1 720-00016 TDC5 Adapter for RTD cable
Contact your local Gamry Instruments representative if you cannot find any of these items in your shipping
containers.
Physical Location
You can place your TDC5 on a normal workbench surface. You will need access to the rear of the instrument
because power connections are made from the rear. The TDC5 is not restricted to operation in a flat position.
You can operate it on its side, or even upside-down.
Warning: The protective grounding can be rendered ineffective if the TDC5 is damaged
in shipment. Do not operate damaged apparatus until its safety has been verified by a qualified service
technician. Tag a damaged TDC5 to indicate that it could be a safety hazard.

Chapter 2: Installation
12
Differences Between an Omega CS8DPT and a TDC5
Hardware Differences
A Gamry Instruments TDC5 has one
addition compared to an unmodified
Omega CS8DPT: A new connector is
added to the front panel. It is a
three-pin connector used for a three-
wire 100 Ωplatinum RTD. The RTD
connector is wired in parallel with
the input terminal strip on the
Omega CS8DPT. You can still make
use of the full range of input
connections.
Firmware Differences
The firmware configuration settings for the PID (proportional, integrating and derivative) controller in the TDC5
are changed from the Omega defaults. See Appendix A for details. Basically, Gamry Instruments’ controller
setup includes:
Configuration for operation with a three-wire 100 Ωplatinum RTD as the temperature sensor,
PID tuning values appropriate for a Gamry Instruments Flexcell™with a 300 W heating jacket and active
cooling through the Flexcell’s heating coil.
AC Line Connection
The TDC5 is designed to operate at AC line voltages between 90 and 240 VAC, 50 or 60 Hz. You must use a
suitable AC power cord to connect the TDC5 to your AC power
source (mains).
Your TDC5 was shipped with a USA-type AC power input cord. If you
need a different power cord, you may obtain one locally or contact
Omega Engineering Inc. (http://www.omega.com).
The power cord using with the TDC5 must terminate with a CEE 22
Standard V female connector on the instrument end of the cable and
If you make other input connections:
•Be careful to avoid connecting two input devices, one to the 3-pin Gamry connector and one to
the terminal strip. Unplug the RTD from its connector if you connect any sensor to the input
terminal strip.
•You must reconfigure the controller for the alternate input. Consult the Omega manual for
additional details.

Chapter 2: Installation
13
must be rated for 10 A service.
Power-up Check
After the TDC5 is
connected to an
appropriate AC voltage
source, you can turn it on
to verify its basic operation.
The power switch is a large
rocker switch on the left
side of the rear panel.
When the TDC5 is powered up, the temperature controller should light up and display a couple of status
messages. Each message will be displayed for a few seconds.
If you connected an RTD to the unit, the upper display should show the current temperature at the probe (the
units are degrees Celsius). If you do not have a probe installed, the upper display should show a line containing
the characters oPER, as shown below:
Once the unit has powered up correctly, turn it off before making the remaining system connections.
Make sure that a newly installed TDC5 has no connection to its switched OUTPUT outlets
when it is first powered. You want to verify that the TDC5 powers up correctly before you add the
complexity of external devices.
Warning: If you replace the line cord you must use a line cord rated to carry at least 10
A of AC current. An improper line cord can create a safety hazard, which could result in injury or death.

Chapter 2: Installation
14
USB Cable
Connect the USB cable between the USB Type-A port on the front
panel of the TDC5 and a USB Type-A port on your host computer.
The supplied cable for this connection is a dual-ended USB Type-A
cable. Type A is a rectangular connector. (Type B is an almost square
USB connector.)
Using Device Manager to Install TDC5
1. After the TDC5 is plugged into an available USB port on the host computer, turn on the host computer.
2. Log into your user account.
3. Run Device Manager on the host computer.
In Windows®7, you can find Device Manager in the Control Panel. In Windows®10, you can find it by
searching in the Windows®search box.
4. Expand the Ports section in Device
Manager as shown.
5. Turn on the TDC5 and look for a new
entry that suddenly appears under Ports.
This entry will tell you the COM number
associated with the TDC5. Take note of
this for use during installation of the
Gamry Instruments software.
6. If the COM port is higher than number 8,
decide on a port number less than 8.
7. Right-click on the new USB Serial Device
that suddenly appeared, and select
Properties.
A USB Serial Device Properties window
like the one shown on the next page
appears.

Chapter 2: Installation
15
8. Select the Port Settings tab.
9. Click the Advanced…button.
The Advanced Settings for COMxdialog box
appears as shown below. (Here x stands for the
particular port number you have chosen.)
10. Select a new COM Port Number from the drop-down menu.
Select a number of 8 or less. You do not
need to change any other settings. After
you have made a selection, remember
this number to use during the Gamry
Software Installation.
11. Click the OK buttons on the two open
dialog boxes to close them.
12. Close the Device Manager by clicking on
the Xin the upper right-hand corner.
13. Proceed with the Gamry Software
Installation.
14. Make sure to select Temperature
Controllers in the Select Features dialog
box during installation:

Chapter 2: Installation
16
15. During installation, be sure
to choose the TDC5 in the
Temperature Controller
Configurations Type drop-
down menu. Choose the
correct COM port that you
noted down earlier.
Connecting the TDC5 to a Heater or Cooler
There are many ways to heat an electrochemical cell. These include an immersible heater in the electrolyte,
heating tape surrounding the cell, or a heating mantle. The TDC5 can be used with all these types of heaters, as
long as they are AC-powered.
The AC power for the heater is drawn from Output 1 on the rear panel of the TDC5. This output is a IEC Type
B female connector (common in the USA and Canada). Electrical cords with the corresponding male connector
are available worldwide.
Please check that the fuse on Output 1 is appropriate for use with your heater. The TDC5 is shipped with a 3 A
Output 1 fuse already installed.
In addition to controlling a heater, the TDC5 can control a cooling device. The AC power for the cooler is
drawn from the outlet labeled Output 2 on the rear of the TDC5.
The cooling device can be as simple as a solenoid valve in a cold-water line leading to a water jacket
surrounding the cell. Another common cooling device is the compressor in a refrigeration unit.
Before connecting a cooling device to the TDC5, verify that the Output 2 fuse is the correct value for your
cooling device. The TDC5 is shipped with a 5 A Output 2 fuse already installed.
Warning: An AC-powered heater connected to a cell containing electrolyte can
represent a significant electrical-shock hazard. Make sure that there are no exposed wires or connections in
your heater circuit. Even cracked insulation can be a hazard when salt water is spilled on a wire.

Chapter 2: Installation
17
Connecting the TDC5 to an RTD Probe
The TDC5 must be able to measure the temperature before it can control it. The TDC5 uses a platinum RTD to
measure the cell temperature. A suitable RTD is supplied with the TDC5. This sensor plugs into adapter cable
supplied with your TDC5:
Contact Gamry Instruments, Inc. at our US facility if you need to substitute a third-party RTD into a CPT
system.
Place the active end of the RTD as close as possible to the working electrode in your cell. This minimizes the
effect of thermal gradients on the control accuracy.
Cell Cables from the Potentiostat
A TDC5 in your system does not affect the cell cable connections. These connections are made directly from
the potentiostat to the cell. Please read the your potentiostat’s Operator’s Manual for cell cable instructions.
Setting up the TDC5 Operating Modes
The PID controller built into the TDC5 has a number of different operating modes, each of which is configured
by means of user-entered parameters.
The TDC5 is shipped with default settings appropriate for heating and cooling a Gamry Instruments FlexCell
using a 300 W heating jacket and a solenoid-controlled cold-water flow for cooling.
Appendix A lists the factory TDC5 settings.
Please refer to the Omega documentation supplied with your TDC5 for information about
the various controller parameters. Do not change a parameter without some knowledge of that parameter’s
effect on the controller.

Chapter 2: Installation
18
Checking TDC5 Operation
To test the operation of the TDC5, run a simple check-out script provided with the CPT Critical Pitting Test
System. The name of this script is CHECK110.EXP. Use the procedure in the CPT Installation Manual to
perform this checkout.
Table of contents