SR05-D1A3-PV manual v1801 16/83
SR05’s scientific name is pyranometer. A pyranometer measures the solar radiation
received by a plane surface from a 180 ° field of view angle. This quantity, expressed in
W/m2, is called “hemispherical” solar radiation. The solar radiation spectrum extends
roughly from 285 to 3000 x 10-9 m. By definition a pyranometer should cover that
spectral range with a spectral selectivity that is as “flat” as possible.
In an irradiance measurement by definition the response to “beam” radiation varies with
the cosine of the angle of incidence; i.e. it should have full response when the solar
radiation hits the sensor perpendicularly (normal to the surface, sun at zenith, 0 ° angle
of incidence), zero response when the sun is at the horizon (90 ° angle of incidence, 90 °
zenith angle), and 50 % of full response at 60 ° angle of incidence.
A pyranometer should have a so-called “directional response” (older documents mention
“cosine response”) that is as close as possible to the ideal cosine characteristic.
In order to attain the proper directional and spectral characteristics, a pyranometer’s
main components are:
•a thermal sensor with black coating. It has a flat spectrum covering the 200 to 50000
x 10-9 m range, and has a near-perfect directional response. The coating absorbs all
solar radiation and, at the moment of absorption, converts it to heat. The heat flows
through the sensor to the sensor body. The thermopile sensor generates a voltage
output signal that is proportional to the solar irradiance.
•a glass dome. This dome limits the spectral range from 285 to 3000 x 10-9 m (cutting
off the part above 3000 x 10-9 m), while preserving the 180 ° field of view angle.
Another function of the dome is that it shields the thermopile sensor from the
environment (convection, rain).
•The digital versions of model SR05 have a high-end 24-bit A/D converter, which is
used by SR05 to convert the analogue thermopile voltage to a digital signal. SR05-
D1A3-PV has a digital output that is identical to the most commonly used
photovoltaic reference cell with Modbus over RS-485 output for easy exchangeability.
Pyranometers can be manufactured to different specifications and with different levels of
verification and characterisation during production. The ISO 9060 - 1990 standard, “Solar
energy - specification and classification of instruments for measuring hemispherical solar
and direct solar radiation”, distinguishes between 3 classes; secondary standard (highest
accuracy), first class (second highest accuracy) and second class (third highest
accuracy).
From second class to first class and from first class to secondary standard, the achievable
accuracy improves by a factor 2.