Kuka KR C1 User manual

Hardware R2.2.8 11.98.02 en
1of 70
SOFTWARE
KR C1
Hardware
Release 2.2

2of 70
Hardware R2.2.8 11.98.02 en
eCopyright KUKA Roboter GmbH
This documentation or excerpts therefrom may not be reproduced or disclosed to third parties without the express permission of the publishers.
Other functions not described in this documentation may be operable in the controller. The user has no claim to these functions, however, in
the case of a replacement or service work.
We have checked the content of this documentation for conformity with the hardware and software described. Nevertheless, discrepancies
cannot be precluded, for which reason we are not able to guarantee total conformity. The information in this documentation is checked on a
regular basis, however, and necessary corrections will be incorporated in subsequent editions.
Subject to technical alterations without an effect on the function.
PD Interleaf

3of 70
Hardware R2.2.8 11.98.02 en
Contents
1Controlcabinet 5..................................................
1.1 General maintenance 5...........................................................
1.1.1 Cleaning 5......................................................................
1.2 Structure 6.....................................................................
1.2.1 Processor unit 6.................................................................
1.2.2 Power unit 7....................................................................
1.2.3 Cooling by heat exchanger 11......................................................
1.2.4 Cooling by air conditioner 12.......................................................
1.3 Peripheral interfaces, general 12....................................................
1.4 Power unit interfaces 12...........................................................
1.5 Power unit equipment 12..........................................................
1.6 Replacing the basic and power modules 12..........................................
2Basicmodulesandservopowermodules 13.........................
2.1 Basic module PM0--600 14.........................................................
2.2 1--axis power module PM 1--600/.. , 2--axis power module PM 2--600/25--16 14...........
2.3 Power supply module PM0--600 15..................................................
2.4 2--axis power module PM2--600/25/16 15............................................
2.5 Individual axis power module PM1--600/25 16........................................
2.6 Individual axis power module PM1--600/16 16........................................
2.7 Connection diagram for PM 0 + PM2 (without PM6--600) 17............................
2.7.1 Jumpering of the motor connectors 18...............................................
2.8 Current regulator programming ($G_COE_CUR) of the Powermodule 19.................
3SafetylogicmoduleFE201 21.......................................
3.1 Function blocks 21................................................................
3.1.1 Settings 21......................................................................
3.2 View FE201 version A 22..........................................................
3.3 View FE201 version B 23..........................................................
3.4 EMERGENCY STOP and safety circuit 24...........................................
3.5 Drives ON/OFF circuit 25..........................................................
3.6 Operating mode switchover 26.....................................................
4Individualaxisswitch--offforexternalaxes 27........................
4.1 Fault with power unit PM0--600 series “1” and “2” 28...................................
5Connectorpanel/Peripheralinterfaces 36...........................
5.1 Explanation of symbols 37.........................................................
5.2 Interface signals X11 37...........................................................
5.3 Emergency Stop circuit 39.........................................................

Hardware
4of 70
Hardware R2.2.8 11.98.02 en
5.4 Supply connection X1, service socket X01 41.........................................
5.5 Motor connector X20, axes 1 to 6 42................................................
5.6 Motor connectors X7.1, X7.2, X7.3 (optional) 43......................................
5.7 Peripheral connector X11 44.......................................................
5.8 Peripheral connector X12 (optional) 48..............................................
5.9 CAN bus Sub--D connector X801 50.................................................
5.10 Ethernet Sub--D connector X802 50.................................................
5.11 Data cable connector X21, axes 1 to 8 51............................................
5.12 Data cable connector X8, axes 7 to 12 (optional) 52...................................
5.13 KCP connector X19 53............................................................
5.14 Jumpers for stand--alone operation X11 54...........................................
6DigitalServoElectronics(DSEAT) 56.................................
6.1 Description of the DSEAT 56.......................................................
6.2 Schematic diagram of the controller architecture 56...................................
6.3 Block diagram of the DSEAT 57....................................................
6.4 DSEAT functions 58...............................................................
6.5 Configuration of the DSEAT 59.....................................................
6.6 Replacing the DSEAT card 59......................................................
6.7 Function test of the DSEAT card 60.................................................
6.7.1 Visual inspection of the LEDs 60....................................................
6.7.2 Function test of the DSEAT with the ”DSERDW” diagnostic tool 60......................
7Resolver--to--DigitalConverter(RDC) 61..............................
7.1 Description of the RDC 61.........................................................
7.2 Block diagram of the RDC 62.......................................................
7.3 Operating principle of the RDC 63...................................................
7.4 Configuration of the RDC 65.......................................................
7.5 RDC interfaces 65................................................................
7.5.1 Lumberg connectors on RDC per axis for resolver cables X1 to X8 66...................
7.6 Removing/Installing the RDC 66....................................................
7.7 Function test of the RDC 67........................................................
7.7.1 Function test: dial gauge mastering 67...............................................
7.7.2 Function test of the RDC with the ”DSERDW” tool 67..................................
7.7.2.1 Displaying the RDC table 67.......................................................
7.7.2.2 Checking RDC communication 67...................................................
7.7.2.3 Simulating EMT mastering 68......................................................
7.7.2.4 RDC calibration 69................................................................
7.7.2.5 Memory test 70...................................................................

1Controlcabinet
5of 70
Hardware R2.2.8 11.98.02 en
1Controlcabinet
1.1 General maintenance
With the exception of battery replacement, the controller (processor unit) is maintenance--
free.
Preventive maintenance is recommended wherever dirt, corrosion and wear occur.
Before maintenance or repair work is started, it must be ensured that the
incoming power cable is deenergized and that measures have been taken to
prevent it from being inadvertently energized again.
It must also be ensured that no current--carrying cables or components can be
touched. In addition, the main switch must be turned to “OFF” and locked.
All supply conductors up to the main switch are still live even when the main
switch is turned off.
Particularly important: maintenance and repair work may be performed only by
trained personnel aware of the hazards involved.
1.1.1 Cleaning
Do not use compressed air to clean the system, as this could cause dirt to
penetrate into electrical components. Compressed air may be used only when
expressly specified.
GRemove any dust deposits with a dry brush.
GClean control cabinet with a cloth soaked with a mild cleaning agent.
GClean cables, plastic parts and hoses with solvent--free cleaning agents.
The manufacturer’s instructions must be observed when using cleaning agents.
It must be ensured that no cleaning fluid enters electrical components.
GRemove any corrosion and, where permissible, protect the affected areas with paint,
grease or oil.
GReplace damaged, illegible or missing inscriptions, labels and plates.

Hardware
6of 70
Hardware R2.2.8 11.98.02 en
1.2 Structure
The controller contains all the components and functions which are required to operate the
robot. It comprises the processor and power units, which are both installed in a common con-
trol cabinet.
1.2.1 Processor unit
The processor unit includes the modules highlighted in Fig. 1.
Q1
A1
CD and floppy drives
Swing frame
Interfaces
Fig. 1 Processor unit
With its fitted components, the processor unit performs all the functions of the control
hardware. These are:
-- Windows user interface with visual display and input
-- P r og r a m c r e at i o n, c or r ec t io n, ar c hi vi ng , a nd m a i nt en anc e
-- Diagnosis, start--up assistance
-- Sequence control
-- Trajectory planning
-- Control of the servo power unit
-- Monitoring functions
-- P ar t s o f t h e s a f et y l o gic
-- Communication with external units (other controllers, host computers, PCs, network)
The control hardware is composed of the following modules:
-- Standard PC hardware with Pentium processor
-- Multi--function card (MFC)
-- Digital servo--electronics (DSEAT)
-- R es o l ve r/ d ig it a l c on ve rt e r ( R DC ) o n t h e r o bo t

1Controlcabinet(continued)
7of 70
Hardware R2.2.8 11.98.02 en
GStandard PC Hardware
With its powerful Pentium processor and main memory, the standard PC hardware forms the
basis of the processor unit. The standard PC also includes a hard disk for storing the entire
control software, including online help and online documentation, a floppy disk drive for
archiving purposes and a CD--ROM drive for reading the CD--ROM supplied in the cabinet.
The CD--ROM contains the operating system, Windows, the control software including the
relevant technological process, the online help and the complete documentation for the con-
trol cabinet and the robot.
GMulti--function card
The multi--function card incorporates the system and user I/Os and an Ethernet controller,
and forms the interface between the KCP and the PC. The card is designed as a PC plug--in
card and accommodates up to two DSEAT modules.
GDigital servo--electronics (DSEAT)
The DSEAT module fitted on the multi--function card with its own DSP (digital signal proces-
sor) is responsible for control of a servo power module with phase current command values
and parameterization data, processing of the error and situation information read by the
servo power module and communication with the module for R/D conversion.
GResolver/digital converter (RDC)
Installed on the robot base, the R/D converter with its own DSP (digital signal processor)
performs the functions of resolver power supply, R/D conversion, open--circuit monitoring of
the resolvers and monitoring of the motor temperature. This converter communicates with
the DSEAT via a serial interface.
1.2.2 Power unit
The power unit comprises the areas highlighted in Fig. 2 and Fig. 3.
GPower infeed with mains filter, main switch with fuse and m.c.b.
GBasic modules and servo power modules
GSafety module (on processor unit)
GBack--up battery for control hardware
For data protection, the computer is supplied with power by a battery for a maximum of 10x1
minute in the event of power failure.
GTransformer (optional)
GFans for cooling the cabinet

Hardware
8of 70
Hardware R2.2.8 11.98.02 en
R2 R1
E6
G11
N11
N12
G1
N1
N2
T1
E2
Q1
F7
Cabinet viewed
f
rom
f
ront
Doors closed Cabinet viewed from rear
Rear panels removed
Ballast resistors with
ventilation
Covering removed
Fan
Te m pe r a t u r e
sensor
Ballast resistor
External fan
Transformer
(optional)
Tra nsformer
Fig. 2 Control cabinet

1Controlcabinet(continued)
9of 70
Hardware R2.2.8 11.98.02 en
Bttry
PM6- -600
Cabinet viewed from front
FE201
Servo power module
Internal fan
Basic cabinet
Q1
A1
PM0- -600
PM1- -600/25
(PM1- -600/25/16)
PM1- -600/25/16
Internal fan
To p -- mo u n t ed
cabinet
Servo power module
Basic module
Main switch
with swing frame without swing frame
Power infeed with
mains filter
Heat exchanger
Heat exchanger
Fig. 3 Control cabinet

Hardware
10 of 70
Hardware R2.2.8 11.98.02 en
The control cabinet is divided into two independent cooling zones. The inner zone, containing
the entire control electronics, is cooled by a heat exchanger or an air conditioner (optional).
In the outer zone, the transformer (optional) and the heat sinks of the power module and the
power supply modules are cooled directly by ambient air.
The controller is designed for an ambient temperature of max. +45 ˚C with a heat exchanger
or max. +55 ˚C with an air conditioner.
Upstream installation of filter mats causes an excessive rise in temperature and
hence a reduction in the life of the installed devices !
The heat exchanger covers on the side of the cabinet must be fitted in such a
way that the plate with the ventilation slits is located on the lower cabinet with
the ventilation slits at the bottom and therefore covered.

1Controlcabinet(continued)
11 of 70
Hardware R2.2.8 11.98.02 en
1.2.3 Cooling by heat exchanger
1
2
3
Front view
Heat flow
Inner circuit
Rear view
Heat flow
Outer circuit
1 = Heat exchanger
2 = Fan, inner circuit
3 = Fan, outer circuit
Fig. 4 Cooling by heat exchanger

Hardware
12 of 70
Hardware R2.2.8 11.98.02 en
1.2.4 Cooling by air conditioner
See air conditioner (optional) 69--000--456
1.3 Peripheral interfaces, general
See peripheral interfaces (optional)
1.4 Power unit interfaces
The connector panel in the control cabinet is available in a variety of configurations depend-
ing on the version concerned.
1.5 Power unit equipment
When replacing the power modules it must be ensured that the motor
connectors are re--inserted in the correct positions (see LEERER MERKER,
LEERER MERKER).
1.6 Replacing the basic and power modules
Disconnect the mains cable before removal work is started and take measures to
prevent it from being reconnected.
Voltages of over 60 V can be present in the basic and power modules up to 5
minutes after they have been switched off!
Removing a module:
-- Check that the module is completely de--energized
-- Unplug connectors
-- Release 4 rotary locks
-- Pull out individual module towards the front
Installing a module:
-- Check that the seals on the heat sink are complete
-- Insert module together with the heat sink into the cut--out provided for this purpose in
the rear panel
-- Close 4 rotary locks
-- Re--insert connectors

2Basicmodulesandservopowermodules
13 of 70
Hardware R2.2.8 11.98.02 en
2Basicmodulesandservopowermodules
The basic and servo modules are designed for use as external axes or for special applica-
tions. The structure and internal parts are comparable with those of the six--axis power mo-
dule PM6--600. Axis--independent and axis--specific functions are distributed between the
basic and servo modules. A maximum of 4 axes can be assigned, in two 2--axis power modu-
les, to one basic module.

Hardware
14 of 70
Hardware R2.2.8 11.98.02 en
2.1 Basic module PM0--600
The PM0--600 incorporates:
GClocked, controlled low voltage supply for the following modules
-- Periphery (27 V DC / 6 A + 4 A, individually fused)
-- PC ( 27 V DC / 6 A , ba cke d up by e xt erna l bat te rie s)
-- Equipment within the cabinet (27 V DC / 4 A)
-- Holding brake for motors (26.5 V DC / 7.5 A)
-- Lead b at ter y f or bac ki ng up t he PC ( 26. 8 V DC) in cl. ch arg ing and d isc har ging c ont ro l
-- PM 0--6 00 log ic (1 5 V DC, -- 15 V DC , + 5 V DC, w it h bac k--u p)
-- PM 1(2 )--6 00 dr i ver s (1 6 V AC / 1 00 kHz )
G600 V supply module for output stages incl.
-- Main contactor and starting circuit
-- Mains overvoltage limiter
-- Intermediate circuit rectifier (600 V DC / 4 kW)
-- Ballast circuit 800 W (can be extended to 2 kW)
-- High --s peed di sc harg e of in te rme diat e ci rc uit
-- Te m pe r a t ur e m o nit o ri ng
-- Suppression elements
-- Interface with safety module (FE201)
GLogic module incl.
-- Bidirectional interface for parallel data transmission from/to DSEAT with parity check
-- Current controller and pulse width modulation
-- L og i c o p er at i on s ( e. g . d r i ve e n ab les , br a ke c o nt r ol )
-- F a ul t d et e ct i on : b r ak e f a ul t , o v e rv ol t age , u n de rv ol t age , b a t t er y c h ar g e,
overtemperature, motor overcurrent, current controller limitation,
transmission error, sumcheck error
-- Detection and signalling of: motor connector assignment, ready for operation
2.2 1--axis power module PM 1--600/.. , 2--axis power module PM
2--600/25--16
The power modules incorporate:
GIGBT servo output stages for 1 or 2 robot axes or external axes incl.
-- Intermediate circuit electrolytic capacitors
-- Driver boards with integrated short--circuit protection of the output stage
-- Potential--free motor current measurement
-- S ho rt -- c ir cu it b ra ki ng r e la y
-- Power adaptation to motor sizes via motor connector selection
-- Monitoring of heat sink temperature
-- Individual axis switch--off

2Basicmodulesandservopowermodules(continued)
15 of 70
Hardware R2.2.8 11.98.02 en
2.3 Power supply module PM0--600
X315
PM0--600
=Fuse
=LED
=Monitor
ENABLE
4123
--1 5 V
+15V
+5V WATCHDOG
READY
U<>
26,5V 6A
26,5V 4A
24V 6A
26,5V 6A
27,1V 7,5A
27,1V
10AT
26,5V
10AT
26,5V
6,3AT
26,5V
6,3AT
24V
10AT
Bttry 10AF
F8
F7
F6
F5
F4
F1
X607
X606
X604
X610
X608
X202 X203
X101
X102
X103
X106
X105
UInt.circuit
1V = 100V
X605
Ballast resistor
Temperature sensor
Internal connection
FE 201
Control voltage
Control voltage
Control voltage
braking
Control signals
power module N2 (N12)
Individual axis switch--off
Control voltage and
driver supply
power module
DSEAT
Int. circuit
voltage
Control signals
power module N1 (N11)
Fig. 5 PM 0--600 Front view
Mains connection 3x400V AC
2.4 2--axis power module PM2--600/25/16
S3
S2
X301H1
X301H2
X301M
X301L
X302M
X302L
X315
X316
X504
X508
X509
X505
SWITCH 1
SWITCH 2
BRAKE 2
BRAKE1
1Iw 2Iu
1Iu 2Iw
5V = Imax
PM2--600/25/16
=LED
=Monitor
X507
Motor 1
size A0 and A
Motor 1
size B and C0
Motor 1
size C, D and E
Motor 2
size B and C0
Motor 2
size C, D and E
Int. circuit voltage
Spare
(used on the lowest
power module for re-
ceiving int. circuit
connector X315)
Int. circuit voltage
X315
Equipotential
bonding Ground conductor
connection
Control signals
Control voltage and
dirver supply
Brake
output
S1
Hook switches for
activating the
individual axis
switch--off

Hardware
16 of 70
Hardware R2.2.8 11.98.02 en
2.5 Individual axis power module PM1--600/25
X301H1
X301H2
X301M
X301L
X315
X316
X504
X508
X509
X505
SWITCH 1
SWITCH 2
BRAKE 2
BRAKE1
1Iw 2Iu
1Iu 2Iw
5V = Imax
PM1--600/25
=LED
=Monitor
X507
Motor 1
size A0 and A
Motor 1
size B and C
Motor 1
size D and E
Int. circuit voltage
Spare
(used on lowest
power module for re-
ceiving int. circuit
connector X315)
Int. circuit voltage
X315
Equipotential
bonding Ground conductor
connection
Control signals
Control voltage and
driver supply
Brake
output
S3
S2
S1
Hook switches for
activating the
individual axis
switch--off
Fig. 6 PM 2--600/25/16 Front view
2.6 Individual axis power module PM1--600/16
X302M
X302L
X315
X316
X504
X508
X509
X505
SWITCH 1
SWITCH 2
BRAKE 2
BRAKE1
1Iw 2Iu
1Iu 2Iw
5V = Imax
PM1--600/16
=LED
=Monitor
X507
Motor 2
size B and C
Motor 2
size D and E
Int. circuit voltage
Spare
(used on lowest
power module for re-
ceiving int. circuit
connector X315)
Int. circuit voltage
X315
Equipotential
bonding Ground conductor
connection
Control signals
Control voltage and
driver supply
Brake
output
S3
S2
S1
Hook switches for
activating the
individual axis
switch--off
Fig. 7 PM 2--600/25/16 Front view

2Basicmodulesandservopowermodules(continued)
17 of 70
Hardware R2.2.8 11.98.02 en
2.7 Connection diagram for PM 0 + PM2 (without PM6--600)
PM0--600
=Fuse
=LED
=Monitor
ENABLE
4123
--1 5 V
+15V
+5V WATCHDOG
READY
U<>
26,5V 6A
26,5V 4A
24V 6A
26,5V 6A
27,1V 7,5A
27,1V
10AT
26,5V
10AT
26,5V
6,3AT
26,5V
6,3AT
24V
10AT
Bttry 10AF
F8
F7
F6
F5
F4
F1
X607
X606
X604
X610
X608
X202 X203
X101
X102
X103
X106
X105
UInt.circuit
1V = 100V
X605
Individual axis switch--off to plug X12
X101 Mains con-
nection 3x400V AC
S3
S2
X301H1
X301H2
X301M
X301L
X302M
X302L
X315
X316
X504
X508
X509
X505
SWITCH 1
SWITCH 2
BRAKE 2
BRAKE1
1Iw 2Iu
1Iu 2Iw
5V = Imax
PM2--600/25/16
=LED
=Monitor
X507
Motor 2
size B and C0
Motor 2
size C, D and E
Intermediate cir-
cuit voltage from
PM0 or previous
amplifier
S1
X609
DSEAT
X103 (Enable -- brake voltage)
Axis 1
Existing connections
Additional connections
X315
Plug X316 is used when
this cable is not connected
to a following amplifier.
X102 Ballast
resistor
X202 27V Supply
X203 Voltage to
open brakes
Control signals
for Power mo-
dule 2
Control signals
for Power mo-
dule 1
X106 Tempera-
ture sensor
X105 FE201
Internal connection
Axis 2
Fig. 8 Connection diagram for PM0 + PM2 (without PM6--600)

Hardware
18 of 70
Hardware R2.2.8 11.98.02 en
2.7.1 Jumpering of the motor connectors
The motor connectors are inserted in accordance with the robot type connected.
Plug position (H1 / H2) : Imax (RMS) = 64 A
Plug position (M) : Imax (RMS) = 32 A
Plug position (L) : Imax (RMS) = 16 A
The controller detects the connector position and signals an incorrectly connected motor
cable.
With plug position (H), both cables must always be connected.
The controller does not detect whether the motor cables have been
interchanged. It is important to maintain the correct assignment of the motor
cables to the respective axes !

2Basicmodulesandservopowermodules(continued)
19 of 70
Hardware R2.2.8 11.98.02 en
2.8 Current regulator programming ($G_COE_CUR) of the Powermodule
The powermodules PM0 and PM6 contain a programmable potentiometer (EEPot), with
which the current regulator can be optimized for the appropriate robot type. The optimum
value for this setting is entered in the machine data ($G_COE_CUR).
When exchanging a PM0--600 , PM6--600 or a KRC1--control cabinet with powermodule, the
correct current settings should be taken over and saved on the new powermodule.
The following proceedings should be followed.after a power module or control cabinet has
been exchanged:
(1) Switch on the KRC1--control cabinet and let it start up.
[Only for power modules with write--protect jumpers:
(visible from front under cutout in plate, lettering:“Betrieb/Programmierung”) Put the
jumper in the position “Programmierung”].
(2) With the KCP on the BOF (GUI), call up the menu option HELP--> VERSION.Check
if the displayed robot type correspnds with the actual installed machine. When this is
not the case, the correct machine data has to be loaded.
(3) Call up the menu option MONITOR--> VARIABLE --> MODIFY.
A window for the entry of variables is displayed in the field “NAME” enter the following:
$PROG_EEPOT
(4) Press the softkey “NEW VALUE” and enter the value 1 (for axis no.1).
When the enter key is pressed, the current regulator of axis 1 is programmed with the
value that is saved in the machine data.
By entering “2” in the field “NEW VALUE”, the axis 2 can be programmed and so on.
All the axes that are controlled by the robot including external axes, must be program-
med in this way.
Only for power modules with write--protect jumpers:
when the current regulators of all axes have been programmed, the write--protect jum-
per must be replaced in the position “Betrieb”.

Hardware
20 of 70
Hardware R2.2.8 11.98.02 en
ID- -Code Watchdog
Register
A/D
Bus driver
Parity
Oscillator
PWM
Current
controller
D/A
Data + addresses
&
PC connection
Internal
temp.
Reset logic
U
U
actual
setpoInt
+
PWM
Output stage
Ballast switch
Intermediate circuit
capacitor
Ballast resistor ext.
Rectifier
Brake switch
Power unit
K2
K1
Holding brake
SM
Overcurrent
3
3
Reset
K1
27 V ext.
Battery ext.
actual
I
Kx
Kx = axis switch--off
Kx
Fig. 9 Basic and servo power module
Overcurrent
Heat sink temp.
Ballast fault
Brake fault
Battery
Undervoltage
Internal temp.
Overvoltage
Connector position
Rapid gauging
Ballast ON
Heat sink
temperature
Switched--mode power supply
Control board
Mains 400 V AC
Connector position feedback
Table of contents
Popular Control System manuals by other brands

Vimar
Vimar BY-ALARM PLUS Installation

Promation Engineering
Promation Engineering P2-120PN4 Installation & operation manual

Risco
Risco LightSYS2 Quick user guide

Fluid Management
Fluid Management Smart Fill Operation manual

RF SOLUTIONS
RF SOLUTIONS MAINSSWITCH-8SL1 quick start guide

HDL
HDL HDL-MWM70 manual

Parker
Parker Sea Recovery Aquamatic Quick start & troubleshooting guide

Siemens
Siemens SINUMERIK 840D Operator's guide

Castel
Castel XELLIP XEMED-P quick start guide

Electrolux
Electrolux EWM 1000 PLUS Service manual

CorroVenta
CorroVenta HomeVision Pro user manual

Laguna Tools
Laguna Tools MCNC Plasma 48 x 48 manual