Texas Instruments IWRL6432BOOST User manual

User’s Guide
IWRL6432BOOST/AWRL6432BOOST EVM: FR4-Based
Low Power 60 GHz mm-Wave Sensor EVM User Guide
Chethan Kumar Y. B.
1 Abstract
The xWRL6432BOOST from Texas Instruments is an easy-to-use low cost FR4-based evaluation board for the
xWRL6432 mmWave sensing device, with standalone operation and direct connectivity to the DCA1000EVM for
raw ADC capture and signal processing development. This EVM contains everything required to start developing
software for on-chip Hardware accelerator and low power ARM Cortex® M4F controllers.
Table of Contents
1 Abstract................................................................................................................................................................................... 1
2 Getting Started........................................................................................................................................................................2
2.1 Key Features......................................................................................................................................................................2
2.2 Kit Contents........................................................................................................................................................................2
2.3 mmWave Out of Box Demo................................................................................................................................................2
3 Hardware................................................................................................................................................................................. 3
3.1 Block Diagram....................................................................................................................................................................5
4 EVM Mux Block Diagram........................................................................................................................................................7
5 PCB Storage and Handling Recommendations:..................................................................................................................8
5.1 PCB Storage and Handling Recommendations:................................................................................................................ 8
5.2 Higher Power Demanding Applications:.............................................................................................................................8
6 XWRL6432BOOST Antenna................................................................................................................................................... 9
6.1 PCB material...................................................................................................................................................................... 9
6.2 Switch Settings.................................................................................................................................................................11
6.3 LEDs................................................................................................................................................................................ 12
6.4 Connectors.......................................................................................................................................................................13
6.5 USB Connector................................................................................................................................................................ 13
6.6 DCA1000 HD Connector..................................................................................................................................................13
6.7 Booster Pack Connector for the LaunchPad Connectivity............................................................................................... 14
6.8 CANFD Connector........................................................................................................................................................... 14
6.9 LIN PHY connection.........................................................................................................................................................16
6.10 I2C Connections.............................................................................................................................................................17
6.11 XDS110 Interface........................................................................................................................................................... 17
6.12 Flashing the Board......................................................................................................................................................... 18
6.13 DCA1000EVM Mode......................................................................................................................................................18
7 Software, Development Tools, and Example Code............................................................................................................22
7.1 XWRL6432 Demo Visualization Getting Started..............................................................................................................22
8 TI E2E Community................................................................................................................................................................ 22
9 References............................................................................................................................................................................ 22
Revision History.......................................................................................................................................................................22
List of Figures
Figure 3-1. XWRL6432BOOST Top View....................................................................................................................................3
Figure 3-2. XWRL6432BOOST Bottom View.............................................................................................................................. 4
Figure 3-3. Salient Features of EVM (Top side)...........................................................................................................................4
Figure 3-4. Salient features of EVM (Bottom side)...................................................................................................................... 5
Figure 3-5. Functional block diagram.......................................................................................................................................... 5
Figure 4-1. Muxing options for the EVM...................................................................................................................................... 7
Figure 6-1. TX and Rx Antennas of the EVM.............................................................................................................................. 9
Figure 6-2. Virtual antenna array............................................................................................................................................... 10
www.ti.com Abstract
SWRU596 – DECEMBER 2022
Submit Document Feedback
IWRL6432BOOST/AWRL6432BOOST EVM: FR4-Based Low Power 60 GHz
mm-Wave Sensor EVM User Guide
1
Copyright © 2022 Texas Instruments Incorporated

Figure 6-3. Azimuth Antenna Radiation Patterns...................................................................................................................... 10
Figure 6-4. Elevation Antenna Radiation Patterns.....................................................................................................................11
Figure 6-5. S1 Switch for Various Mode Settings.......................................................................................................................11
Figure 6-6. S4 Switch for Various mode Settings...................................................................................................................... 12
Figure 6-7. SOP Switches......................................................................................................................................................... 12
Figure 6-8. USB Connector (J5)................................................................................................................................................ 13
Figure 6-9. DCA1000 HD Connector......................................................................................................................................... 14
Figure 6-10. Booster pack connector.........................................................................................................................................14
Figure 6-11. CANFD Connector.................................................................................................................................................15
Figure 6-12. Analog Mux for the CAN PHY Switch....................................................................................................................15
Figure 6-13. CAN FD PHY used in the EVM............................................................................................................................. 16
Figure 6-14. LIN header and PHY interface.............................................................................................................................. 16
Figure 6-15. LIN PHY interface..................................................................................................................................................16
Figure 6-16. Virtual COM port....................................................................................................................................................17
Figure 6-17. EVM in functional mode using standalone operation............................................................................................ 18
Figure 6-18. DCA1000EVM mode top view...............................................................................................................................19
Figure 6-19. DCA1000EVM mode side view............................................................................................................................. 20
Figure 6-20. DCA1000 CMOS TO LVDS Conversation for Data Lines..................................................................................... 21
Figure 6-21. DCA1000 CMOS TO LVDS Conversation for Clock and Control Lines................................................................ 21
Trademarks
ARM Cortex® is a registered trademark of Arm Cortex.
TI® is a registered trademark of Texas Instruments.
All trademarks are the property of their respective owners.
2 Getting Started
2.1 Key Features
• FR4-based PCB substrate
• Wide field of view antenna, targeted for wall mount applications
• Industrial: Building automation, Presence / motion detection, Displacement sensing, Robotics, Security and
Surveillance, Vital sign detection, Gesture, Factory automation applications
• Automotive: In cabin sensing, Occupancy detection, Child presence detection, Intruder detection, Seat belt
reminder, Gesture applications
• XDS110 JTAG interface with USB connectivity for code development and debugging
• Power optimized discrete DCDC power management solution
• Relaxed PCB rules: lower manufacturing cost
– No micro vias, only through via
– No vias on the BGA pads
• Serial port for onboard QSPI flash programming
• 60-pin, high-density (HD) connectors for raw analog-to-digital converter (ADC) data
• Onboard CAN-FD transceiver
• On board LIN PHY transceiver for automotive variant.
• USB powered standalone mode of operation
• EVM is designed as booster pack to connect with other LaunchPad EVMs
• On board 16Mbit QSPI flash
2.2 Kit Contents
xWRL6432BOOST includes the following:
• XWRL6432BOOST Evaluation board
• Micro USB cable
• Quick Start Guide
2.3 mmWave Out of Box Demo
TI® provides sample demo codes to easily get started with the XWRL6432BOOST evaluation module (EVM)
and to experience the functionality of the XWRL6432 mmWave sensor. For details on getting started with these
demos visit mmWave SDK on ti.com page.
Trademarks www.ti.com
2IWRL6432BOOST/AWRL6432BOOST EVM: FR4-Based Low Power 60 GHz
mm-Wave Sensor EVM User Guide
SWRU596 – DECEMBER 2022
Submit Document Feedback
Copyright © 2022 Texas Instruments Incorporated

3 Hardware
Note
The XWRL6432BOOST includes three receivers and two transmitters with a wide field of view sitting on an FR4
PCB substrate.
Figure 3-1. XWRL6432BOOST Top View
www.ti.com Hardware
SWRU596 – DECEMBER 2022
Submit Document Feedback
IWRL6432BOOST/AWRL6432BOOST EVM: FR4-Based Low Power 60 GHz
mm-Wave Sensor EVM User Guide
3
Copyright © 2022 Texas Instruments Incorporated

Figure 3-4. Salient features of EVM (Bottom side)
3.1 Block Diagram
Figure 3-5. Functional block diagram
www.ti.com Hardware
SWRU596 – DECEMBER 2022
Submit Document Feedback
IWRL6432BOOST/AWRL6432BOOST EVM: FR4-Based Low Power 60 GHz
mm-Wave Sensor EVM User Guide
5
Copyright © 2022 Texas Instruments Incorporated

Figure 3-5 shows the functional block diagram. The EVM contains the essential components for the TI mm-
Wave radar system: DCDC, SFLASH, SOP configuration, Filter, TI mmWave Radar chip, a USB to UART
converter, and a 60-pin Samtec connector for interfacing with the DCA1000. The board also hosts a booster
pack connector which can be connected to TI’s LaunchPad boards.
Hardware www.ti.com
6IWRL6432BOOST/AWRL6432BOOST EVM: FR4-Based Low Power 60 GHz
mm-Wave Sensor EVM User Guide
SWRU596 – DECEMBER 2022
Submit Document Feedback
Copyright © 2022 Texas Instruments Incorporated

4 EVM Mux Block Diagram
Muxing options for the EVM shows different muxing options for the digital signals. The device is pin limited
to support different features simultaneously; hence various internal IPs and signals are pin multiplexed. EVM
provides de-muxing options using various analog mux and sliding switch options. Figure 4-1 shows different
muxing switch positions to enable different muxing options to connect to different peripherals.
Figure 4-1. Muxing options for the EVM
www.ti.com EVM Mux Block Diagram
SWRU596 – DECEMBER 2022
Submit Document Feedback
IWRL6432BOOST/AWRL6432BOOST EVM: FR4-Based Low Power 60 GHz
mm-Wave Sensor EVM User Guide
7
Copyright © 2022 Texas Instruments Incorporated

5 PCB Storage and Handling Recommendations:
This EVM contains components that can potentially be damaged by electrostatic discharge. Always transport
and store the EVM in its supplied ESD bag when not in use. Handle using an antistatic wristband and operate on
an antistatic work surface. For more information on proper handling, refer to SSYA010A.
5.1 PCB Storage and Handling Recommendations:
The immersion silver finish of the PCB provides a better high-frequency performance, but is also prone to
oxidation in open environment. This oxidation causes the surface around the antenna region to blacken however
mmWave Radar performance would remain intact. To avoid oxidation, the PCB should be stored in an ESD
cover and kept at a controlled room temperature with low humidity conditions. All ESD precautions must be
taken while using and handling the EVM.
5.2 Higher Power Demanding Applications:
Most of the EVM could be operated with a single USB cable itself. For higher power consumption applications
where a single USB-port cannot supply power needed, use an external 5V / 2A or higher power adaptor.
PCB Storage and Handling Recommendations: www.ti.com
8IWRL6432BOOST/AWRL6432BOOST EVM: FR4-Based Low Power 60 GHz
mm-Wave Sensor EVM User Guide
SWRU596 – DECEMBER 2022
Submit Document Feedback
Copyright © 2022 Texas Instruments Incorporated

6 XWRL6432BOOST Antenna
The XWRL6432BOOST includes 3 receivers and 2 transmitters FR4 based antennas on the PCB. Figure 6-1
shows the Antenna configuration.
Figure 6-1. TX and Rx Antennas of the EVM
Note
The XWRL6432BOOST has an antenna gain of ~5-6 dBi across different antenna pairs
6.1 PCB material
Material used for this PCB is FR408HR ½ oz dual ply 2x1067 spread glass construction for the Antenna and
transmission lines and 370HR is used for the rest of the layers.
www.ti.com XWRL6432BOOST Antenna
SWRU596 – DECEMBER 2022
Submit Document Feedback
IWRL6432BOOST/AWRL6432BOOST EVM: FR4-Based Low Power 60 GHz
mm-Wave Sensor EVM User Guide
9
Copyright © 2022 Texas Instruments Incorporated

6.1.1 Transmitter and receiver virtual array
Transmitter and receiver antennas positions in Figure 6-2 form a virtual array of 6 transmitter and receiver pairs.
This allows object detections finer azimuthal angular resolution (29°) and coarse elevation angular resolution
(58°). Receiver antennas are spaced at distance D (Lambda/2) and Transmitter antenna Tx1 and Tx2 spaced at
2D (lambda) in azimuthal plane and D (Lambda/2) in elevation plane. Tx1 and Tx2 are placed at D (lambda/2) in
the elevation and 2D (Lambda) in azimuth plane.
Figure 6-2. Virtual antenna array
Figure 6-2 shows the antenna radiation pattern with regard to azimuth and Figure 6-3 shows the antenna
radiation pattern with regard to elevation for TX1 and TX2. Both show the radiation pattern for TX1 and TX2 and
RX1, RX2 and RX3 together. All of the measurements were done with a Tx and Rx combination together. Thus,
for the -6dB beam width, you must see a -12db (Tx (-6dB) + Rx(-6dB)) number from the boresight.
Note
Wavelength (Lambda) is computed based on a frequency of 62GHz. Antenna placements are
according to this frequency.
Figure 6-3. Azimuth Antenna Radiation Patterns
Measured azimuthal radiation pattern for all Tx to Rx pairs (Corner reflector placed at ~5 meters with a 4- GHz
bandwidth chirp starting at 59GHz)
XWRL6432BOOST Antenna www.ti.com
10 IWRL6432BOOST/AWRL6432BOOST EVM: FR4-Based Low Power 60 GHz
mm-Wave Sensor EVM User Guide
SWRU596 – DECEMBER 2022
Submit Document Feedback
Copyright © 2022 Texas Instruments Incorporated

Figure 6-4. Elevation Antenna Radiation Patterns
Measured elevation radiation pattern for all TX to RX pairs (Corner reflector placed at ~5 meters with a 4-GHz
bandwidth chirp starting at 59GHz)
Note
In accordance to the EN 62311 RF exposure test, a minimum separation distance of 20 centimeters
should be maintained between the user and the EVM during operation.
6.2 Switch Settings
Figure 6-5 shows the part designators and positions of the switches (S1 and S4) on the XWRL6432BOOST.
Figure 6-5. S1 Switch for Various Mode Settings
www.ti.com XWRL6432BOOST Antenna
SWRU596 – DECEMBER 2022
Submit Document Feedback
IWRL6432BOOST/AWRL6432BOOST EVM: FR4-Based Low Power 60 GHz
mm-Wave Sensor EVM User Guide
11
Copyright © 2022 Texas Instruments Incorporated

Figure 6-6. S4 Switch for Various mode Settings
Figure 6-7 provides the different boot mode configurations to the device. Device supports application mode,
QSPI flashing mode (Device management mode), and debug modes. This mode (SOP) configuration shown
below in Figure 6-7 must be exercised first. After the SOP settings nRESET need to be issued to register the
SOP settings. Figure 6-7 also provides the switch position for different modes of operation supported by the
device and EVM.
Figure 6-7. SOP Switches
6.3 LEDs
Table 6-1 contains the list of LEDs on the XWRL6432BOOST.
Table 6-1. List of LEDs
LED reference designators Description
D6 5V Power indication
D5 Reset LED.
D9 NERROR LED
Note: There is switch settings are needed to enable this.
D7 User LED: Customer programmable.
Note: There is switch settings are needed to enable this.
D3 Power good indication
XWRL6432BOOST Antenna www.ti.com
12 IWRL6432BOOST/AWRL6432BOOST EVM: FR4-Based Low Power 60 GHz
mm-Wave Sensor EVM User Guide
SWRU596 – DECEMBER 2022
Submit Document Feedback
Copyright © 2022 Texas Instruments Incorporated

6.4 Connectors
Higher current support: When using the EVM with the external power adaptor, the 5-V supply is provided by
the external power adaptor. For most of the use-cases this external power supply option is not used, power is
derived from the USB interface.
Note
After the 5-V power supply is provided to the EVM, TI recommends pressing the NRST switch one
time to ensure a reliable boot-up state.
Note
All digital IO pins of the device (except NRESET) are non-failsafe; hence, care needs to be taken that
they are not driven externally without the VIO supply being present to the device.
6.5 USB Connector
The USB connector provides a 5-V supply input to power the device; additionally the PC interface is brought out
on this connector:
• UART for flashing the onboard serial flash, downloading FW through Radar Studio, and getting application
data sent through the UART
Figure 6-8. USB Connector (J5)
6.6 DCA1000 HD Connector
The 60-pin HD connector shown in Figure 6-9 provides the high-speed data and controls signals (SPI, UART,
I2C, NRST, NERROR, and SOPs) to the DCA1000.
www.ti.com XWRL6432BOOST Antenna
SWRU596 – DECEMBER 2022
Submit Document Feedback
IWRL6432BOOST/AWRL6432BOOST EVM: FR4-Based Low Power 60 GHz
mm-Wave Sensor EVM User Guide
13
Copyright © 2022 Texas Instruments Incorporated

Figure 6-9. DCA1000 HD Connector
6.7 Booster Pack Connector for the LaunchPad Connectivity
J8/J9 are the booster pack connectors provided for the connectivity option with the other TI LaunchPad
ecosystem.
Figure 6-10. Booster pack connector
6.8 CANFD Connector
The CAN connector provides access to the CAN_FD interfaces (CAN_L and CAN_H signals) from the onboard
CAND-FD transceivers. These signals can be directly wired to the CAN bus.
XWRL6432BOOST Antenna www.ti.com
14 IWRL6432BOOST/AWRL6432BOOST EVM: FR4-Based Low Power 60 GHz
mm-Wave Sensor EVM User Guide
SWRU596 – DECEMBER 2022
Submit Document Feedback
Copyright © 2022 Texas Instruments Incorporated

Figure 6-11. CANFD Connector
The J3 connector shown in Figure 6-11 provides the CAN_L and CAN_H signals from the onboard CAND-FD
transceivers (TCAN1042HGVDRQ1). These signals are wired to the CAN bus after muxing with the SPI
interface signals; one of the two paths must be selected. CAN signals are selected to PHY by changing the
switch S1.5 to off position.
Figure 6-12. Analog Mux for the CAN PHY Switch
www.ti.com XWRL6432BOOST Antenna
SWRU596 – DECEMBER 2022
Submit Document Feedback
IWRL6432BOOST/AWRL6432BOOST EVM: FR4-Based Low Power 60 GHz
mm-Wave Sensor EVM User Guide
15
Copyright © 2022 Texas Instruments Incorporated

Figure 6-13. CAN FD PHY used in the EVM
6.9 LIN PHY connection
Figure 6-14 shows the LIN PHY (TLIN1039DDFRQ1) interface to the device. There are no switches for the LIN
PHY interface. LIN PHY could operate with different supply voltage than the mmWave sensor, hence external
VBAT option is provided for the LIN VDD supply, by default 5V_IN supply is provided. To enable external VBAT
supply, R32 resistor need to be mounted and R31 resistor need to be removed.
Figure 6-14. LIN header and PHY interface
Figure 6-15. LIN PHY interface
XWRL6432BOOST Antenna www.ti.com
16 IWRL6432BOOST/AWRL6432BOOST EVM: FR4-Based Low Power 60 GHz
mm-Wave Sensor EVM User Guide
SWRU596 – DECEMBER 2022
Submit Document Feedback
Copyright © 2022 Texas Instruments Incorporated

6.10 I2C Connections
The board features an EEPROM, current sensors, and temperature sensor for measuring on-board temperature.
These are connected to the I2C bus and can be isolated using the zero Ω provided on the hardware. External
I2C headers also provided for easy interface to I2C bus.
6.10.1 EEPROM
The board features an EEPROM for storing the board specific IDs (for the identification of the EVM through the
XDS110 interface). Please refer to device schematics for the I2C addresses.
6.11 XDS110 Interface
J5 provides access to the onboard XDS110 (TM4C1294NCPDT) emulator. This connection provides the
following interfaces to the PC:
• JTAG for CCS connectivity
• Application/user UART (Configuration and data communication to PC)
When used in standalone mode of operation as shown in Figure 6-16, the power is supplied through a single
USB connector; the same USB connector J5 is also used for configuration and data transfer through the XDS110
USB to UART converter. When enumerated correctly, the 2 UART ports from the XDS110 are displayed on the
device manager as a virtual COM Port, similar to that shown in Figure 6-16.
Figure 6-16. Virtual COM port
If the PC is unable to recognize the above COM ports, install the latest EMUpack.
www.ti.com XWRL6432BOOST Antenna
SWRU596 – DECEMBER 2022
Submit Document Feedback
IWRL6432BOOST/AWRL6432BOOST EVM: FR4-Based Low Power 60 GHz
mm-Wave Sensor EVM User Guide
17
Copyright © 2022 Texas Instruments Incorporated

Figure 6-17. EVM in functional mode using standalone operation
EVM uses single UART port for both device configuration and processed data communication to PC.
6.12 Flashing the Board
1. Ensure the drivers have been successfully installed and COM ports enumerated.
2. Configure the SOP to flashing mode.
3. Press the reset switch to ensure that the board boots up in the right mode.
4. Run the visualizer and use the flashing tab and follow the instruction or use Uniflash tool.
5. Enter the application port number for the flashing interface.
6. Load image to serial flash. Please refer mmWave SDK for the flash binary for running out of box demos.
6.13 DCA1000EVM Mode
The setup for raw data capture using DCA1000EVM is shown in Figure 6-18.
XWRL6432BOOST Antenna www.ti.com
18 IWRL6432BOOST/AWRL6432BOOST EVM: FR4-Based Low Power 60 GHz
mm-Wave Sensor EVM User Guide
SWRU596 – DECEMBER 2022
Submit Document Feedback
Copyright © 2022 Texas Instruments Incorporated

Figure 6-19. DCA1000EVM mode side view
Please refer to Figure 6-7 shown in the beginning of this document for the switch settings for the DCA1000 raw
ADC capture card.
6.13.1 RDIF interface for Raw ADC capture
XWRL6432 doesn’t have LVDS I/Os, mainly to reduce the overall power consumption of the SOC. However,
DCA1000 board needs LVDS signals on the clock and data interface for raw ADC capture so CMOS to LVDS
converters are used on the board as shown below. Data capture interface uses RDIF (Radar Data interface) for
transferring the data between mmWave device and DCA1000 capture card. There is no change needed in the
DCA1000 capture card for this purpose, however a new low power mmWave studio need to be used for this
purpose. Low power mmWave studio interpret the RDIF interface and provides the raw ADC data visualization
platform for further signal processing.
XWRL6432BOOST Antenna www.ti.com
20 IWRL6432BOOST/AWRL6432BOOST EVM: FR4-Based Low Power 60 GHz
mm-Wave Sensor EVM User Guide
SWRU596 – DECEMBER 2022
Submit Document Feedback
Copyright © 2022 Texas Instruments Incorporated
This manual suits for next models
1
Table of contents
Other Texas Instruments Accessories manuals

Texas Instruments
Texas Instruments OPT8241 User manual

Texas Instruments
Texas Instruments TAP6203A1 User manual

Texas Instruments
Texas Instruments TPA2011D1 User manual

Texas Instruments
Texas Instruments AWR1642 User manual

Texas Instruments
Texas Instruments TPS60230EVM-047 User manual

Texas Instruments
Texas Instruments SLVP089 User manual

Texas Instruments
Texas Instruments OPT3006EVM User manual

Texas Instruments
Texas Instruments UCC28060EVM User manual

Texas Instruments
Texas Instruments CC2530ZNP User manual

Texas Instruments
Texas Instruments 28xxx User manual