AII AII-3000 Series User manual

2855 Metropolitan Place, Pomona, CA 91767 USA ♦Tel: 909-392-6900, Fax: 909-392-3665, www.aii1.com, e-mail: [email protected] Rev 6/15
Technical Specifications
Accuracy: < +2% of FS range under constant conditions
Analysis: 0-100% oxygen
Application: Personnel safety
Area monitoring
O2 deficiency in confined spaces
Checking breathing air tanks
Checking tanks intended for scuba diving
Confirming the O2 levels prior to welding
Approvals: ISO 9001:2000, MDD 93/42/Annex II, ISO 13485:2003
Area Classification: General purpose
Alarms: A models: None; M models: User adjustable HI 1-100%
and LO 0-99% alarms; 120 second alarm silence for cali-
bration purposes; HI alarm defeat for 100% O2 analysis
Calibration: Air or certified 100% O2every 8 hours
Compensation: Temperature compensated
Connections: A/M models: 1x16 mm thread; HC models: Tubing 1/4”
Controls: Soft touch keypad for ON/OFF and menu function
Dimensions: 3.6 x 5.9 x 1.6”; weight 10 oz. (280 grams)
Display: 3-1/2 digit backlit LCD 2.75 x 1.375; resolution 0.1% O2
Flow Sensitivity: None between 0.2 to 10 liters per minute
Humidity: Non-condensing 0-95% RH
LED Indicators: A models: None; M models: upon activation of alarms
Linearity: + 1% under constant conditions
Pressure: Inlet - A/M models ambient, HC models - regulate; Vent
all models - atmospheric
Power: 2 AA Alkaline batteries; 1,200 hours continuous use
Response Time: 90% of final FS reading in 9 seconds
Sensitivity: < 0.5% of FS range
Sensor: A/M models: AII-11-60; HC models: AII-11-60-HC
Sensor Life: 60 months in air at 25ºC and 1 atmosphere
Signal Output: None
Storage Temp.: -20º to 60ºC (-4ºF to 140ºF) on intermittent basis
Temp. Range: 5º to 45ºC (41ºF to 113ºF)
Warm-up Time: None
Warranty: 12 months analyzer; 12 months sensor
AII-3000 A
AII-3000 M
ISO 9001:2008 Certified
INTERTEK Certificate No. 485
Accessories - see back page
AII-3000 MHC
AII-3000 AHC

2855 Metropolitan Place, Pomona, CA 91767 USA ♦Tel: 909-392-6900, Fax: 909-392-3665, www.aii1.com, e-mail: [email protected] Rev 6/15
Spare Parts
AII-3000 A, AII-3000 M AII-3000 AHC, AII-3000 MHC
AII-11-60 Oxygen Sensor AII-11-60-HC Oxygen Sensor
BATT-1008 Battery (2x) 1.5V AA BATT-1008 Battery (2x) 1.5V AA
P-1087 Instructions for Use P-1087 Instructions for Use
A--1162 PCB Assy Main A-1162 PCB Assembly Main
CABL-1006 Coil Cable TUBE-1019 7/32” OD Tubing 3’
CC-1072 Carrying Case
O2

Copyright © 10/10 All Rights Reserved
Analytical Industries Inc.,
2855 Metropolitan, Pomona, CA 91767 USA.
Tel: 909-392-6900, Fax: 909-392-3665
This manual may not be reproduced in whole or in part without the
prior written consent of Analytical Industries Inc.
ISO 9001:2008, Certificate #485A
AII-3000 AHC
AII-3000 MHC AII-3000 M
AII-3000 A

Table of Contents
1 Introduction 1
1.1 Indications for Use
1.2 Intended Use
1.3 Device Description
1
2
2
2 Quality Control Certification 3
3 Safety Warnings 4
4 Start-up
4.1 Contents of Shipping Container
4.2 Install Batteries
4.3 Install Oxygen Sensor
4.4 Controls
4.5 Start-up Test
4.6 Alarms (AII-3000 M Oxygen Monitor)
4.7 Calibration
4.8 Mounting
5 Operation
5.1 Principle of Operation
5.2 Application Considerations
5.3 Calibration
5.4 Sampling
6 Maintenance
6.1 Serviceability
6.2 Battery Replacement
6.3 Oxygen Sensor Replacement
7 Troubleshooting
8 Specifications
8.1 Spare Parts & Accessories
9 Warranty
10 Material Safety Data Sheet (MSDS)
10.1 Disposal
i
1 Introduction
Congratulations on your purchase, these Instructions for Use describe the pre-
cautions, set-up, operation, maintenance and specifications of the AII-3000
Series Oxygen Analyzers.
This symbol means CAUTION –Failure to read and comply with the
Instructions for Use could damage the device and possibly jeopardize
the well being of the user.
Note: Advanced Instruments Inc. cannot warrant any damage resulting from
the misuse, unauthorized repair or improper maintenance of the device.
1.1 Indications for Use
The AII-3000 Series Oxygen Analyzers are intended to measure and display the
concentration of oxygen in compressed breathing air tanks intended for scuba
diving, for personnel safety, area monitoring, O2 deficiency in confined spaces,
checking breathing air tanks and confirming the O2 levels prior to welding.
Users must read the following statements as they are essential to re-
ducing the risk of use error due to ergonomic features of the device or
the environment in which the device is intended to be used.
The devices have been designed and manufactured in such a way that when
used under the conditions and for the purposes intended, they will not compro-
mise the clinical condition or the safety of patients, or safety of the users or
other persons.
Conformity with essential requirements has been demonstrated by verifying the
performance of the device under normal conditions, bench testing and deter-
mining that undesirable malfunctions constitute minimal risk to users.
Do not sterilize, autoclave, liquid sterilize, immerse in any liquid or expose the
device or accessories to steam, ethylene oxide or radiation sterilization.
The device is intended to be re-usable. Should the device or accessories come
in contact with patient bodily fluids, either dispose of the device or clean with a
soft cloth dampened with 70% isopropyl alcohol solution in water and allow the
components to air-dry before re-use .
Do not operate the analyzer near equipment capable of emitting high levels of
electromagnetic radiation as the reading may become unstable.
1

In order to obtain optimum performance, the operation of the device must be
performed in accordance with these Instructions for Use. Maintenance should
be performed only by trained personnel authorized by the manufacturer.
1.2 Intended Use
The AII-3000 Series Oxygen Analyzers are intended to measure and display
the concentration of oxygen in compressed breathing air tanks intended for
scuba diving, for personnel safety, area monitoring, O2 deficiency in confined
spaces, checking breathing air tanks and confirming the O2 levels prior to
welding.
1.3 Device Description
The AII-3000 Series Oxygen Analyzers can be positioned on a table top or
pole (tripod wire stand and V-mount dovetail attachments are mounted on the
back of the device) and are readily portable from one location to another.
They provide continuous, fast, reliable and accurate oxygen measurements of
up to respiratory care systems.
The devices utilize an electrochemical galvanic fuel cell type oxygen sensor of
the type that is extensively used to measure oxygen concentrations from 0%
to 100% in gas streams. Oxygen, the fuel for this electrochemical transducer,
diffusing into the sensor through a gas permeable membrane reacts chemical-
ly at the sensing electrode to produce an electrical current output proportional
to the oxygen concentration in the gas phase. The sensor has an absolute
zero meaning that when no oxygen is present to be chemically reacted the
LCD displays 00.0 oxygen.
The sensor’s signal output is linear over the entire range, remains virtually
constant over the specified useful life and drops off sharply at the end. The
sensor itself requires no maintenance and is simply replaced at the end of its
useful life like a battery. Inasmuch as the sensor is a transducer in its own
right, its expected life is not affected by whether the analyzer is ON or OFF.
A battery powered state-of-the-art micro-processor converts the sensor’s sig-
nal output representing the partial pressure of oxygen in the gas stream being
analyzed. The resulting oxygen reading is displayed by a large easy to read
backlit liquid crystal display (LCD) that has a resolution of 0.1% oxygen. The
microprocessor is controlled from a keypad and provides features like system
diagnostics, warning indicators, controls and an alarm capability for continu-
ous monitoring that enhance both safety and effectiveness.
Prior to shipment, every device is thoroughly tested at the factory and docu-
mented in the form of a Quality Control Certification that is included in the
Instructions for Use supplied with every device.
2
2Quality Control Certification
3
Customer: ________________________ Order No. _____________ Date: _______
Model: ( ) AII-3000 A Oxygen Analyzer
( ) AII-3000 M Oxygen Analyzer
( ) AII-3000 AHC Oxygen Analyzer
( ) AII-3000 MHC Oxygen Analyzer S/N _______________
Sensor: ( ) AII-11-60 or ( ) AII-11-60-HC S/N _______________
Electronics: A-1152 PCB Assembly Main Software Version _______________
Accessories: AII-3000 A / M: CABL-1006 Cable, Coiled Phone Jack
AII-3000 AHC / MHC: TUBE-1019 7/32” OD Tubing 3 ft.
All units: BATT-1008 Battery, 1.5V AA (Qty 2)
P-0187 Manual, Instructions for Use ……… Included ______
PASS
QC Test: LCD display 3-1/2 digits ……………………………………………………. ______
Battery symbol displays when battery is low ……………………….. ______
Span adjustment +10-30% FS with 100% oxygen calibration ______
Following calibration with 99-100% oxygen and flushing with
ambient air, oxygen reading as displayed by LCD 20.9% +2% ____
Span adjustment +10-30% FS with air calibration ……………….. ______
Following calibration with air (20.9% oxygen) and exposing
to 99-100% oxygen, LCD displays 100% +2% ……………………. ______
Overall inspection for physical defects ………………………………... ______
Qty
Options: _____________________________________________ ____
See Sec 8.1 ____________________________________________________ _____
____________________________________________________ _____
____________________________________________________ ____
____________________________________________________ _____
Delivery: ____________________________________________________

3Safety Warnings
ALWAYS follow the statements below as they are essential to reduc-
ing the risk of use error due to ergonomic features of the device or the
environment in which the device is intended to be used.
Only trained personnel who have read, understand and agree to follow
the Instructions for Use should operate the device.
Retain the Instructions for Use for future reference.
Refer service needs to trained authorized personnel. Failure to do so may
cause the device to fail and void the warranty.
Inspect the device and accessories before operating and ensure: (a)
there is no evidence of physical damage; (b) the sensor (particularly the
sensing surface) and electrical connections are dry; and, (c) the sensor is
installed and upstream from any humidifying device for accurate calibra-
tion and oxygen readings.
Calibrate: (a) with a known source of air or dry 100% oxygen before
using each day or after 8 hours of continuous use; (b) when the temper-
ature or pressure of the operating environment changes; (c) if the oxy-
gen sensor has been disconnected and reconnected; (d) after the battery
or oxygen sensor has been replace.
Sampling flowing gas: (a) install the optional flow diverter and tee-
adapter in a vertical position as shown in Section 4.3 and (b) assure
there is a tight fit between the flow diverter and tee adapter.
Sampling static, ambient or controlled atmospheres remove the flow
diverter.
Clean the device and accessories in accordance with Section 6.1.2.
Battery replacement Section 6.2: (a) replace the batteries within twenty-
four (24) hours of the battery symbol appearing on LCD display and (b)
calibrate the analyzer after replacing the batteries.
Oxygen sensor installation or replacement Section 6.3: allow the new
sensor to stabilize for 15-20 minutes in ambient air before attempting to
calibrate.
Store the device by turning the power OFF and removing the batteries if
the device will not be operated for over thirty (30) days.
Attempt to repeat the procedure that caused a perceived malfunction
and refer to troubleshooting hints in Section 7 before concluding the
device is faulty. If in doubt, contact the manufacturer for assistance.
4
NEVER operate the device in any manner described below doing so
may compromise the clinical condition or the safety of patients, users
or other persons.
If the reading is unstable or a malfunction is suspected.
After the battery symbol appears in the LCD display.
Near equipment capable of emitting high levels of electromagnetic radia-
tion (EMI) or radio frequency interference (RFI).
Expose the device; particularly the LCD display or sensor to sources of
extreme heat, cold or excessive sunlight beyond the device’s storage tem-
perature range, refer to Section 8 for extended periods of time.
In a gas stream with a vacuum greater than 14” water column.
Immerse the device, oxygen sensor or coiled cable in any liquid.
Outside of the parameters specified in Section 8 particularly at flow rates
greater than 10 liters per minute - the backpressure generated produces
erroneously high oxygen readings.
Calibrate: (a) with 20.9% oxygen or room air with the intent of taking
oxygen measurements at oxygen levels above 30% oxygen; (b) in a hu-
midified gas stream or atmosphere; (c) without allowing a newly installed
sensor to stabilize for 15-20 minutes in ambient air.
Attempt to sterilize, autoclave, liquid sterilize, immerse in any liquid or
expose the device or accessories to steam, ethylene oxide or radiation
sterilization.
In the presence of flammable gases.
Open the main compartment of the device, except to change the integral
oxygen sensor of the AII-3000 AHC or AII-3000 MHC Oxygen Analyzers.
Open the oxygen sensor or probe the sensing surface, refer to Section 10
in the event the sensor should leak and someone comes in contact with
the electrolyte from inside the sensor.
Operate with a cable that appears worn, torn or cracked, or, allow an
excess length of cable near the patient’s head or neck; secure it to the bed
rail or other suitable object to avoid the possibility of strangulation.
Allow the device or oxygen sensor to be serviced, repaired or altered by
anyone except trained personnel –failure to do so may endanger the
patient or damage the device rendering the warranty null and void.
5

4Start-Up
4.1 Contents of Shipping Container:
4.1.1 AII-3000 A, AII-3000 M:
ENCL-1061 V-mount retainer (attached)
ENCL-1066 Tripod wire stand (attached)
AII-11-60 Oxygen Sensor
BATT-1008 Battery, AA 1.5V Alkaline (Qty 2)
CABL-1006 Cable, Coiled Phone Jack
P-1087 Instructions for Use
4.1.1 AII-3000 AHC, AII-3000 MHC:
ENCL-1061 V-mount retainer (attached)
ENCL-1066 Tripod wire stand (attached)
AII-11-60-HC Oxygen Sensor (installed inside analyzer)
BATT-1008 Battery, AA 1.5V Alkaline (Qty 2)
TUBE-1019 Tubing, 7/32” OD Tubing 3 ft.
P-1087 Instructions for Use
Inspect the box and contents for shipping damage. If the device or
components appear damaged, do not attempt to operate the device -
contact the manufacturer immediately, refer to section 9.
6
4.2 Install Batteries
All devices are powered by two 1.5V AA alkaline batteries which must be in-
stalled before the device can be operated.
The battery compartment is located at the rear of all devices. Initially
this procedure can be somewhat difficult. Care should be taken not to
damage the case when removing the battery compartment cover.
4.2.1 Procedure:
1.Remove the device and the (2) AA 1.5V Alkaline batteries from the foam
shipping container.
2.Turn the device over so the shortest raised line on the battery compartment
cover is pointing away from you.
3.Lift the tripod wire stand up and away from the case.
4.Grasp the case with both hands, use your thumbs press down firmly on the
raised lines and push the battery compartment cover away from you.
5.Locate the positive (+) and negative (-) terminals on the battery.
6.Assure the battery contacts are clean.
7.Align one battery’s positive (+) terminal with the corresponding (+) battery
symbol molded into the case.
8.Insert the battery into the compartment.
9.Repeat with the remaining battery.
10.Replace the battery compartment cover, make sure it snaps into position
and is secured flush against the case. Replace the wire stand as required.
Replace the batteries within twenty-four (24) hours of the battery sym-
bol appearing on LCD display because batteries decline at different
rates. Calibrate the device after replacing the batteries.
7
OR AND
AND

4.3 Install Oxygen Sensor
The device cannot function until the oxygen sensor is installed. Once installed,
allow the sensor to stabilize for 15-20 minutes in ambient air before attempt-
ing to calibrate the device.
NEVER - Attempt to open, repair or service the oxygen sensor.
Refer to Section 3 for hints and warnings concerning the handling and
environmental considerations of the oxygen sensor and the device.
4.3.1 AII-3000 A/M:
1.Remove the contents from the shipping container as shown in section 4.1
and check for damage.
2.The coiled cable uses a common RJ11 phone jack at both ends, making a
bad connection impossible.
3.Install the sensor away from any humidifying device to prevent moisture
from condensing on the sensing surface and assure accurate calibration
and oxygen readings.
4.Connect one end of the cable to the device in the same manner you would
connect a telephone. Simply find and register the male plug at the end of
the coiled cable and insert it into the mating female jack on the side of
the device.
5.Connect the other end of the cable to the sensor in the same manner.
6.For diffusion sampling of static, ambient or controlled atmospheres –simply
expose the oxygen sensor to the atmosphere to be sampled.
7.For sampling breathing circuits with flowing gas, position the sensor vertical-
ly for optimum results. Avoid letting the gas stagnate and facilitates the
flow of gas across the sensing area of the sensor to produce a more
accurate measurement of the gas stream to be measured.
8.Install the tee-adapter in the breathing circuit.
9.Screw the flow diverter to the sensor.
10.Ensure the o-ring is lightly lubricated for ease of entry and a tight seal
between the flow diverter and tee adapter.
11.Insert the assembled flow diverter/sensor into the tee allowing air or 100%
oxygen (dry, non-humidified) to flow past the sensor at a rate less than
10 liters per minute.
4.3.2 AII-3000 AHC/MHC:
When the HC (hose connection) version is ordered, the device is shipped with
the sensor installed.
8
4.4 Controls
4.4.1 AII-3000 A/AHC Oxygen Analyzers
These analyzers employ a micro-processor that is controlled by five (5)
pushbuttons located on the keypad attached to front cover.
1.ON/OFF provides power to the electronics
2.ESCAPE aborts a previous selected option
3.ENTER selects a menu option
4.100% initiates the routine for CALIBRATION with 100% oxygen. The sensor
must be exposed to 100% oxygen.
5.21% initiates the routine for CALIBRATION with air or 21% oxygen. The sen-
sor must be exposed to air or 21% oxygen.
4.4.2 AII 3000 M/MHC Oxygen Analyzers
The monitor employs a menu driven micro-processor that is controlled by five
(5) pushbuttons located on the keypad attached to front cover.
1.ON/OFF provides power to the electronics
2.MENU accesses the MAIN MENU
3.ENTER selects a menu option, and, enables the user to silence the audible
alarm quickly without having to navigate through the menu(s)
4.DOWN ARROW scrolls down the menu options
5.UP ARROW scrolls up the menu options
Note: The monitor is equipped with visual and audible HIGH and LOW
(minimum set point of 15%) alarms which are controlled through the MAIN
MENU and are activated when the oxygen value is 0.1% below the LO alarm
set point or 0.1% above the HI alarm set point, refer to section 4.6 below.
4.4.3 Instructions and Warnings displayed by LCD
START-UP TEST –diagnostic tests of the electronics, alarm circuit (monitors
only), battery voltage and the sensor’s signal output.
SERVICE DEVICE –non-sensor failures during the start-up test.
CHECK SAMPLE GAS, CHECK CABLE, CHECK SENSOR –sensor fails the start-
up test or becomes disconnected during operation, or if an alarms is acti-
vated (monitor).
SAMPLING –oxygen concentration from 0-100% in the sample gas during
the normal operation.
BAT LOW –battery voltage is not adequate, replace batteries.
ALARM SET POINTS, CONDITION (set point reverses color and red LED indi-
cator turns on) for monitor only.
9

4.5 Start-Up Test
Press the ON/OFF key on the front panel to apply power to the device and
initiate a complete diagnostic test of all system functions: the electronics,
feeds voltage and tests the alarm circuit (monitor only below right) internally,
confirms the battery voltage is adequate to power the circuit, and, the sen-
sor’s signal output is within specifications.
Following successful Start-Up Test the devices default to the SAMPLING mode.
With the exception of the ALARMS for the AII-3000 M/MHC (above left) the
tests and resulting displays are the same.
Note: Any START-UP TEST failure requires the user to take corrective
action before continuing or attempting to use any device.
4.5.1 Electronics, Alarms (AII-3000 M/MHC) or Battery Failure
If any of these START-UP TESTs are unsuccessful, the following display in-
structs the user to SERVICE DEVICE. The following display is the same for all
models.
10
4.5.2 Sensor Failure
Sensor failure can result from multiple causes; the user’s failure to connect a
sensor or sensor cable, a defective sensor cable or a sensor with an output
outside specification.
SENSOR - FAILED LOW is one of the possible unsuccessful START-UP TESTs as
illustrated previously and displays additional warnings as follows.
4.5.2.1 AII-3000 A/AHC Oxygen Analyzers
The LCD alternately displays the following until the problem is corrected.
Corrective action:
1.Expose the sensor to air or a gas containing approximately 20.9% oxygen
2.Connect or replace the cable connecting the sensor to the analyzer
3.Connect or replace the oxygen sensor
4.5.2.2 AII-3000 M/MHC Oxygen Analyzers
Performs the same routine and requires the same corrective action as the ana-
lyzers above with additional indicators related to the monitor’s alarm feature.
In addition to the alternating LCD display, the LO ALARM becomes active and:
LO ALARM value and background alternately reverse colors on the LCD
RED LED below the LO ALARM value lights up and begins flashing
Audible alarm begins beeping
The audible alarm can be disabled for two (2) minutes (unlimited times) by:
1.Press the MENU key on the front panel
2.Press the UP/DOWN arrow to select ALARMS AUDIBLE
3.Press the ENTER key to toggle to ALARMS SILENT mode
11
START-UP TEST
ELECTRONICS - PASS
ALARMS - N/A
BATTERY - PASS
SENSOR - PASS
START-UP TEST
ELECTRONICS - PASS
ALARMS - PASS
BATTERY - PASS
SENSOR - PASS
20.9 %
SAMPLING
LO 15% HI 50%
20.9 %
SAMPLING
START-UP TEST
ELECTRONICS - FAILED
ALARMS - FAILED
BATTERY - FAILED
SENSOR - FAILED LOW
SERVICE DEVICE
0.0 %
ALARM
0.0 %
ALARM
LO 15% HI 50%
CHECK SAMPLE GAS
CHECK CABLE
CHECK SENSOR
ALARM
CHECK SAMPLE GAS
CHECK CABLE
CHECK SENSOR
ALARM
LO 15% HI 50%

4.6 Alarms AII-3000 M/MHC Oxygen Analyzers
The monitor is equipped with user selectable HI and LO alarm set points
which are displayed at the bottom of the LCD. The default alarm set points
are 15% LO and 50% HI. The LO alarm set point can be set between 15%
and 99% and the HI alarm set point can be set between 16% and 100%.
Alarm set points may be adjusted in 1% increments by pressing and holding
the UP/ DOWN ARROW keys, see below. The ARROW keys are disabled when
the alarm set points are within 1% of each other to prevent the HI alarm from
being set below the LO alarm. The HI alarm may be disabled by attempting to
select a HI alarm set point above 100% to facilitate flushing patients after
anesthesia. In this mode the LCD continually displays HI OFF.
The AII-3000 M/MHC Oxygen Analyzers are equipped with four (4) indicators
that activate when oxygen concentrations are 0.1% below the LO alarm set
point or 0.1% above the HI alarm set point.
1.LCD alternates between the ALARM mode with an oxygen reading 0.0% and
recommendation as illustrated in sections 4.5.2.1 and 4.5.2.2
2.Alarm value and background alternately reverse color on LCD
3.Red LED below the alarm value lights up and begins flashing
4.Audible alarm begins beeping
4.6.1 Setting Alarm Set Points
1.From the SAMPLING mode press MENU to
display the MAIN MENU
2.Press the UP/DOWN arrow keys to high-
light SET ALARMS
3.Press ENTER to select SET ALARMS
4.LO alarm value is highlighted by default
5.Press ENTER to skip the LO alarm (and
proceed to the HI alarm) or press the
UP/DOWN arrow keys to change the
alarm set point
6.Press ENTER to save LO alarm set point
and move to select the HI alarm
7.Press ENTER to skip the HI alarm (and
return to SAMPLING mode) or press
the UP/DOWN arrow keys to change
the alarm set point
8.Press ENTER to save HI alarm set point
and return to SAMPLING mode
9.If no key is pressed within 5 seconds, the
LCD returns to the SAMPLING mode
12
4.7 Calibration
Electrochemical oxygen sensors generate slightly different signal outputs under
identical conditions due to variations in the thickness of the sensing membrane
and manufacturing process.
Simulate the application for optimum accuracy: Review Sections 3 Safe-
ty Warnings and 5.2 Application Considerations before proceeding.
The devices are designed to meet the requirements for both ambient
and elevated oxygen measurements but should NEVER be calibrated
with air or 21% oxygen with the intent of taking oxygen measurements
at oxygen levels above 30% oxygen.
Accordingly, the devices may be calibrated with either air (20.9%) or
100% oxygen which requires the user to make a conscious decision to
bypass or skip the recommended 100% oxygen calibration.
Set-Up:
AII-3000 A and AII-3000 M refer to section 5.4.1 Flowing Gas
Streams or 5.4.2 Static Atmospheres (shown with optional flow
diverter and tee).
AII-3000 AHC and AII-3000 MHC refer to section 5.4.3.
13
20.9 %
SAMPLING
LO 15% HI 50%
MAIN MENU
CALIBRATE
SET ALARMS
ALARMS AUDIBLE
LO 15% HI 50%
SET LOW/HIGH ALARM
USE UP/DOWN ARROWS
TO ADJUST VALUE
TO SKIP - PRESS ENTER
LO 15% HI 50%

Procedure
AII-3000 Series Oxygen Analyzers employ the identical calibration routine and
displays but they differ slightly in the way they arrive at the display that initi-
ates calibration routine. Refer to Set-Up illustration and references above for
gas connections.
1. AII-3000 A/AHC - Press the 21% key under
the word CALIBRATION on the front panel.
1a. AII-3000 M/MHC - Requires navigating its menu to reach the
display that initiates the calibration routine.
a. From the SAMPLING menu, press
MENU to display the MAIN MENU
b. Press the UP/DOWN arrow keys to
highlight CALIBRATE
c. Press ENTER to select CALIBRATE (the
four (4) alarm indicators are disabled
during the calibration routine)
Both of the above produce the following display which initiates the
calibration routine.
3. The above prompt remains on the display until:
a. The operator presses ENTER to proceed or
b. The ESCAPE key on the AII-3000 A/A HC or the MENU key on the
AII-3000 M/MHC to abort and return to the SAMPLING mode.
4. Expose the sensor to a known source of fresh ambient air or certified 21%
(dry, non-humidified) oxygen nitrogen mix but not the oxygen enriched
room air commonly found in hospitals.
5. Once a suitable calibration gas is intro-
duced, press ENTER to initiate calibration
as displayed right and disable the key
pad (to prevent the calibration routine
from being interrupted).
6. This display appears for sixty (60) seconds
to allow the sensor to stabilize before
the microprocessor takes the final reading.
14
7. If the calibration is successful, the display below left appears for
three (3) seconds before defaulting to the display below right:
8. The display above right requires a decision by the user (refer to
warnings at the beginning of section 4.7) to press ENTER and
skip the 100% O2 calibration and return to the SAMPLING mode;
or, wait ten (10) seconds for the following display:
9. Repeat steps #3 through #6 using a certified source of 100% oxygen.
10. If the calibration is successful, the display
at right appears for five (5) seconds before
defaulting to the SAMPLING mode.
Calibration Fails
An unsuccessful calibration can be caused by
several problems as displayed at right:
If after three (3) unsuccessful attempts to
calibrate: review section 7 for possible causes
and corrective action or contact Advanced
Instruments Inc. at 909-392-6900.
To abort the RETRY press ESCAPE (analyzer) or MENU (monitor). Do
not proceed until the analyzer is calibration successfully.
15
MAIN MENU
CALIBRATE
SET ALARMS
ALARMS AUDIBLE
LO 15% HI 50%
20.9 %
INTRODUCE AIR/21% OXYGEN
OBSERVE TREND
PRESS ENTER TO CAL
20.9 %
AIR CALIBRATION
IN PROCESS
20.9 %
AIR CALIBRATION
SUCCESSFUL
TO SKIP 100% O2 CAL
PRESS ENTER
FOR 100% O2 CAL
WAIT FOR NEXT
DISPLAY
100 %
OXYGEN CALIBRATION
SUCCESSFUL
AIR / 100% O2 CALIBRATION
FAILED
- CHECK CAL GAS
- CHECK CABLE
- CHECK SENSOR
RETRY - PRESS ENTER
20.9 %
INTRODUCE 100% O2
OBSERVE TREND
PRESS ENTER TO CAL

4.8 Mounting
Every analyzer and monitor is equipped with a male dove tail bracket and
triangular shaped thick metal wire stand secured to the rear of the enclosure.
Tripod Wire Stand
Secured between bumper feet on either side of the battery compartment is a
triangular shaped thick metal wire stand that is hinged under the dove tail
bracket secured at the opposite end of enclosure.
Unsnap the triangular thick metal wire stand from between the bumper feet
and pull it away from the enclosure to form a tripod which allows the device to
sit upright on any flat surface
Dove Tail Bracket
The male dove tail bracket is secured to the rear of the enclosure with two
screws. The 1” female dove tail pole bracket (HRWR-1075) is an optional ac-
cessory that is commonly found in medical applications. The v-shaped male
component simply slides into and out of the pole mounted female section.
16
5 Operation
5.1 Principle of Operation
The AII-3000 Series Oxygen Analyzers utilize an electrochemical galvanic fuel
cell type oxygen sensor of the type that is extensively used to measure oxygen
concentrations from 0% to 100% in gas streams. Oxygen, the fuel for this
electrochemical transducer, diffusing into the sensor through a gas permeable
membrane reacts chemically at the sensing electrode to produce an electrical
current output proportional to the oxygen concentration in the gas phase. The
sensor has an absolute zero meaning that when no oxygen is present to be
chemically reacted the LCD displays 00.0 oxygen.
The sensor’s signal output is linear over the entire range, remains virtually con-
stant over the specified useful life and drops off sharply at the end. The sensor
itself requires no maintenance and is simply replaced at the end of its useful life
like a battery. Inasmuch as the sensor is a transducer in its own right, its ex-
pected life is not affected by whether the analyzer is ON or OFF.
The relationship between the sensor’s signal and changes with the oxygen
concentration is both proportional and linear, thus allowing single point calibra-
tion. Other factors that can affect the signal output are described in Section 5.2
Application Considerations and Section 3 Safety Warnings which should be read
before use.
Historically, the expected life of galvanic fuel type sensors has been specified as
“in air (20.9% O2) at 25°C and 760mm Hg”. The actual life of any galvanic fuel
type sensor is inversely affected by changes in the average oxygen concentra-
tion, temperature and pressure it is exposed to during its useful life. For exam-
ple, the AII-11-60 sensor has a 60 months expected life in air (20.9% oxygen)
at 25°C and ambient pressure, however, in a 100% oxygen atmosphere the
expected life is 12.6 months [60mo/(100%/20.9%)].
AII-3000 Series Oxygen Analyzers are battery powered by (2) AA alkaline bat-
teries and controlled by a state-of-the-art microprocessor. The batteries provide
enough power to operate the analyzer continuously for approximately 1,200
hours. Both devices utilize a membrane type keypad for users to communicate
commands to the microprocessor. The monitor is menu driven to accommodate
the alarm functions. The digital electronics provide features such as system
diagnostics, warning indicators, controls and an alarm capability for continuous
monitoring that enhance both safety and effectiveness. The design criteria,
quality program and performance features ensure reliable and accurate oxygen
measurements.
17

5.2 Application Considerations
Effect of Temperature
All membrane clad electrochemical sensors are temperature dependent due to
the expansion and contraction of the Teflon sensing membrane. As result more
or less of the sample gas including oxygen to be reacted diffuses into the sen-
sor. The oxygen sensor’s electrical current signal output varies linearly with
oxygen concentration. The signal also varies with changes in ambient tempera-
ture. The temperature coefficient is typically 2.54% of the signal or reading per
degree C change in temperature.
The temperature dependent current signal output is compensated by using a
resistor-thermistor network. With a proper resistor-thermistor network, the
signal can be compensated to within +5% of the oxygen reading over the 5-
45°C temperature range. This is the worse case situation when going from one
extreme of the operating temperature range to the other. The error will be
eliminated when the thermistor in the temperature compensation network and
the electrolyte inside the sensor reach thermal equilibrium in approximately 45-
60 minutes.
Erroneous oxygen readings can result if the gases flowing over the
sensing area of the sensor are not at ambient temperature. This occurs
because the sensor is exposed to different temperatures. The sensing
area of the sensor is o-ring sealed in the heated breathing circuit and the tem-
perature compensation network at the rear of the sensor is exposed to ambient
temperature.
Effect of Pressure
Electrochemical sensors actually measure the partial pressure, not the percent-
age, of oxygen in the gas stream they are exposed to. These sensors are accu-
rate at any pressure provided the pressure is constant and the analyzer has
been calibrated at the same pressure as the sample gas measured.
For example, when moving an analyzer calibrated at sea level into the moun-
tains causes the analyzer to display an decrease in the oxygen reading dis-
played. When if fact, the decrease in the reading displayed is not related to a
change in the oxygen percentage but to the decrease in partial pressure
(corresponding to the increase in total pressure) at altitude.
Calibrate at the temperature and pressure (altitude) at which the ana-
lyzer will be operated.
18
Effect of Humidity
The analyzer is not affected by non-condensing relative humidity (RH). Howev-
er, the use of a humidifier to introduce water vapor and increase the moisture
level of the gas mixture does affect the oxygen concentration and the resultant
reading displayed by the analyzer. The addition of water vapor increases the
total pressure thereby diluting or decreasing the oxygen concentration of the
gas mixture resulting in a lower oxygen reading.
Effect of Condensation
Excessive condensation collecting on the sensing area or the electrical connec-
tions at the rear of the sensors can adversely impact the performance of elec-
trochemical sensors. Condensation blocks the diffusion path of oxygen into the
sensor and can reduce the oxygen reading to 00.0 if the condensation covers
the entire sensing area. Condensation on the electrical connections at the rear
of the sensor can affect oxygen readings. Remedy either situation by shaking
out the condensation and allowing the sensor to air dry.
Erroneously characterized in many instances as a sensor failure, excessive con-
densation is remedied by gently wiping away the condensation with a soft cloth
or simply allowing the sensor to air dry.
Effect of Electromagnetic Radiation
Tested over a 26 MHz to 1000 MHz electromagnetic field, the analyzer is sus-
ceptible at all frequencies tested except those between 930 and 990 MHz.
Never operate the analyzer near equipment capable of emitting high
levels of electromagnetic radiation. Do not continue to operate the ana-
lyzer if the reading becomes unstable.
5.3 Calibration
Calibrating the analyzer or monitor during normal operation involves the same
precautions and procedures as those described in Sections 4.7 Start-up Calibra-
tion with the same cautions to review Sections 3 Safety Warnings and 5.2 Ap-
plication Considerations.
5.4 Sampling
Assuming the START-UP instructions are followed and the tests are completed
successfully the devices default to the SAMPLING mode.
Never operate the analyzer if the reading is unstable or if a malfunction
is suspected. If calibration is required as indicated herein, do not pro-
ceed until the analyzer is calibration successfully.
19

20 21
5.4.1 Flowing Gas Streams
1. Place the sensing area of the sensor into the gas stream to be analyzed
upstream of any humidification equipment.
2. Assure that the flow rate of the gas stream does not exceed ten (10) liters
per minute. Exceeding ten (10) liters per minute generates backpressure.
3. Check the gas stream and particularly the mechanical connection for leaks
that dilute the gas stream with ambient air.
4. Assure there are no restrictions in the circuit downstream of the sensor
that could generate backpressure on the sensor.
5. Use the optional flow diverter along with the op-
tional tee adapter and position the sensor vertically
for optimum results, as shown right. The flow di-
verter avoids stagnation and facilitates the move-
ment of gas to and from the sensing area of the
sensor thereby producing a more accurate meas-
urement of the gas stream to be measured.
6. Install the tee-adapter in the breathing circuit.
7. Screw the flow diverter to the sensor.
8. Ensure the o-ring is lightly lubricated for ease of
entry and a tight seal between the flow diverter and
tee adapter.
9. Insert the assembled flow diverter/sensor into the tee allowing air or
100% oxygen (dry, non-humidified) to flow past the sensor at a rate of 5-
8 liters per minute.
10. Once the sensing area of the sensor is exposed to the gas stream allow
approximately sixty (60) seconds for the reading to stabilize and observe
the reading displayed by the LCD.
11. Refer to Section 8.1 for a variety of accessories that provide a several
methods of sampling flowing gas streams.
5.4.2 Static Atmospheres
Remove the flow diverter, not needed. Failure to remove the flow diverter will
dramatically slow the response time of the sensor.
Expose the sensing area of the sensor to the atmosphere allowing approximate-
ly sixty (60) seconds for the reading to stabilize and observe the reading
displayed by the LCD.
If placing the entire sensor inside the controlled atmosphere review
Section 5.2 Application Consideration, Effect of Temperature.
5.4.3 AII-3000 AHC and MHC (Integral Oxygen Sensor)
AII-3000 AHC and MHC with their integral oxygen sensor requires connecting
the ¼” tubing supplied (section 4.2.1 above) with the device to a ¼” hose
barb attached to a pressure regulator controlling a source of gas flowing at less
than 10 liters per minute.
5.5 Alarms (AII-3000 M/MHC):
The monitor is equipped with user selectable HI and LO alarm set points which
are displayed at the bottom of the LCD. Section 4.6 describes the operation
and procedure for setting the alarms in detail.
6Maintenance
Review Section 3 Safety Warnings and Section 7 Troubleshooting for
guidelines on servicing the devices.
6.1 Serviceability
Do not open the main compartment of the analyzer, as it contains no servicea-
ble parts inside. Never attempt to repair the analyzer or sensor by yourself as
you may damage the analyzer which could void the warranty.
6.1.2 Cleaning / Reuse Instructions
Clean the device, oxygen sensor and accessories with a soft cloth dampened
with either water or mild isopropyl alcohol solution (70% isopropyl alcohol
solution in water), if necessary, before re-use. Allow the components to air-dry
after cleaning.
Note: The Home Care Kit is not intended for patient use, it is intended solely
for confirming the O2concentration in Oxygen Concentrators. Accordingly, no
cleaning instructions apply.
6.2 Battery Replacement
The analyzers and monitor are powered by two AA alkaline batteries with an
approximate life of 1,200 hours. A low battery indicator circuit monitors the
battery supply voltage and sends a signal directly to the LCD when the battery
voltage reaches a preset level that activates the battery symbol in the LCD.
The batteries are housed in a separate compartment located at the rear of the
device and are accessible by sliding the removable cover.

22 23
Initially this procedure can be somewhat difficult. Care should be taken
not to damage the case when removing the battery compartment cover.
6.2.1 Procedure:
1. Turn the device over so the
shortest raised line on the battery
compartment cover is pointing
away from you.
2. Lift the tripod wire stand up and
away from the case.
3. Grasp the case with both hands
and using your thumbs press
down firmly on the raised lines and push the battery compartment cover
away from you.
4. Locate the positive (+) and negative (-) terminals on the battery.
5. Assure the battery contacts are clean.
6. Align one battery’s positive (+) terminal with the corresponding (+) bat-
tery symbol molded into the case.
7. Insert the battery into the compartment.
8. Repeat with the remaining battery.
9. Replace the battery compartment cover, make sure it snaps into position
and is secured flush against the case. Replace the wire stand as required.
10. Calibrate the device after replacing the batteries.
6.3 Oxygen Sensor Replacement
The design of the electronics is intended for only the Analytical Industries Inc.
AII-11-60 or AII-11-60-HC Oxygen Sensors. Use of a different oxygen sensor
may result in an erroneous oxygen reading.
NEVER - Open the oxygen sensor or probe the sensing surface, refer
to Section 10 in the event the sensor should leak and someone comes
in contact with the electrolyte from inside the sensor.
6.3.1 Procedure AII-3000 A and AII-3000 M - External Sensor
1. Disconnect the cable from the old sensor just as you disconnect a tele-
phone jack from a wall plug.
2. To connect the new sensor simply find and register the male plug at the
end of the coiled cable and insert it into the mating female jack at the rear
of the sensor until it mates or snaps into place.
3. Calibrate the device after replacing the oxygen sensor.
6.3.2 Procedure AII-3000 AHC and AII-3000 MHC - Integral Sensor
1. Tools required: small bladed screwdriver.
2. Place the device face down on a flat surface.
3. Remove the two (2) screws from the upper corners of the rear of the
device.
4. Move the tripod up, remove the battery compartment cover (see Battery
Replacement) and remove the two (2) screws located on either side.
5. Pull the rear section up ¼”-½”, turn it over and lay it next to the other
section.
6. Locate the white connector at the end of the four (4) wires running from
the sensor (the cylinder with the white label) to the top of the PCB.
7. With your left for finger and thumb, grasp the sides of the back end of the
white connector where it is soldered to the PCB.
8. With your right fore finger and thumb, grasp the sides of the section of
the white connector where the four (4) wires from the sensor terminate.
9. Separate the connector - hold the white connector section your left hand
while gently pulling and wiggling the white connector section with your
right hand until it unlocks.
10. The oxygen sensor inserts into an adaptor (identified by a round recess
with a cylindrical hose adapter in the center) that slides into grooves
molded into the side of the case.
11. Hold the rear section of the case down, grasp the square edges of the
adaptor, lift up (lift straight up so as not to strip the grooves molded into
the adaptor and case) and remove the adaptor and oxygen sensor as a
single component.

24 25
12. Once the adapter and old sensor have been removed from the case, hold
the label of the sensor, again grasp the square edges of the adaptor and
pull –to separate the old sensor from the adaptor.
13. Remove the new oxygen sensor from the plastic shipping container.
14. Install the new oxygen sensor by reversing steps 12 through 3.
15. Calibrate the device after replacing the oxygen sensor.
7Troubleshooting
If the recommended corrective action does not resolve the problem return the
device to the factory for service.
Symptom Corrective Action
Device appears to be physical-
ly damaged
Turn device ON –if it successful passes
START-UP TEST and calibrates –proceed.
No digital display when analyz-
er is turned ON
Install battery
Replace battery
Check battery polarity
Check and/or clean battery contacts
Battery symbol on LCD display
Replace battery and calibrate device
LCD display reads 00.0
Install sensor
Check electrical connections
Assure electrical connections are dry
No response to keypad com-
mand
Replace battery
Cannot turn device OFF
Calibration routine in process –escape or
wait until completed
Symptom Corrective Action
Reading displayed by LCD
drifts during calibration
Wait 5 minutes and repeat calibration with
sensor placed on flat surface (not in your
hand)
Check integrity of gas delivery system
Check sensor’s front o-ring seal
Verify calibration gas in not humidified
Remove moisture covering sensor
Replace sensor, repeat calibration
Analyzer reading climbs after
calibration in 100% dry oxy-
gen when exposed to air
20.9%
Allow the sensor to stabilize for 5 minutes in
100% dry oxygen and recalibrate
After calibration in 100% dry
oxygen, analyzer reading
drifts more than 2% over 8
hours
Check primary oxygen delivery device
Replace sensor that is nearing the end of its
useful life
Reading displayed by LCD
does not change when oxy-
gen level changes
Replace sensor
Reading does not stabilize or
fluctuates erratically
Relocate analyzer away source of radio fre-
quency or electromagnetic radiation emis-
sions. Tested over a 26 MHz to 1000 MHz
electromagnetic field, the analyzer is suscep-
tible at all frequencies tested except those
between 930 and 990 MHz.
Check sensor connection
Check cable connection
Wait 5 minutes and repeat calibration
Replace sensor, repeat calibration
Do not attempt to use the analyzer and
return the analyzer for service.

26 27
Symptom Corrective Action
Reading displayed by LCD
does not change when cali-
bration control is adjusted
Replace sensor
Reading displayed by LCD is
very low
Check sensor connection
Check cable connection
Replace sensor
Alarms continuously activat-
ed
None –Normal operation, confirm set points
Abnormal -
Adjust alarm set points
Remove moisture covering sensor
Check sensor connection
Check cable connection
Check integrity of gas delivery system
Check sensor’s front o-ring seal
Verify calibration gas in not humidified
Verify flow rate is 4-5 liters per minute
Replace sensor
Replace cable
8 Specifications
Accuracy: +2% of FS range under constant conditions
Analysis: 0-100% oxygen
Area Classification: General purpose
Alarms:
A models –none; M models - User adjustable HI 1-100%
and LO 0-99% alarms; 120 second alarm silence; HI
alarm defeat for 100% O2 measurements
Calibration: Air or 100% oxygen after 8 hours of continuous use.
Compensation: Temperature compensated
Connections: A/M models: 1x16mm thread; HC models: Tubing 1/4”
Controls: Soft touch keypad for ON/OFF and menu function
Dimensions: 3.6 x 5.9 x 1.6”; weight 10 oz. (280 grams)
Display: 3-1/2 digit backlit LCD 2.5” x 1.5”; resolution 0.1% O2
Flow Sensitivity: None between 0.2 to 10 liters per minute
Humidity: Non-condensing 0-95% RH
LED Indicators: A models - none; M models - upon activation of alarms
Linearity: + 1% under constant conditions
Pressure: Inlet –(A/M) ambient, (HC) regulate; Vent - atmospheric
Power: 2 AA Alkaline batteries; 1,200 hours continuous use
Response Time: 90% of final FS reading in 9 seconds
Sensitivity: < 0.5% of FS range
Sensor: A/M models: AII-11-60 or HC models: AII-11-60-HC
Expected Life: 60 months in air at 25ºC and 1 atmosphere
Storage Temp.: -20º to 60ºC (-4ºF to 140ºF) on intermittent basis
Temp. Range: 5º to 45ºC (41ºF to 113ºF)
Warm-up Time: None
Warranty: 12 months analyzer; 12 months sensor

28 29
Expected Sensor Life
Considers the full range of the sensor’s signal, example 7-13 mV. Oxygen sen-
sors are configured to meet the published, see preceding page, specification
which distributes the overall sensor life as follows:
- 60 months Expected Service Life (915,420 oxygen % hours)
- 6 months Recommended Storage Life period (91,542 % oxygen hours)
- 2 months margin of error
Therefore, the Recommended Storage life period should not be considered a
perishable shelf life. Operating at the specified parameters of oxygen concen-
tration (air 20.9%), temperature (25⁰C/77⁰F) and pressure (1 atm/bar), the
sensor will operate for approximately 68 months whether in storage or in use.
The purpose of the Recommended Storage Life period is to ensure the user
derives the Expected Life of 60 months (915,420 % oxygen hours) and does
not lose the benefit of the warranty.
Warranty
The 12 month (183,084 % oxygen hours) warranty period (begins with ship-
ment from the factory and is limited to the first claim submitted) is based on:
8.1 Spare Parts & Accessories
AII-3000 A, AII-3000 M AII-3000 AHC, AII-3000 MHC
Spare Parts: Spare Parts:
AII-11-60 Oxygen Sensor AII-11-60-HC Oxygen Sensor
BATT-1008 Battery (2x) 1.5V AA BATT-1008 Battery (2x) 1.5V AA
P-1087 Instructions for Use P-1087 Instructions for Use
A-1162 PCB Assy Main A-1162 PCB Assy Main
CABL-1006 Coil Cable TUBE-1019 7/32” OD Tubing 3’
Optional Accessories - See opposing page
CC-1072 Carrying Case

30
9 Warranty
Coverage
Under normal operating conditions, the analyzer and sensors are warranted to
be free of defects in materials and workmanship for the period specified in the
current published specifications. To make a warranty claim, you must return the
item properly packaged and postage prepaid to:
Advanced Instruments Inc.
2855 Metropolitan Place
Pomona, Ca 91767 USA
T: 909-392-6900, F: 909-392-3665
E: sales-industri[email protected], W: www.aii1.com
Advanced Instruments in their sole discretion shall determine the nature of the
defect. If the item is determined to be eligible for warranty we will repair it or,
at our option, replace it at no charge to you. If we choose to repair your item,
we may use new or reconditioned replacement parts of the same or upgraded
design. This is the only warranty we will give and it sets forth all our responsi-
bilities, there are no other express or implied warranties.
The warranty begins with the date of shipment from Advanced Instruments, is
limited to the first customer who submits a claim for a given serial number
which must be in place and readable to be eligible for warranty and will not
extend to more than one customer or beyond the warranty period under any
conditions.
Exclusions
This warranty does not cover normal wear and tear; corrosion; damage while in
transit; damage resulting from misuse or abuse; lack of proper maintenance;
unauthorized repair or modification of the analyzer; fire; flood; explosion or
other failure to follow the Owner’s Manual.
Limitations
Advanced Instruments shall not liable for losses or damages of any kind; loss of
use of the analyzer; incidental or consequential losses or damages; damages
resulting from alterations, misuse, abuse, lack of proper maintenance; unau-
thorized repair or modification of the analyzer.
Service
Contact us between 8:00am and 5:00pm PST Monday thru Thursday or before
12:00pm on Friday. Trained technicians will assist you in diagnosing the prob-
lem and determining the appropriate course of action.
31
10 Material Safety Data Sheet (MSDS)
10.1 Disposal
Oxygen sensors and batteries should be disposed of in accordance with local
regulations for batteries.
WEEE regulations prohibit electronic products including the Heli-
um and environmental sensors from being placed in household
trash bins.
Electronic products should be disposed of in accordance with local
regulations.
Product name Electrochemical Galvanic Fuel Cell Oxygen Sensor
Exposure Sealed device with protective coverings, normally no hazard
Ingredients Carcinogens - none; Potassium Hydroxide (KOH), Lead (Pb)
Properties Completely soluble in H2O; evaporation similar to H2O
Flash Points Not applicable, non-flammable
Reactivity Stable; avoid strong acids, emits fumes when heated
Health Hazard KOH entry via ingestion - harmful or fatal if swallowed;
eye - corrosive, possible loss of vision;
skin contact - corrosive, possible chemical burn.
Liquid inhalation is unlikely.
Lead - known to cause birth defects, contact unlikely
Symptoms Eye contact - burning sensation; skin contact - slick feeling
Protection Ventilation - none; eye - safety glasses; hands - gloves
Precautions Do not remove Teflon and PCB coverings; do not probe with
sharp objects; avoid contact with eyes, skin and clothing.
Action KOH
Leak Use rubber gloves, safety glasses and H2O and flush all
surfaces repeatedly with liberal amounts of H2O
This manual suits for next models
4
Table of contents