INGENIA Neptune User manual

INGENIA-CAT S.L.
8-14 MARIE CURIE, ADVANCED INDUSTRY PARK
08042 BARCELONA
NEPTUNE Product Manual
Edition 05/29/2017
For the most up to date information visit the online manual.

1 Table of Contents
1 Table of Contents 2
2 General Information 5
2.1 Manual revision history ..................................................................................................................................... 5
2.2 Disclaimers and limitations of liability ............................................................................................................. 5
2.3 Contact ............................................................................................................................................................... 6
3 Safety Information 7
3.1 About this manual.............................................................................................................................................. 7
3.2 Warnings............................................................................................................................................................. 7
3.3 Precautions ........................................................................................................................................................ 7
4 Product Description 8
4.1 Neptune part numbering................................................................................................................................... 8
4.2 Specifications..................................................................................................................................................... 9
4.3 Hardware revisions .......................................................................................................................................... 12
4.4 Power and current ratings............................................................................................................................... 13
4.4.1 Current ratings ................................................................................................................................................. 13
4.4.2 Dynamic application (non-constant current)................................................................................................. 14
4.4.3 System temperature ........................................................................................................................................ 15
4.4.4 Improving heat dissipation with a heatsink ................................................................................................... 15
4.5 Architecture...................................................................................................................................................... 17
5 Connectors Guide 19
5.1 Connectors position and pinout of Neptune with terminals (NEP-x/xx-y-S)................................................ 19
5.1.1 Supply and motor connector .......................................................................................................................... 21
5.1.2 Micro-Match connectors mating ..................................................................................................................... 22
5.1.2.1 Ribbon cable .................................................................................................................................................... 22
5.1.3 Multi-core crimped cable................................................................................................................................ 23
5.1.4 Feedback connector ........................................................................................................................................ 25
5.1.5 I/O connector................................................................................................................................................... 28
5.1.6 USB connector................................................................................................................................................. 31
5.1.7 CAN connector................................................................................................................................................. 33
5.1.7.1 Cleverly wiring CAN buses from standard DB9 connectors ........................................................................... 35
5.1.8 RS232 interface connector ............................................................................................................................. 36
5.2 Connectors position and pinout of Neptune with gold plated pin headers (NEP-x/xx-y-P) ........................ 38
5.2.1 Integrating the Neptune with pin headers on a PCB...................................................................................... 41
5.2.1.1 Dimensions....................................................................................................................................................... 41
5.2.1.2 Mating connectors ........................................................................................................................................... 43
5.3 Connectors position and pinout of Neptune with EtherCAT (NEP-x/xx-E-z)................................................ 44
5.3.1 EtherCAT connectors ...................................................................................................................................... 45
6 Signalling LEDs 47
6.1 Power and operation signalling LEDs............................................................................................................. 47
6.2 CAN signalling LEDs ......................................................................................................................................... 47
6.3 EtherCAT signalling LEDs................................................................................................................................. 49
7 Wiring and Connections 51

7.1 Protective earth ............................................................................................................................................... 51
7.2 Power supply.................................................................................................................................................... 54
7.2.1 Power supply requirements ............................................................................................................................ 54
7.2.2 Power supply connection................................................................................................................................ 55
7.2.3 Battery supply connection .............................................................................................................................. 55
7.2.4 Connection of multiple drives with the same power supply ......................................................................... 56
7.2.5 Power supply wiring recommendations......................................................................................................... 57
7.2.5.1 Wire section...................................................................................................................................................... 57
7.2.5.2 Wire ferrules ..................................................................................................................................................... 57
7.2.5.3 Wire length ....................................................................................................................................................... 57
7.3 Motor ................................................................................................................................................................ 58
7.3.1 AC and DC brushless motors ........................................................................................................................... 58
7.3.2 DC motors and voice coil actuators ................................................................................................................ 59
7.3.3 Motor wiring recommendations ..................................................................................................................... 60
7.3.3.1 Wire section ..................................................................................................................................................... 60
7.3.3.2 Wire ferrules ..................................................................................................................................................... 61
7.3.3.3 Motor choke ..................................................................................................................................................... 61
7.3.3.4 Wire length ....................................................................................................................................................... 62
7.4 Feedback connections..................................................................................................................................... 62
7.4.1 Digital Halls interface....................................................................................................................................... 62
7.4.2 Analog Halls interface...................................................................................................................................... 65
7.4.3 Digital Incremental Encoder............................................................................................................................ 67
7.4.3.1 Termination resistors....................................................................................................................................... 70
7.4.4 Digital input feedback - PWM encoder............................................................................................................ 71
7.4.5 Analog input feedback..................................................................................................................................... 72
7.4.5.1 Potentiometer.................................................................................................................................................. 72
7.4.5.2 DC tachometer ................................................................................................................................................. 73
7.4.6 Feedback wiring recommendations ............................................................................................................... 74
7.4.6.1 Recommendations for applications witch close feedback and motor lines ................................................ 75
7.5 I/O connections................................................................................................................................................ 75
7.5.1 General purpose single ended digital inputs interface (GPI1, GPI2) ............................................................. 76
7.5.2 High-speed digital inputs interface(HS_GPI1, HS_GPI2) .............................................................................. 78
7.5.3 Analog inputs interface (AN_IN1, AN_IN2)...................................................................................................... 83
7.5.4 Digital outputs interface (GPO1, GPO2).......................................................................................................... 86
7.5.4.1 Wiring of 5V loads............................................................................................................................................. 87
7.5.4.2 Wiring of 24V loads........................................................................................................................................... 88
7.5.5 Motor brake output (GPO1, GPO2).................................................................................................................. 90
7.6 Command sources ........................................................................................................................................... 91
7.6.1 Network communication interface................................................................................................................. 92
7.6.2 Standalone ....................................................................................................................................................... 92
7.6.3 Analog input ..................................................................................................................................................... 92
7.6.4 Step and direction............................................................................................................................................ 93
7.6.5 PWM command ................................................................................................................................................ 95
7.6.5.1 Single input mode............................................................................................................................................ 95
7.6.5.2 Dual input mode .............................................................................................................................................. 96
7.6.6 Encoder following or electronic gearing......................................................................................................... 97
7.7 Communications.............................................................................................................................................. 98
7.7.1 USB interface.................................................................................................................................................... 99
7.7.1.1 USB powered drive .......................................................................................................................................... 99
7.7.1.2 USB wiring recommendations ........................................................................................................................ 99
7.7.2 RS232 interface .............................................................................................................................................. 100

7.7.2.1 Multi-point connection using daisy chain .................................................................................................... 101
7.7.2.2 RS232 wiring recommendations................................................................................................................... 103
7.7.3 CANopen interface ......................................................................................................................................... 103
7.7.3.1 CAN interface for PC....................................................................................................................................... 106
7.7.3.2 CAN wiring recommendations ...................................................................................................................... 107
7.7.4 EtherCAT interface ......................................................................................................................................... 107
8 Dimensions 109
8.1 NEP-x/xx-y-S (Neptune with onboard connectors)...................................................................................... 109
8.2 NEP-x/xx-y-P (Neptune with gold plated pin headers) ................................................................................ 110
8.3 NEP-x/xx-E-S (Neptune with onboard connectors and EtherCAT).............................................................. 111
8.4 NEP-x/xx-y-P (Neptune with gold plated pin headers and EtherCAT) ........................................................ 112
9 Software 114
9.1 Configuration ................................................................................................................................................. 114
9.2 Applications.................................................................................................................................................... 114
9.3 Arduino ........................................................................................................................................................... 114
10 Service 115

NEPTUNE Product Manual|General Information
INGENIA |05/29/2017 5
1 http://doc.ingeniamc.com/download/attachments/38043983/Neptune%20Manual-v2.pdf?
api=v2&modificationDate=1456830219978&version=1
2http://doc.ingeniamc.com/download/attachments/38043983/Product%20Manual-v3-20160301_1121.pdf?
api=v2&modificationDate=1456831544093&version=1
3http://doc.ingeniamc.com/download/attachments/38043983/Product%20Manual-v4-20160405_1402.pdf?
api=v2&modificationDate=1459864996821&version=1
4http://doc.ingeniamc.com/download/attachments/38043983/Product%20Manual-v5-20161121_1040.pdf?
api=v2&modificationDate=1479724977198&version=1
5http://doc.ingeniamc.com/download/attachments/38043983/Neptune%20Servo%20Drive%20Product%20Manual
%20v6.pdf?api=v2&modificationDate=1488560259831&version=1
6 http://doc.ingeniamc.com/display/NEP
2 General Information
2.1 Manual revision history
Revision Release Date Changes PDF
v1 January 2015 First version --
v2 September 2015 Major update Download1
v3 March 2016 Minor changes and aesthetic improvements Download2
v4 April 2016 Added EtherCAT information. Structure
improvements. Download3
v5 November 2016 Minor improvements. Download4
v6 March 2017 Aesthetics and structure improvement. Wiring
information improved. Download5
v7 May 2017 Improved PDF export format. Download.
For the most up to date information use the onlineProduct Manual6. The PDF manual is generated only after
major changes.
Please refer to product hardware revisions (see page 12)page for information on previous hardware revisions and
changes.
2.2 Disclaimers and limitations of liability
The information contained within this document contains proprietary information belonging toINGENIA-CAT
S.L..
Such information is supplied solely for the purpose of assisting users of the product in its installation.
INGENIA-CAT S.L.rejects all liability for errors or omissions in the information or the product or in other
documents mentioned in this document.
The text and graphics included in this document are for the purpose of illustration and reference only. The
specifications on which they are based are subject to change without notice.

NEPTUNE Product Manual|General Information
INGENIA |05/29/2017 6
7 mailto:[email protected]
8 http://www.ingeniamc.com/
This document may contain technical or other types of inaccuracies.The information contained within this
document is subject to change without notice and should not be construed as a commitment byINGENIA-CAT
S.L..INGENIA-CAT S.L.assumes no responsibility for any errors that may appear in this document.
Some countries do not allow the limitation or exclusion of liability for accidental or consequential damages,
meaning that the limits or exclusions stated above may not be valid in some cases.
2.3 Contact
INGENIA-CAT S.L.
8-14 Marie Curie
Advanced Industry Park
08042 Barcelona
Spain
Telephone: +34 932 917 682
E-mail:[email protected]7
Web site:www.ingeniamc.com8

NEPTUNE Product Manual|Safety Information
INGENIA |05/29/2017 7
3 Safety Information
3.1 About this manual
Read carefully this chapter to raise your awareness of potential risks and hazards when working with the
Neptune Servo Drive.
To ensure maximum safety in operating the Neptune Servo Drive, it is essential to follow the procedures
included in this guide. This information is provided to protect users and their working area when using the
Neptune Servo Drive, as well as other hardware that may be connected to it. Please read this chapter carefully
before starting the installation process.
3.2 Warnings
The following statements should be considered to avoid serious injury to those individuals performing the
procedures and/or damage to the equipment:
•To prevent the formation of electric arcs, as well as dangers to personnel and electrical contacts, never
connect/disconnect the Neptune Servo Drive while the power supply is on.
•Disconnect the Neptune Servo Drive from all power sources before proceeding with any possible wiring
change.
•After turning off the power and disconnecting the equipment power source, wait at least 10 seconds
before touching any parts of the controller that are electrically charged or hot.
3.3 Precautions
The following statements should be considered to avoid serious injury to those individuals performing the
procedures and/or damage to the equipment:
•The Neptune Servo Drive components temperature may exceed 100 ºC during operation.
•Some components become electrically charged during and after operation.
•The power supply connected to this controller should comply with the parameters specified in this
document.
• When connecting the Neptune Servo Drive to an approvedpower source, do so through a line that is
separate from any possible dangerous voltages, using the necessary insulation in accordance with safety
standards.
•High-performance motion control equipment can move rapidly with very high forces. Unexpected
motion may occur especially during product commissioning. Keep clear of any operational machinery
and never touch them while they are working.
•Do not make any connections to any internal circuitry. Only connections to designated connectors are
allowed.
•All service and maintenance must be performed by qualified personnel.
•Before turning on the Neptune Servo Drive, check that all safety precautions have been followed, as well
as the installation procedures.

NEPTUNE Product Manual|Product Description
INGENIA |05/29/2017 8
4 Product Description
Neptune is a high performance closed loop servo drive controller suitable for DC brushed, voice coils and
brushless motors.
Its compact design (40 mm x 40 mm) includes CANopen/EtherCAT, RS-232 and USB communication ports,
enabling thus a wide choice of interfacing methods. Its extended nominal voltage range from 9 V to 48 V with a
single supply and current up to 2.5 A continuous allows its use in several applications, and the small footprint
and the needless of an external heatsink allow the controller to be a valid OEM for critical-size applications.
The Neptune Digital Servo Drive has been designed with efficiency in mind. It incorporates cutting-edge
MOSFET technology as well as optimized control algorithms to provide the perfect trade-off between EMIs and
efficiency. In addition its ultra-low PWM deadtime (<10 ns) provides great control stability in velocity and
position applications.
Neptune Servo Drive is provided with several general purpose inputs and outputs for with 5V TTL levels and
tolerant to 24 V PLC. They are fully protected against short circuits and overvoltage and can be interfaced in
industrial environments. By using these inputs and outputs it is possible to implement alarm signals, connect
digital sensors, activate external devices (motor brake, LEDs, actuators, solenoids, etc.).Some of the digital and
analog inputs can also be used as command / target sources.
Neptune includes many passive and active protections to ensure its safe operation and easy integration.
4.1 Neptune part numbering

NEPTUNE Product Manual|Product Description
INGENIA |05/29/2017 9
Ordering part number Status Image
NEP-2/48-S-S
NEP-2/48-C-S
NEP-2/48-S-P PENDING
NEP-2/48-C-P
NEP-2/48-E-S
NEP-2/48-E-P
4.2 Specifications
Electrical and power specifications
Part number →NEP-2/48-y-S NEP-2/48-y-P
Power supply voltage 9 VDC to 48 VDC
Transient peak voltage 60 V
Logic supply voltage Not needed, supplied from Power supply voltage
Internal DC bus capacitance 22 µF
Minimum motor inductance 100 µH
Nominal phase continuous current 2.5 ARMS (50ºC air temperature, no heatsink)
ACTIVE
ACTIVE
ACTIVE
ACTIVE
ACTIVE
ACTIVE

NEPTUNE Product Manual|Product Description
INGENIA |05/29/2017 10
9 http://doc.ingeniamc.com/display/EMCL/0x2020+-+Enable+alternative+frequency+PWM
Maximum phase peak current 5 ARMS (2 s)
Current sense range ± 6.3 A
Current sense resolution 12.28 mA/count
Shunt braking transistorNo
Cold plate No
Power connectors Pluggable terminal block
2.54 mm pitch
Pin header 2.54 mm pitch,
5.84 mm length
Standby power consumption 1 W (max). 2 W EtherCAT version (NEP-2/48-E-z)
Efficiency >95%attheratedpowerandcurrent
Motion control specifications
Supported motor types •Rotary brushless (trapezoidal and sinusoidal)
• Linear brushless(trapezoidal and sinusoidal)
•DC brushed
•Rotary voice coil
•Linear voice coil
Power stage PWM frequency 80 kHz (default)
40 kHz (alternative PWM frequency, configurable9)
Current sensing On phases A and B (phase C generated internally).
Accuracy is ± 1% full scale.
10 bit ADC resolution.
Sensors for commutation (brushless
motors)
•Digital Halls (Trapezoidal)
•Analog Halls (Sinusoidal / Trapezoidal)
•Quad. Incremental encoder (Sinusoidal / Trapezoidal)
•PWM encoder (Sinusoidal / Trapezoidal)
•Analog potentiometer (Sinusoidal / Trapezoidal)
Sensors supported for servo loops • Digital halls
• Analog halls
•Quad. Incremental encoder
• PWM encoder
• Analog potentiometer
•DC tachometer

NEPTUNE Product Manual|Product Description
INGENIA |05/29/2017 11
Supported target sources • Network communication – USB
• Network communication – CANopen
• Network communication – RS-232
• Network communication – EtherCAT
•Standalone (execution from Internal EEPROM memory)
•Analog input (±10 V or 0 to 5 V)
•Step and Direction (Pulse and direction)
•PWM command
•Encoder follower / Electronic Gearing
Inputs/outputs and protections
Inputs and Outputs •2 x non isolated single ended digital inputs. GPI1, GPI2
(5 V TTL logic, 24 V tolerant).
•2 x non isolated high speed differential digital inputs.
HS_GPI1 Pulse, HS_GPI2 Direction (5V logic, 24V
tolerant).
•1 x (±10 V) differential analog input (12 bits). AN_IN2.
(24 V tolerant).
•1 x 0 V... 5 V single ended analog input (12 bits). AN_IN1.
(24 V tolerant).
•2 x Open open drain digital outputs with a weak pull-up
to 5 V. (24V tolerant and 1 A short-circuit and
overcurrent rugged).
•1 x 5 V output supply for powering external circuitry (up
to 200 mA).
Protections •User configurable:
•Bus over-voltage
•Bus under-voltage
•Over-temperature
•Under-temperature
•Over-current
•Overload (I2t)
• Short-circuit protections:
•Phase-GND
•Phase-DC bus
•Phase-phase
•Mechanical limits for homing functions.
•Hall sequence/combination error.
• ESD protectionsin all inputs, outputs, feedbacks and
communications.
•EMI protections (noise filters) in all feedbacks and
motor connections.
•Inverse polarity supply protection: A P-Channel
MOSFET provides protection against polarity inversion.
•High power transient voltage suppressor for short
braking (600 W peak TVS diode).

NEPTUNE Product Manual|Product Description
INGENIA |05/29/2017 12
Motor brake MotorbrakeoutputthroughGPO1orGPO2.Upto24V
and 1 A.
Communications
USB µUSB (2.0) connector. The board can be supplied from
USB for configuration purposes but will not power the
motor.
Serial RS-232 non-isolated.
CANopen Available. Non-isolated. 120Ωtermination not included on
board.
CiA-301,CiA-305 andCiA-402 compliant.
EtherCAT Available.
Environmental and mechanical specifications
Ambient air temperature •-25 ºC to +50 ºC full current (operating).
•+50 ºC to +100 ºC current derating (operating).
•-40 ºC to +125 ºC (storage).
Maximum humidity 5% - 85% (non-condensing)
Dimensions 40 mm x 40 mm x 15 mm
Weight (exc. mating connectors) 20 g
4.3
Hardware revisions
Hardware revision* Description and changes
1.0.0B First product demo.
1.0.1R First product release. Changes from previous version:
•Minor manufacturing improvements.
•Increased minimum absolute system voltage to 8 V to ensure integrated
power supply performance at all ranges.
•Assembly slots slightly redefined to improve assembly.
•Increased default PWM frequency to 80 kHz to target low inductance motors.
•Increased over-current range.

NEPTUNE Product Manual|Product Description
INGENIA |05/29/2017 13
10 http://doc.ingeniamc.com/display/EMCL/0x20C2+-+Drive+temperature
4.4 Power and current ratings
Neptune is capable of providing the nominal current from -25ºC to 50ºC ambient air temperature without the
need of any additional heatsink or forced cooling system. From 50ºC to 100ºC of ambient temperature a current
derating is needed.
Excessive power losses lead to over temperature that will be detected and cause the drive to turn off.The
system temperature is available inE-Core registers10and is measured on the power stage.The temperature
parameter that can be accessed from USB 2.0, CAN or RS232 interface does not indicate the air
temperature.Above 110ºC the Neptune automatically turns off the power stage and stay in fault state avoiding
any damage to the drive. A Fault LED will be activated and cannot be reset unless temperature decreases.
Following figure shows the basic power flow and losses in a servo drive system.
4.4.1 Current ratings
The Neptune Servo Drive has no cold plate, so the board itself is the heatsink.Power losses cause the drive to
increase its temperature according to:
Identifying the hardware revision
Hardware revision is screen printed on the board.
Drive safety is always ensured by its protections. However, power losses and temperature limit the
allowable motor current.
Some parts of the Neptune exceed 100ºC when operating, especially at high load levels.
Do not touch the Neptune when operating and wait at least 5 minutes after turn off to allow a safe
cool down.

NEPTUNE Product Manual|Product Description
INGENIA |05/29/2017 14
Power losses have a positive correlation with the motor RMS current. For this reason, when the ambient
temperature rises above 50 ºC, the output current must be limited to avoid an excessive drive temperature (TP<
100ºC).
4.4.2 Dynamic application (non-constant current)
The Neptune has a great thermal inertia that allows storing heat during short power pulses (exceeding nominal
current) without overpassing the maximum temperature. This allows achieving high peak current ratings
without need of additional heatsink.
For most systems where the cycle time is shorter than 3 τ(thermal time constant) the equivalent current can be
calculated as thequadratic mean of the current during the full cycle. The load cycle can be simplified as
different constant currents during some times:
Where:
Tis the full cycle period.
I1is the current during t1
Current derating
The current derating graph is only indicative and is based on thermal tests performed in a climatic
room where there was enough room for natural air convection. Each application may reach different
ratings depending on the installation, ventilation or housing. Current derating is only a
recommendation and is not performed automatically by the drive.

NEPTUNE Product Manual|Product Description
INGENIA |05/29/2017 15
I2is the current during t2
Inis the current during tn
4.4.3 System temperature
Next thermal image shows an example of the heat distribution in a the Neptune. The test has been performed at
maximum load and air temperature with a 3 phase application.
4.4.4 Improving heat dissipation with a heatsink
The Neptune uses the whole PCB as a heatsink by providing preferential heat path from the power stage to the
whole board ground planes.
However in some cases, to improve the heat dissipation, a small heatsink can be attached to the power stage
block. Also it is possible to mount it on a cooling plate.
In order to do that:
The drive is getting hot even at 0 current!
This is normal. Neptune power stage includes high power MOSFET transistors which have parasitic
capacitances. Switching them fast means charging and discharging those capacitors thousands of
times per second which results in power losses and temperature increase even at 0 current!
Recommendation: when motor is off, exit motor enable mode which will switch off the power
stage.

NEPTUNE Product Manual|Product Description
INGENIA |05/29/2017 16
11 http://ingeniamc.com/support
12 http://www.digikey.es/product-search/en?keywords=%20345-1054-ND
13 http://www.wakefield-vette.com/Portals/0/resources/datasheets/650,651.pdf
•Provide thermal dissipation in the area indicated on the figure below.
•Use a thermal interface material between the heatsink and the power stage (to ensure good contact and
minimize mechanical stress to the package). Double sided heat transfer tapes are recommended. Like
Bergquist Bond-Ply 100BP100-0.005-00-1112.
•Avoid touching any live part such as capacitors with the heatsink.
•This a delicate process, do it with the drive totally unpowered and contact Ingenia engineers for further
assistance11.
Following are a small heatsink and a recommended thermal interface material for the Neptune.
Manufacturer PN Datasheet Picture
WakefieldSolutions 651-B12 Dimensions13

NEPTUNE Product Manual|Product Description
INGENIA |05/29/2017 17
14 http://www.digikey.es/product-search/en?keywords=BER246-ND%20
15 http://media.digikey.com/pdf/Data%20Sheets/Bergquist%20PDFs/BP100_660B_Appl.pdf
Bergquist BP100-0.005-00-111214 Application guide15
4.5 Architecture
Following figure shows a simplified hardware architecture of the Neptune.
Assembly recommendations for best heat dissipation
•Always allow natural air convection by ensuring ≥10 mm air space around the drive.
•Place the Neptune in vertical position.
•If housed, use a good thermal conductivity material such as black anodized aluminum. Placing
the drive in a small plastic package will definitively reduce its temperature range.
•Temperature range can be increased by providing forced cooling with a fan or by placing a
thermal gap pad on top of the board. Always ensure electrical isolation between live parts and
the heatsink.

NEPTUNE Product Manual|Product Description
INGENIA |05/29/2017 18

NEPTUNE Product Manual|Connectors Guide
INGENIA |05/29/2017 19
5 Connectors Guide
This chapter details the Neptune Servo Drive connectors and pinout. Three Neptune options are detailed:
•Neptune with TE Micro-Match for signal & screw terminal block for power (NEP-x/xx-y-S) (see page 19).
•Neptune with gold plated pin headers (NEP-x/xx-y-P). (see page 38)
•Neptune with EtherCAT interface (NEP-x/xx-E-z). (see page 44)
5.1 Connectors position and pinout of Neptune with terminals (NEP-x/xx-y-S)

NEPTUNE Product Manual|Connectors Guide
INGENIA |05/29/2017 20
Other manuals for Neptune
1
Table of contents
Other INGENIA Computer Hardware manuals