manuals.online logo
Brands
  1. Home
  2. •
  3. Brands
  4. •
  5. Nakamichi
  6. •
  7. Receiver
  8. •
  9. Nakamichi 530 User manual

Nakamichi 530 User manual

Other manuals for 530

1

Other Nakamichi Receiver manuals

Nakamichi NA2750 User manual

Nakamichi

Nakamichi NA2750 User manual

Nakamichi 530 User manual

Nakamichi

Nakamichi 530 User manual

Nakamichi NA2800 User manual

Nakamichi

Nakamichi NA2800 User manual

Nakamichi NAM5420 User manual

Nakamichi

Nakamichi NAM5420 User manual

Nakamichi NA 1800 User manual

Nakamichi

Nakamichi NA 1800 User manual

Nakamichi NA1650 User manual

Nakamichi

Nakamichi NA1650 User manual

Nakamichi NA1600 User manual

Nakamichi

Nakamichi NA1600 User manual

Nakamichi NA3020 User manual

Nakamichi

Nakamichi NA3020 User manual

Nakamichi DELTA 10B User manual

Nakamichi

Nakamichi DELTA 10B User manual

Nakamichi NAM6700r User manual

Nakamichi

Nakamichi NAM6700r User manual

Nakamichi NAM1700r User manual

Nakamichi

Nakamichi NAM1700r User manual

Nakamichi NAM1630 User manual

Nakamichi

Nakamichi NAM1630 User manual

Nakamichi NA1850 User manual

Nakamichi

Nakamichi NA1850 User manual

Nakamichi NQ523BD User manual

Nakamichi

Nakamichi NQ523BD User manual

Popular Receiver manuals by other brands

Televes ZAS HD SAT user manual

Televes

Televes ZAS HD SAT user manual

Realistic DX-75 Operating and service instructions

Realistic

Realistic DX-75 Operating and service instructions

Saris 4620 Assembly instructions

Saris

Saris 4620 Assembly instructions

Mini DTR 206C PVR user manual

Mini

Mini DTR 206C PVR user manual

RF Elements TwistPort manual

RF Elements

RF Elements TwistPort manual

Denon DN-200WS user guide

Denon

Denon DN-200WS user guide

Yamaha RX-V467 owner's manual

Yamaha

Yamaha RX-V467 owner's manual

Russound SaphIR 858 instruction manual

Russound

Russound SaphIR 858 instruction manual

Quasonix RDMS Firmware update procedure

Quasonix

Quasonix RDMS Firmware update procedure

Pioneer XV-HTD1 Service manual

Pioneer

Pioneer XV-HTD1 Service manual

ATZ HDMI-V2-44HE150 manual

ATZ

ATZ HDMI-V2-44HE150 manual

Sony XNV-770BT MyTomTom Specifications

Sony

Sony XNV-770BT MyTomTom Specifications

Grundig STR 7122 TWIN Service manual

Grundig

Grundig STR 7122 TWIN Service manual

Creative Blaster Modem user guide

Creative

Creative Blaster Modem user guide

Panduit ATLONA AT-OME-RX11 installation guide

Panduit

Panduit ATLONA AT-OME-RX11 installation guide

VOLTCRAFT UTPS-40 operating instructions

VOLTCRAFT

VOLTCRAFT UTPS-40 operating instructions

JVC KW-ADV794 instructions

JVC

JVC KW-ADV794 instructions

Litelink VT-1001 operating instructions

Litelink

Litelink VT-1001 operating instructions

manuals.online logo
manuals.online logoBrands
  • About & Mission
  • Contact us
  • Privacy Policy
  • Terms and Conditions

Copyright 2025 Manuals.Online. All Rights Reserved.

Service
Manual
Nakamichi
Nakamichi
530
Receiver
CONTENTS
1.
General
«-
ete
ce
cc
ee
ee
te
ee
eee
eee
eet
eee
tee
we
eet
eee
eee
tee
tees
3
2.
Principle
of
Operation
-
+--+
0
eee
eect
eee
tt
cee
ee
eee
ee
ee
eet
eee
rete
tee eee
4
2.
Fundamental!
Circuits
«++.
0
eee
eee
eet
eee
et
ee
eee
e
ee
teens
Wok
gaa
oti
Seve
Ss
wae kes
4
BAAS.
HONOS
AG
ok
hs
bea
ated
bY
Gee.
ain
ence
ag
Rundeativa
woken
esd
ante
mi
wpe
indie
ira
Oe
4
(1)
Features
of
CMOS
IC
--
eee
eee
cece
ence
eee
dcp
kua
tebe
ares
keke
seawake
4
(2)
Gate
Logic
oes
erect
cece
cece
eee
ee
eee
ete
ee
eee
eee
e
tenes
5
(3)
Gated
Flip-Flop
bite
Neier
eines
&
seidy
yaa
BeS,
Risen
aeres
oS
ate
lo
Lesan
a
Neva
eoras
aie
Taree
eta
en
Cred
ORME
a
ON
a
ere,
ele
anueee
5
(4)
Compatible
CMOS
ICs
---+--
esse
cece
eee
eee
eee
te
eee
ete
teen
ees
5
2.1.2
Operational
Amplifier
IC...
-
eee
eee
cece
eee
eee
eee
nee
teeter
eee
tees
6
(1)
Voltage
Follower
Circuit
---
+--+
e
cece
ree
ec
cee
ee
eee
eee eee
teen
een
n
eee
6
(2)
Amplifier
Circuit
--
+.
eee
cee
ee
nee
ee
ee
cn
cere
ete
ee
teen
eees
6
(3)
Oscillator
(Astable
Multivibrator)
«---
+e
e
sec
e
eee
cere
eee
eee
renee
eee
tence
6
(4)
Peak
Holding
Circuit
--
+
eee
eee
eee
ce
eee
eee
ce
eee
eee
eee
rete
tenes
7
2.1.3.
Quadrature
Detector
-----
eee
crete
etcetera
eet
e
eee
eee
ee
tet
ee
eeee
7
2. 2.
Power
Mute
Signal
-+
++.
secre
cece cece
eee
eee
te
tee
ete
et
eee
tee
tenes
8
2,
3.
TUMEr
SECTION:
-rs
eterna.
Speeie
te
Dw
Reales
sate
eee
eye toe
Soe
ela ele Wow
enw
Sl
eat
e 8
Calais
arate
te
ete
ysl
ORNS
“Sue
Usa
9
2.3.1.
FM
MPX
Stereo
Broadcasting
Operation
.....---
eee
e
eee
ee
eee
ete
ee
tee
eens
9
2.3.2.
Operation
of
Tuner
Section
©...
6c
cece
ee
ete
eee
teen
teen
teenies
10
2.3.3.
Tuning
System
0.
ee
eee
e
eee
eteeet
eee
e
eee
ene
eee
een
tte
eee
n
nee
11
(1)
Varicon
Voltage
..--
ee
ccc
cere
eee
eee
tee
eet
erent
eee
eee
tenes
11
(2)
Motor
Drive
Circuit
and
Frequency
Sensor
...---
+e
seer
eee
eee
eee
eee
eee
eee
11
(3)
Preset
Tuning
«++.
ee
ee
eee
ee
eee
ee
tee
eee
tee
te
ee
eee
tte
12
(4)
Station
Detecting
Circuit
©...
6...
cece
cece
eee
eee
te
eens
13
(5)
Auto-TUning
«-
eee
ccc
recente
tee
eee
eee
ete
eee
13
(6)
Tuning
Indicator...
6.
eee
cece
cece
eee
eee
eee
eee
ene
15
(7)
FM
Mute
and
Compulsion
Mono
«+...
+e.
eee
cece
eee
eee
ete
eee
e
eet
n
ene
17
9:
9A.'=
.Rinplitier
SROOM:
att
sc
¢
tices
pes
8G
Kee
ORE
MRE
a
tec
decal
ee
wedi
ead
18
2.4.1.
Phono
Eq.
Amplifier
----
2-2
ee
eee
cee
te
ete
ee
crete
teeter
eee
18
2.4.2,
Subsonic
Filter
«6...
22
ccc
cece
cere
c
ccc
tcc
e
eee
rece
nee
e
eset
seen
ease
eeeeenes
19
2.4.3.
Tome
Control
2...
-
2c
ccc
cc
cece
cece
c
tence
eee
teen
rene
erate
eee
renee
enee
20
2.4.4.
Power
Amplifier...
--
0
eee
cece
eee
eee
te
ee
eer
e
teen
ena
21
(1)
Pre-stage
(Voltage
Amplifier)
..
1.26.0.
e
cece
ce
eee
ee
beeen
teens
21
(2)
Output
Stage
(Power
Amplifier)
.
2...
00.
cece
cece
ete
eee
eee
eee
ees
21
4(3))
CLithiter:
<setceatoiee
aretting
ve
a
eS
Saleh
de
a
EA
ee
ea
Lele
ee
ae
23
24.5.
Protector
Circuit
«2.
2
cen
ee
cece
cece
ee
eee eae
ened
ee
een
ee
eee
eee
ae
en
eee
24
3:
“Removal
Procedures®
+«.:/..2
6s
:c.c505
eo
et
ke
eee
ee
eee
re
eee
Sele
ewe
aa
a
Ete
ead
eel
ere
BUN
ene
dee
ee
25
Ke
1.
Top
Cover
a
See
eee
et
ee
ar
ee
ee
er
a
ee
eer
ee
ee
ee
eR
eee
ee
PC
CR
Oa
Pr
Tee
Dar
Oe
Meroe
Sa
Ma
et
Dae
Ta
25
3.2.
Bottom:
COVer:
acces
cc2
5
cera
ade
eae
BN
Re
hele
wha
he
Aerie
a
yaad
eS
jane
se
aes
Bia
e
Ol
Sie
a
Heese
25
3:3:
Front
Panel
Ass’y
ids
Wane
teas
ec
ek
peietiol
tes
ciao
Vaaen
wa
in
Sue
Oan
tek
Ee
ga
9
25
3.
4.
Front-end
Holder
Ass’y
.--
2
eee
cece
eee
ee
cee
eee
eee
eee
ete
25
3.
5.
Power
Transformer...
see
cece
te
eee
eee
eet
ee
eee
ee
eee
tee
eee
ee
eens
25
3.
6.
Diode
Bridge
---
+.
eee
eee
eee
ee
eee
eee
ee
ete
ete
teen
teens
25
Ol.
CLs
Power
P.C.B.
Ass’y
and
Heat
Sink...
.-
eee
ee
eee
ee
ee
eee
ete
tee
ee
ete
eens
25
3.
8.
Pulley
Holder
B
Ass’y
and
Pulley
Ass’y
«2.
-
eee
cece
eect
erence
ere
rete
eee
e
tenes
25
3.
9.
Front
Chassis
Ass’y
--
20
-e
cece
cece
ee
eee
re
eee eee
eee
eee
teeta
ene
25
3.
10.
Scale
Holder
Ass’y
-
eee
eee
er
cece
ee
ee
eee
ete
tee
ete
nee
ete
neee
25
3.
11.
Lamp
House
Cover
Ass’y
and
Lamp
P.C.B.
Ass’y
--
sees
cece
eee
e
eee
eee
eee
eee
nee
26
3.
12.
Tuning
Lamp
P.C.B.
Ass’y
+e
eee
e
cece
cere
ene
cere
e
tee
e
eee
eee
eenees
26
3.
13.
Indicator
P.C.B.
Ass’y
-
+.
ee
eee
cere
eee
eee
eee
ete
eee
ee
erence
eee
tenets
26
3.
14.
Tuning
Control
Switch
Ass’y
---
2
eee
tee
eee
eee
eee
ee
ee
ee
teen
eet
tee
27
3.
15.
|
Auto-Tuning
P.C.B.
Ass’y,
Preset
Volume
P.C.B.
Ass’y
and
Preset
Switch
P.C.B.
Ass’y
+--+
ese
etree
eee
ee
eee
tenes
ee
ee
27
3.
16.
Power
SWitch
=.
6622s
cee
wee
ee
ec
cc
eee
ee
et
meee
eee
eee
eee
eee
eens
ede
e
eens
27
3.
17.
Main
P.C.B.
Ass’y
and
Function
P.C.B.
Ass’y
«++.
eee
eee
cree
eee
eee
eee
eee
eens
27
3.
18.
Headphone
Jack
«2...
cece
eee
eee
cent
ee
ee
nee
teeta
teen
eens
27
3.
19.
Rear
Panel
Ass’y
+
eee
ee
eee
eee
te
eer
ee
tee
ee
tee
eee eee
ete
t
etter
tenes
27
3.
21.
BC
Outlet
ie
5
ois
hee
te
ak
es
SR
ee
Rule
een
ee
eS
wae
eS
Pee
eee
B54
BEE
Sree
are
g
eR
ee
AS
28
3.
22.
Motor
Base
Ass’y,
Front-end
Pulley
and
Front-end
«---
esse
tee
e
creer
eee
eet
eens
28
4.
Adjustments
and
Measurements
----
<0
-
eee
ret
ee
ee
ene
te
eee
tenet
ete
tenets
29
4,
1.
FM
Tuner
Section
--
0.
ee
cece
ree
nee
eee
ett
ee
eee
ee
eee
eee
eee
eee
29
4.1.1.
Electrical
Adjustments
and
Measurements
----
+--+
e
eter
terete
eee
eee
teens
29
4.1.2.
Auto-Return
Scale
Calibration
--
+--+
eee
e
ee
eee eee
eee
eens
da
Rik
tagetaneee
cybiarte
etenshecensiteteaie
8
34
4.
2.
Preamplifier
Section
-----
eee
cette
eee
tect
e
tenet
e
eee
c
eee
eens
34
4.2.1.
Signal-to-Noise
Ratio
Measurement
«+++
ese eee
reece
eee
renee
eee
t
eee
e
eee
eres
34
(1)
Phono
Input/Recording
Output
-----se
eee
reece
tee
eet
tee
eee
eens
34
(2)
Aux.
Input/Preamp.
Output
.--
+--+.
eee
eee
eee
eee
t
eee
eee
e
nents
34
4.2.2.
Distortion
Measurement
.--
eee
cree
eter
ee
ree
ete
ee
ee
eet
tee eee
nen
ete
34
(1).
Phono
Input/Recording
Output
----
+.
eee
cect
nce
eee eee
eee
eee
nee
34
42}
Aux.
Input/Preamp.
Qutput
(<6
+4s
esos
nrews
weeks
node
ease
eh
inet
IN
esos
wee
34
4.2.3.
Phono
Eq.
Amp.
DC
Offset
Adjustment
-----
seer
cere
cree
eee
eee
tenet
e
ene
35
4,
3.
Power
Amplifier
Section
-------
cette
tee
ete
te
teen
tenet
e
nent
nett
ee
eens
35
4.3.1.
Idling
Current
Adjustment
+--+
esses
ee
tee
cece
cee
ete
te
tte
tenet
eee
tents
35
5.
Dial
Threading
and
Scale
Calibration
©.
+--+
+e
ee
ctr
te
ee
eee
ett
teen
teen
eens
36
5.
1.
Dial
Threading
pach
eat
a
eS
th
ae
ny
SY
Nee
OR
ne
|
Be
oes
orca
cca
a
rerea
ie
Aue
Brave
le
Gia,
Use
D
we
letare
exah
gua
aeneay
ee
36
5.1.1.
How
to
prepare
dial
thread
-----
ee
erect
eee
ett
eee
tet
eee
36
5.1.2.
How
to
set
dial
threading
---
+--+
ester
rete
ee te
tee
ett
ee
ene
ete
teen
ete
36
5.
2.
Scale
Calibration
--
000
cece
tee
ee
ee
ee
eee
eee
ee
ete
eee
teeta
eee
36
6.
Mounting
Diagrams
and
Parts
List
-.----
02-2
s
eect
eee
eee
treet
ee
en
teen
ete
n
ea
eee
nee
37
6.
1.
Main
P.C.B.
Ass’y
ee ee
eee
ce
teeter
tee
ete
ee
eet
enter
ee
tte
37
6.
2,
Power
P.C.B.
Ass'y
selidhaa
Vou
ded
Toca
(EP
aon
acto
Boke,
vo
Tote
bh
guta
Roiestinies
eesceieston
WS
Cace
aretlss
See
Grids.
d
oM
eboney
da
eneoatare
re:
ee
39
6
3.
Lamp
P.C.B.
Ass'y
cere
cee
ete
ee
tee
ene
t
eee
ee
eee
en
ete
ee
eee
39
6.
4.
Preset
Switch
P.C.B.
Ass’y
eee
cere
cert
tee
terete
eterna
te
teen
eee
erate
41
6.
5,
Auto-Tuning
P.C.B.
Ass’y
cere
eee
ete
cette
een
n
teen
entre
renee
ete
nets
41
6.
6.
Preset
Volume
P.C.B.
ASS’y
+e
eter
ete
teeter
tee
tence
tate
teen
ene
ene
41
6.
7.
Indicator
P.C.B.
ASS’Y
+
eee
eet
tree
erect
eee
teen
eee
tte
e
seen
esate
41
6.
8
Function
P.C.B,
ASS'Y
cece
ect
rteeereree
eee
ee
ene
tennant
nent
ene
te
ene
ene
41
7.
Mechanism
Ass’y
and
Parts
List
-
+--+.
+e
terete
ee
tet
e
ee
eee
tet
teen
ene
42
7.
1.
SYNTHESIS
«eee
ee
eee
eee
eee
ene
teen
eee
eta
42.
73.
<2,
Front
Panel
Ass’y
(AQ1)
«0
-
see
cece
ete
ee
tere
teen
tenet
ee
eee
e
ene
tenn
es
43
7.
3.
Synthesis
Mechanism
530
(AOQ2)
«sss
ere
t
ttt
terete
ttre
treet
ete
eee
etree
44
7.
4.
Front
Chassis
Ass’y
(BO1)
ser
cece
cre
crc
ete
e
eet
r
ree
teen
ete
e
een
e
tee
e
nen
cnet
es
45
7.
5.
Main
Chassis
Ass’y
(BO2)
-+
++
ec
ect
t
ete
ete
terete
tere
et
eee een
e
cnet
e
eee
tenets
46
7.
6.
Rear
Panel
Ass’'y
(B03)
«sss
ttc
ctr
tt
terre
terete
ete
teen
eet
treet
een
ee
tenes
47
Te Ts
Tuning
Control
Switch
(CO1)
--
errr
errr
ttre
tt
erent
ete
tet
teen
en
cess
48
Y
ee
Scale
Holder
Ass’y
(CO2)
-
secre
reece
etter
te
ttt
ee
ee
eee
ete
49
7.
9.
Power
Block
Ass’y
(DOT)
++
secrete
ttt
etree
teeter
te
ete
e
eee
ete
eaten
een
tees
50
7.
10.
Front-end
Holder
Ass’'y
(DO02)
«s+
eset
etre
tert
teeter
ee
ttre
eee
ens
51
7.11.
Lamp
Case
Ass’'y
(EOI)
sect
cece
rte
teeter
ener
t
teen
enter
eee
nets
51
7.
12.
Lamp
House
Cover
Ass’y
(EO2)
--
+s
sec
c
rrr
etter
rere
r
terete
teeter
tenes
52
7.
13.
Lamp
Base
Ass’y
(EO3)
«s+
reer
rer
cre
ttt
tt
tet
tee
tnt
ete
teeta
e
eee
ene
ees
52
7.
14.
Motor
Base
Ass’y
(FO)
<cre
tere
terete
tee
teen
tet
eee
n
een
n
eee
n
een
entre
52
8.
Block
Diagrams
Sih
Redciimias
ei
eta!
Soe
secie.
Gem
rlonh,
dowrats
seca
fevtocaan
hema
tetas
Brak;
SMA
Oh
Beat
ees
Whe.
Wiens
weld!
eceteniay
ai
teh
tellettay
gal
Tercera:
ietgee
nat
See
53
8.
1.
Tuning
Section
«secre
crete
rete
r
ee
eeeeet
tet
e
en
teeter
eee
e
ects
53
8.
2.
Amplifier
Section
-:
++
+c
scree
eee
tee
eee
eter
t
etn
n
seen
eee
ene
54
9.
Performance
Data
«+--+
-
sce
t
eee
cette
teen
ee
ener
te
teen
ee
eet
ee
55
9.
4.
Tuner
Section
«sere
ere
ee
tt
tee
ete
eee
nee
ene
eee
eet
e
eater
eae
ee
see?
55
9.
2.
Amplifier
Sections:
+e
treet
errr
teen
tenet
entree
etn
e
tenant
este
en
nent
55
10.
Schematic
Diagram
Basin
bs
etd
he
Teco?
6
Resse
bP
aa
es
pre
BSN
cee!
ain
See
w
eie
a
cote
Let
pe
Gace
Sy
a
ene
B.S
sree
tan
ernie
Te
Ge
te
ees
a
ae
55
V1.
Wiring
Diagram
«+++
-
0
ee
eee
eee
eee
eee
ees
bh,
Jetset
ou
cate
iuwatd
saebetacin
dy
thcevd
bch
tne
ce
eto
acer
es
57
12,
Specifications
---
++
ce
eet
eee
tet
ee
tte
een
ete
e
eee
ert
e
eae
tere
ee
ete
58
3.
20.
12P
Jack,
Speaker
Terminal
and
Antenna
Terminal
-
+--+.
sees
cere
eter
ee
eee
tren
ee
eens
27
1.
GENERAL
Nakamichi
530
control
functions
are
shown
below:
Pe
Totss
150
Watts
Max,
8)
64
on
)
ONoOkANnNr-oo
ONAaAPWN>
Nakamichi
530
Receiver
-Mopet
No.
$30
Voltages
120V
~
‘Unit
Pewer
‘AC
Outlets
Total
Subsonic
Filter
Switch
Mono
Switch
Loudness
Switch
Audio
Mute
Switch
FM
Mute
Switch
Hi-Blend
Switch
Threshold
Selector
Switch
Tuning
Pointer
Tuning
!ndicators
.
Tuning
Scale
.
Stereo
Indicator
FM
Muting
Indicator
.
Power
Switch
.
Speaker
Selector
Switches
.
Station
Preset
Controls
.
Automatic
Scanning
Switches
.
Station
Memory
Switches
Volume
Control
@)
&@
9)
Antenne
3000tm
Bai.
7EohmUnbel.
SCenenriios
ys
Ve
ey
ae
‘3bOWatte
Max.
ate
he
be
~
wey
gH
63)
62)
102
104
106
tebe
tr
tbs
te
dad
Fig.
1.1
Front
View
Fig.
1.2
Rear
View
Spaskars:
(tenet
@eo
O16
A
4 ;
A
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
©
Ben
anie
69)
@9
Moe
e4)
Balance
Control
Tone
Controls
(Bass,
Treble)
Tape
Monitor
Switch
Function
Selector
Switches
(Aux/FM/Phono)
Headphone
Jack
Ground
Terminal
Phono
Input
Jacks
Auxiliary
Input
Jacks
Tape
Playback
Input
Jacks
Tape
Recording
Output
Jacks
Preamplifier
Output
Jacks
Main
Amplifier
Input
Jacks
Speaker
Output
Terminals
(A
&
B)
75-ohm
Unbalanced
Terminals
300-ohm
Balanced
Terminals
AC
Outlets
AC
Power
Cord
2.
PRINCIPLE
OF
OPERATION
2.1.
Fundamental
Circuits
2.1.1.
C-MOS
IC
(1)
Features
of
C-MOS
IC
The
IC’s
used
in
the
logic
circuit
of
the
N-530
are
of
the
C-MOS
{complementary
metal
oxide
semiconductor)
type,
in
which
P-channel
and
N-channel!
MOS
FET’s
complement
each
other.
(a)
Small
power
consumption
A
C-MOS
is
an
inverter,
as
shown
in
Fig.
2.1.1.
Whether
the
input
of
this
inverter
is
at
H
or
L
level,
either
the
P-channel
or
N-channel
MOS
FET
is
OFF,
and
therefore,
current
does
not
pass
from
VDD
to
VSS
under
steady
normal
state.
Consequently,
when
there
is
no
input,
power
consumption
(VDD
x
!DD)
is
nearly
zero,
except
for
surface
and
junction
leakage.
When
the
input
signal
is
switched
from
H
to
L,
or
Lto
H,
however,
both
P-
and
N-channel
FET’s
instantly
come
on,
and
a
current
flows
either
charging
or
discharging
the
stray
output
capacity,
so
that
the
power
consumption
during
dynamic
operation
cannot
be
said
to
be
zero.
(b)
A
large
noise
margin
The
input-output
transmission
characteristics
of
the
C-MOS
inverter
differ
from
those
of
bipolar
IC's
as
shown
in
Fig.
2.1.2.
The
knee
characteristic
is
sharper,
the
threshold
voltage
is
almost
half
of
VDD,
and
the
output
amplitude
is
nearly
equal
to
VDD
—
vss.
Since
the
noise
margin
of
a
digital
IC
is
defined
as
the
difference
between
the
minimum
value
of
output
amplitude
and
the
required
minimum
amplitude
of
the
input
signal,
it
is
quite
natural
that
the
C-MOS
circuit,
which
produces
an
output
amplitude
of
nearly
VDD
—
VSS
and
should
be
operated
by
a
small
input
signal,
should
have
a
large
noise
margin.
(c)
High
input
impedance
A
C-MOS
IC
has
a
very
high
input
impedance
because
it
is
insulated
from
the
substrate
by
the
oxide
film
of
the
gate.
Although
leakage
resistance
must
be
considered
in
an
actual
C-MOS
IC
because
diodes
are
usually
used
in
the
direction
of
reverse
bias
for
protecting
input
circuit,
its
impedance
is
several
tens
of
megohms.
The
advantage
of
a
high
input
impedance
is
that
the
fan-out
of
the
IC
is
large,
which
simplifies
the
interface.
Also,
a
timer
circuit
for
a
longer
‘period
of
time
can
be
produced.
This
means
that
the
high
input
impedance
enables
the
input
to
be
connected
with
a
large
resistance,
but
does
not
mean
to
use
a
capacitor
of
large
capacity.
(d)
Wide
operating
voltage
range
Fig.
2.1.3
shows
input-output
transfer
characteristics
of
C-MOS.
The
general
purpose
C-MOS
family
has
a
wide
operating
voltage
range
extending
from
3
to
18V,
which
is
much
wider
than
that
of
TTL
and
DTL
(5+
0.25
V),
and
HTL
(15
+
1.5
V).
The
reason
for
the
C-MOS
IC’s
wide
operating
voltage
range
is
that
the
P-MOS
and
N-MOS
are
made
symmetrical,
and
if
VDD
is
varied,
the
threshold
voltage
for
the
circuit
is
always
about
half
of
VDD.
Ina
bipolar
IC,
the
threshold
voltage
is
decided
by
the
forward
voltage
from
the
base
to
the
emitter
of
the
transistor
(VBE),
and
is
little
affected
by
the
source
voltage.
Therefore,
if
the
source
voltage
exceeds
a
certain
limit,
the
output
voltage
and
the
threshold
voltage
will
not
balance,
as
a
result
of
which
operation
will
become
impossible.
With
a
C-MOS,
the
threshold
voltage
varies
according
to
changes
in
the
source
voltage,
and
stable
operation
throughout
a
wide
range
can
be
expected.
As
indicated
above,
the
performance
of
a
C-MOS
IC
as
a
digital
IC
is
excellent.
VoD
P-channel
MOS
FET
Output
N-channel
MOS
FET
o
Fig.
2.1.1
C-MOS
Inverter
a
-#
a
oO
Ny
OUTPUT
VOLTAGE
(V)
4
2
3
4
5
6
INPUT
VOLTAGE(V)
°
Fig.
2.1.2
Input-Output
Transmission
Characteristics
<
=
Oo
oO
OUTPUT
VOLTAGE
(V)
oO
ie)
5
10
415
INPUT
VOLTAGE
(V)
Fig.
2.1.3
Input-Output
Transfer
Characteristics
of
C-MOS
(The
threshold
voltage
is
approxi-
mately
half
of
VDD.)
(2)
Gate
Logic
2-input
NAND
gate
is
used.
Following
show
each
of
logic
symbol,
truth
table,
pin
assignment,
and
internal
schematic
diagram.
The
output
will
be
L
only
if
inputs
IN1
and
IN2
are
H’s,
and
the
output
will
be
H
if
IN1
is
L
or
IN2
is
L.
Out
IN2
Out
=
INT-IN2-
IN
1
IN
2
ia
Out
=
INT
+
IND
ng
_
Out
=
INT-IN2
=
INT
+
IN2
Fig.
2.1.4
Truth
Table
1
The
construction
of
the
foregoing
2
Logic
Symbols
is
identical
and
intended
to
show
the
use
of
either
AND
or
OR.
(3)
Gated
Filp-Flop
The
two
NAND
gates
can
be
used
to
form
flip-flop.
The
inputs
operate
as
follows:
When
both
S
and
R
are
H’s,
the
flip-flop
will
remain
in
its
present
state,
i.e.,
will
not
change
the
state.
If
however,
the
R
input
goes
to
L,
the
NAND
gate
connected
to
R
will
have
H
output
regardless
of
the
other
feedback
input
to
the
NAND
gate,
and
this
will
force
the
flip-flop
to
the
L
state
{provided
the
S
input
is
kept
H).
Similar
reasoning
shows
that
making
the
S
input
an
L
will
cause
the
NAND
gate
at
the
S
input
to
have
an
H
output,
forcing
the
flip-flop
to
the
H
state
(again
provided
the
R
input
is
kept
H).
If
both
inputs
R
and
S
are
made
L’s,
the
next
state
will
depend
on
which
input
is
returned
to
H
first,
and
if
both
are
returned
to
H
simultaneously,
the
resulting
state
of
the
filp-flop
will
be
indeterminate.
As
a
result,
this
is
a
“forbidden”
or
“restricted”
input
combination.
(4)
Compatible
C-MOS
ICs
1C306:
ywPD4011C,
CD4011A,
MC14011A,
F34011A,
TP4011A,
TC4011P
Vop
A4
B4
Y4
Y3
A3
B3
Ai
B1
Set
(s)
Reset
(Rr)
Yi
Y2
Az
B2
GND
(TOP
VIEW)
Fig.
2.1.5
VoD
GND
Fig.
2.1.6
Q
Q
Fig.
2.1.7
Truth
Table
2
*:
Maintains
the
previous
state.
2.1.2.
Operational
Amplifier
IC
Most
operational
amplifier
IC‘s
consist
of
a
differential
amplifier
with
a
voltage
amplification
of
70
to
100
dB.
High-gain
amplifier
circuits,
oscillators
or
comparators
use
operational
amplifier
IC.
(Vin
—
Vin
(—))
x
Av
=
Vout
Vin
Vout
Vin(-)
Gain=Av
Fig.
2.1.8
Operational
Amplifier
(1)
Voltage
follower
circuit
This
circuit
is
a
special-purpose
non-inverting
amplifier.
It
is
used
for
converting
impedance
when
the
impedance
of
the
input
signal
source
is
too
high
and
the
input
impedance
of
the
following
step
is
too
low
for
direct
connection.
The
special
feature
of
the
voltage
follower
is
high
input
impedance
and low
output
impedance.
Its
voltage
gain
is
1.
(Vin
—
Vout)
x
Av
=
Vout
Vout
_
a,
Au
+
Vout
=
Vout
(1
+)
=
Vout
Vin
Vin
=
Vout
Fig.
2.1.9
Voltage
Follower
Circuit
(2)
Amplifier
circuit
Two
types
of
amplifier
circuits
are
the
inverting
amplifier
and
the
non-inverting
amplifer.
The
amplification
factor
R,
+
Ro
Ra
:
Inverting
circuits
output
signals
of
phases
opposite
to
those
of
the
input
signals.
of
these
circuits
is
:
R2
=
(Vin
—
Vout
Ri
+
R,)
x
Av
=
Vout
:
Vout
R,
=————
+
—_—
Vin
Ay
Vout
R,
+R,
1
R,
=
V
—._
++
+
ue
tA
R;
+
R2
Es
Re
by
ab
os
=
Vout
Ry
Re
Ge
Ay
=
0)
Vout
=
Vin
Ri
+
Ro
Ro
Vout
Fig.
2.1.10
Non-inverting
Fig.
2.1.11
Inverting
(3)
Oscillator
(Astable
Multivibrator)
The
operational
amplifier amplifies
the
difference
be-
tween
non-inverting
input
and
inverting
input,
and
gen-
erally
its
output
is
amplified
up
to
the
source
voltage
because
of
the
high
voltage
amplification.
in
the
circuit
shown
in
Fig.
2.1.12.,
Vout
equals
the
positive
source
voltage
when
the
non-inverting
input
is
larger
than
the
inverting
input.
The
voltage
of
the
non-inverting
input
is
R
of
the
positive
source
2
2
+
R3
voltage.
On
the
other
hand,
because
C1
is
charged
by
the
Vout
voltage
through
R1,
the
inverting
input
rises
to
the
positive
source
voltage.
However,
when
it
exceeds
the
voltage
of
the
non-inverting
input,
Vout
is
inverted
to
the
negative
source
voltage.
The
voltage
of
the
non-inverting
sal
ae
of
the
negative
source
voltage.
When
C,
is
discharged
through
R;
and
the
voltage
of
the
inverting
input
becomes
lower
than
that
of
the
non-
inverting
input,
Vout
is
again
inverted
to
the
positive
source
voltage.
By
repeating
these
operations,
the
circuit
acts
as
an
astable
multivibrator.
See
Fig.
2.1.13
timing
chart.
input
then
is
2R2
T
=
2C;
Ri
2n(1
+
)
[sec.]
R3
Fig.
2.1.12
Oscillator
R2
Inverting
R2+R3
Input
R
2
—VRZ+RS
R2
+Va55RF
Non
-Inverting
R2+R3
Input
R2
—VR2+R3
+V
V
out
—V
Fig.
2.1.13
Timing
Chart
(4)
Peak
holding
circuit
;
Figs.
2.1.14.
and
2.1.15.
show
the
peak
holding
circuit
for
Input
Output
positive
input
voltage
and
its
timing
chart.
This
circuit
holds
the
peak
value
of
the
input
voltage.
R]c
When
the
input
signals
are
pulses,
the
capacitor
C
ng
repeatedly
charges
and
dischages
to
hold
the
peak
value.
:
:
When
no
pulse
is
supplied,
C
is
discharged
through
R
and
Fig.
2.1.14
Peak
Holding
Circuit
the
output
becomes
O
with
a
certain
time
constant.
It
is
used
in
the
N-530
in
combination
with
an
oscillator
for
frequency-voltage
conversion.
A
J
Tc
{Input
t
E-e
CR
Output
E
Fig.
2.1.15
Timing
Chart
2.1.3.
Quadrature
Detector
is
supplied
to
another.
The
pulse
width
of
output
iL
varies
Figs.
2.1.16.-2.1.18.
show
the
structure
and
operation
according
to
the
phase
difference
between
the
direct
input
principle
of
the
quadrature
detector.
It
is
a
phase
detector
e,
and
the
input
through
the
phase
shifter
e2
and
phase
in
which
a
direct
signal
is
supplied
to
an
input
terminal
of
detection
is
made
by
the
increase
and
decrease
of
the
the
multiplier,
and
a
signal
through
a
90°
phase
shifter
mean
value
iav.
90°t
AD
Multiplier
P
Phase
(chadearere)
me
eal
©
Output
Shifter
Detector
Go
Audio
Preamp,
Input
Limiting
Amp,
Cin
Fig.
2.1.16
Quadrature
Detector
System
Diagram
I
Shifter
.
90°t
40
it
{
i2
€2
0
i
average
Fig.
2.1.17
Quadrature
Detector
Circuit
i
|
Fig.
2.1.18
Timing
Chart
2.2.
Power
Mute
Signal
-
Refer
to
the
timing
chart
in
Fig.
2.2.1.
and
circuit
diagram
in
Fig.
2.2.2.
(1)
Power
ON
When
the
Power
Switch
is
pressed
to
power
ON,
+12V,
+40V
and
+18V
Power
Source
will
be
supplied.
In
the
meantime,
when
Q306
is
turned
OFF,
C309
(33
uF
25
V)
will
be
charged
via
R314
(1
MQ),
then
0307
will
be
turned
ON
approx.
2
seconds
later
to
release
the
Power
Mute
Signal.
In
other
words
the
said
Power
Mute
Signal
will
bring
the
N-530
in
Mute
condition
approx.
2
seconds
after
the
Power
Switch
is
pressed
ON.
Power
Mute
=
L
will
enter
the
Preout
Mute
Circuit
(0107
and
0207)
and
Auto
Tuning
flip-flops
of
the
Main
P.C.B.,
and
mutes
each
output
terminal
and
resets
each
flip-flop.
It
is
also
supplied
to
the
Relay
RL301
to
turn
OFF
and
opens
the
supply
to
Speaker
System.
When
Power
Mute
Signal
is
released,
the
Relay
RL301
becomes
turned
ON
and
Speaker
System
will
be
con-
nected,
(2)
Power
OFF
When
the
Power
Switch
is
released
to
power
OFF,
+12V,
+40V
and
+18V
will
no
longer
be
supplied,
Q306
is
turned
ON
during
discharge
of
C308
(47
uF
25
V)
via
0304
and
R313
(2.2
MQ).
When
O306
is
turned
ON,
C309
will
immediately
be
discharged
via
Q306.
This
way
Q307
and
Q308
will
be
turned
OFF,
Power
Mute
=
L
will
be
supplied
to
the
Main
P.C.B.
1C304
pA7B42M
D302
Q304
2SA733
R306
3.3K
R308
400K
fe)
C307
2200
25v
R307
40K
R309
400K
DC
Voltage
Detector
Abnormal
Temperature
Detector
Power
Switch
+42V
t4ov
48V
Q304
Q306
C309
Q307
Q308
Power
Mute
Q306
280945
ON
OFF
ON
OFF
ON
OFF
ON
OFF
OV
ON
OFF
H
L
Fig.
R314
4M
C309
33y
25V(LN)
2.2.1
Power
Mute
Timing
Chart
Q307
28$€1400
2SA750
(4)
©
Power
Mute
R347
40K
—18V
Fig.
2.2.2
Power
Mute
Generating
Circuit
2.3.
Tuner
Section
2.3.1.
FM
MPX
Stereo
Broadcasting
Operation
As
is
generally
known,
the
amplitude
of
the
carrier
wave
is
modulated
in
AM
broadcasting
whereas
the
carrier
fre-
quency
is
modulated
in
FM
broadcasting.
Fig.
2.3.1.
illustrates
these
conditions.
FM
transmitters
and
receivers,
although
considerably
more
complicated
than
those
for
AM
broadcasting,
permit
radio
reception
with
very
high
fidelity
and
any
difference
in
technical
skill
will
be
noticeably
manifested
in
the
performance
of
the
equipment.
Compared
to
AM
broad-
casting,
FM
broadcasting
has
many
advantages,
such
as
better
frequency
response,
higher
S/N
ratio,
less
inter-
ference,
less
distortion,
etc.
However,
its
greatest
advan-
tage
is
the
capability
for
compatible
stereo
broadcasting.
This
is
achieved
by
employing
a
composite
signal,
as
shown
in
“4”
of
Fig.
2.3.2.
instead
of
the
audio
signal
shown
in
Fig.
2.3.1.
Since
the
composite
signals
transmitted
in
ordinary
broadcasting
have
an
extremely
complex
waveform,
it
is
hard
to
recognize
them,
even
when
observed
with
an
oscilloscope.
Figure
2.3.2.
illustrates
an
L
channel
signal
of
1900
Hz
with
no
R
channel
signal.
As
shown
in
“1”
of
Fig.
2.3.2.,
this
is
a
stereo
signal
modulated
so
as
to
swing
at
38
kHz
between
the
L
channel
signal
and
R
channel
signal.
Therefore,
this
signal
can
be
separated
into
L
ch/R
ch,
by
a
synchronizing
signal
with
the
38
kHz
of
the
stereo
signal
and
a
circuit
which
is
conducting
at
the
positive
peak
and
negative
peak
of
this
synchronizing
signals;
the
L
ch/R
ch
signals
will
come
out
separately.
But,
as
is
shown
by
the
signal
waveform
“1”
in
Fig.
2.3.2.,
since
the
phase
at
38
kHz
is
reversed
between
the
positive
and
negative
half-cycles
of
the
L
ch
signal,
even
with
the
separation
described
above,
it
is
not
possible
to
distinguish
L
ch
from
R
ch.
Audio
Signal
Carrier
Noise
mixes
Under
these
conditions,
it is
possible
that
the
L
ch/R
ch
is
reversed
each
time
the
power
switch
is
turned
ON/OFF,
Here
lies
the
importance
of
the
pilot
signal.
That
is,
when
making
the
38
kHz
signal
(’’3”
in
Fig.
2.3.2)
by
doubling
the
19
kHz
pilot
signal,
if
the
positive
and
negative
peaks
of
the
19
kHz
wave
are
synchronized
with
a
negative
peak
at
the
38
kHz,
L
channel
can
be
taken
out
at
the
positive
peak
of
the
38
kHz
signal
and
the
R
channel!
at
the
L-Signal
Envelope
R~Signal
Envelope
Stereo
Signal
Modulated
at
38
kHz
L-Signal
1900Hz
R-Signal
O
Ole
rial
|
CRU
OU
h
Ua
CAC
VAC
AUAY
19
kHz
@
38
kHz
®
Composite
Signal
Fig.
2.3.2
MPX
Stereo
Signal
Signal
demodulated
Limiter
unusable
>
Cut
by
limiter
aa
ave
rac
ae
Fig.
2.3.1
AM
and
FM