Teac X-300R User manual

TEAC
06
fe
SERVICE
MANUAL
X300R/X300
Stereo
Tape
Deck
X-300R(SGABAE
FUT.
Effective:
September
1983,
A-30057
5704018200

X300R/X300
|
1
SPECIFICATIONS
AND
SERVICE
DATA
SPECIFICATIONS
Track
system
4-track
two-channel
stereo
Head
system
3
heads:
erase,
record,
playback
Reel
size
7"
and
5”
Tape
speed
19
cm/s
(7-1/2
ips)
and
9.5
cm/s
(3-3/4
ips)
Inputs
(level
and
impedance)
Mic:
Specified
input
level:
Min.
input
level:
Specified
input
level:
Min.
input
level:
Outputs
(Jevel
and
impedance)
OUTPUT:
Specified
output
level:
—5
dB
(436
mV)/10
kohms
Max.
output
level:
+1
dB
(0.869
V)
PHONES:
Specified
output
level:
—24
dB
(48.9
mV)/8
ohms
Playback
equalization
“LH”
tape:
19
cm/s:
3,180
us
+
50
us
(NAB)
9.5
cm/s:
3,180
us
+
90
us
(NAB)
“EE”
tape:
19
cm/s:
3,180
us
+
35
us
9.5
cm/s:
3,180
us
+
50
us
—60
dB
(0.775
mV)/10
kohms
—70
dB
(245
nV)
—12
dB
(195
mV}/50
kohms
—22
dB
(61.5
mV)
LINE
IN:
Motors
1
DC
servo
capstan
motor
2
Induction
reel
motors
Bias
frequency
100
kHz
Operating
position
Vertical,
horizontal
Power
requirements
100/120/220/240
V
AC,
50/60
Hz,
85
W
(General
export
model}
120
V
AC,
60
Hz,
70
W
(USA/Canada)
220
V
AC,
50
Hz,
85
W
(Europe)
240
V
AC,
50
Hz,
85
W
(UK/AUS)
100
V
AC,
50/60
Hz,
70
W
(Japan)
Weight
15
kg
(33-1/16
Ibs)
net
(X-300R)
14
kg
(30-14/16
Ibs)
net
(X-300)
Dimensions
9-1/8"
(231mm)
tO}
q
©
\
—
\
/
KH
os"
35
jicesing
16
-
1/8"
(410mm)
Fig.
1-4
CAUTION
A
Parts
marked
with
this
sign
are
safety
critical
components.
they
must
always
be
replaced
with
identical
components
—
refer
to
the
appropriate
parts
list
and
ensure
exact
re-
placement.
SERVICE
DATA
MECHANICAL
Tape
speed
deviation
3,000
Hz
+30
Hz
Tape
speed
drift
20
Hz
Wow
and
flutter
Playback:
0.06%
(WRMS),
0.12%
(RMS)
at
19
cm/s
0.10%
(WRMS),
0.15%
(RMS)
at
9.5
cm/s
Record/playback:
0.08%
(WRMS)
at
19
cm/s
0.15%
(WRMS)
at
9.5
cm/s
Pinch
roller
pressure
1.5
to
1.7
kg
(3.31
to
3.75
Ibs)
Reel
torque
(play
mode)
Take-up:
Back
tension:
Brake
torque
Forward
direction:
1200
to
1400
g-cm
(16.7
to
19.4
oz-inch)
Reverse
direction:
|
500
to
700
g-cm
(6.94
to
9.72
oz-inch)
Left/right
deviation:
150
g-cm
(2.09
oz-inch)
Fast
winding
time
140
seconds
or
less
for
550
m(
1800
feet)
330
to
470
g-cm
(4.58
to
6.53
oz-inch}
220
to
280
g-cm
(3.06
to
3.89
oz-inch)
ELECTRICAL
Frequency
response
See
Figs.
3-6
to.
3-9.
Signal-to-noise
ratio
Playback
[wet
[ase]
Erase
efficiency
70
dB
min,
at
1
kHz
(measured
with
input
10
dB
higher
than
the
specified
input
level)
Channel
separation
50
dB
min.
at
1
kHz
Adjacent
track
crosstalk
40
dB
min.
at
125
Hz
Total
harmonic
distortion
1.0%
or
less
at
1
kHz
with
“UH
(I1)"
tape
1.5%
or
less
at
1
kHz
with
‘E
E”
tape
NOTES:
1.
Improvements
may
result
in
changes
in
the
SPECIF
ICATIONS
AND
SERVICE
DATA.
2.
0B
is
referenced
to
0.775
V,
unless
otherwise
specfsed.
3.
Playback
performance
specifications
refer
to
opert#on
in
both
forward
and
reverse
play
modes.
BBL.
DUD
hRARIMIA
ING
—
VARS
TOOT
-
2s
eNO
ILD
FO
DUET,
BOM
OS
FAK
“Faw.
3.
AMPED
MAE
EDI
CH.
SURG
SEeE
ETT
1
Py
FeO
eA
UT
RaW.
*

|
X300R/X300
2
MECHANICAL
ADJUSTMENT
AND
CHECKS
2-1
CAPSTAN
THRUST
CLEARANCE
1,
There
must
be
a
clearance
of
0.1
to
0.3
mm
between
the
capstan
shaft
and
the
thrust
plate,
Check
to
see
that
the
clearance
is
within
this
range.
If
not,
loosen
the
two
screws
on
the
flywheel,
adjust
the
clearance,
and
retighten
the
screws,
0.1
~0.3
mm
Capstan
Shaft
Adjust
two
screws
hrust
Plate
eee
with
Allen
wrench
Fig.
2-1
2-2
SHUT-OFF
SWITCH
POSITION
1.
There
must
be
a
clearance
of
1
to
1.5
mm
between
the
cam
and
actuator(A)
when
the
microswitch
is
off,
and
0.5
mm
between
the
microswitch
and
actuator(B)
when
the
microswitch
is
on.
Check
to
see
that
the
clearance
is
within
these
values.
If
not,
adjust
as
necessary.
Microswitch
Adjust
Screw
Actuator
(B)
Actuator
(A)
Fig.
2-2
Adjust
Screw
2-3
BRAKE
MECHANISM
NOTE:
Be
sure
that
the
power
is
turned
off
prior
to
making
any
adjustments
to
the
brakes,
1.
Screw(A)
for
the
left
brake
(as
viewed
from
the
front)
must
be
adjusted
so
that
there
is
a
clearance
of
1
mm
between
lever(C)
and
lever(E).
Screw(A)
for
the
right
brake
must
then
be
adjusted
so
that
lever(B)
is
parallel
to
lever(C).
2.
Push
the
plunger
until
there
is
contact
at
(a);
i.e.,
until
the
clear-
ance
has
been
eliminated,
but
make
sure
that
the
plunger
is
not
pushed
so
strongly
that
the
levers
(E)
(C),
and
(B)
are
deflected
—
they
must
remain
in
a
horizontal
plane.
3.
Position
the
solenoid
housing,
while
the
plunger
is
pushed
as
des-
cribed
in
step
#2
above,
so
that
the
gap
at
(f)
(the
distance
be-
tween
the
leftmost
edge
of
the
plunger
and
the
leftmost
edge
of
the
solenoid
housing)
is
between
11
to
12
mm.
When
the
solenoid
housing
is
so
positioned,
the
plunger
should
be
able
to
be
deflect-
ed
between
1
to
2
mm
when
pushed
strongly.
Brake
Solenoid
Lever
(B)
(a)
Imm
Adjust
Solenoid
Position
Lever
(C)
-
a
(f)}=11~
12mm
PUSH
Plunger
Lever
(E)
Left
Reel
Table
Fig.
2-3

X300R/X:300
|
24
BRAKE
TORQUE
NOTE:
1.
2.
Before
making
any
brake
adjustments
or
measurements,
make
sure
the
power
is
off.
Mount
an
empty
7”
reel
onto
either
reel
table
and
attach
a
spring
scale
to
the
reel
with
a
string.
Smoothly
pull
the
scale
away
from
the
reel
under
test
and
note
the
torque
value
when
the
reading
on
the
scale
is
steady.
The
proper
torque
values
are
given
in
the
chart
below.
Follow
steps
1
and
2
for
each
measuring
condition;
i.e.,
(A)
through
(D)
in
Fig.
2-4.
_
\f
the
forward-direction
torque
is
not
correct,
change
the
hook-
ing
position
of
the
spring
hanger
(reference
(D)
in
Fig.
2-3)
for
the
corresponding
brake
requiring
adjustment.
If,
after
the
for-
ward-direction
torque
has
been
properly adjusted
and
the
reverse-
direction
torque
is
not
correct,
or
the
forward-direction
torque
is
still
not
correct,
check
to
see
if
the
brake
felt
pad
is
worn,
and
also
check
that
the
brake
mechanism
is
properly
aligned
as
ex-
plained
in
Section
2-3,
“Brake
Mechanism”.
If
necessary,
replace
the
entire
reel
table.
1200
—
1400
g-cm
(16.7
—
19.4
oz-inch)
500
—
700
g-cm
(6.94
—
9.72
02-inch)
150
g-cm
(2,09
02-inch)
Torque
calculating
formulas:
1.
Torque
(in
g-cm
or
02-inch)
=
Force
or
Weight
(in
g
or
0z)
x
Radius
(in
cm
or
inch)
2.
Conversion
of
g-cm
to
oz-inch:
g-cm
x
0.0139
=
oz-inch
Fig.
2-4
2-5
REEL
MOTOR
TORQUE
TAKE-UP
TORQUE
1,
Hold
the
right
tension
arm
up
using
a
rubber
band.
2.
Mount
an
empty
7”
reel
onto
the
right
(left)
reel
table,
and
attach
a
spring
scale
to
the
ree!
with
a
string.
3.
Place
the
deck
in
the
forward
(reverse)
play
mode.
4,
Allow
the
rotation
of
the
reel
to
slowly
pull
the
scale
toward
the
reel.
5.
Hold
the
spring
scale
with
enough
force
to
allowa
steady
reading.
6.
Measure
the
take-up
torque.
The
proper
values
are
given
in
the
chart
below.
7.
There
is
no
specially-provided
adjustment
for
take-up
torque,
so
if
correction
is
needed,
repair
or
replace
the
defective
part
and/
or
circuit.
*
X-300R
only
330
to
470
g-cm
(4.58
to
6.53
ozinch)
220
to
280
g-cm
(3.06
to
3.89
ozirch)
(B)
in
REV
(D)
in
FWD*
(A)
in
FWD
(C)
in
REV*
Take-up:
Back
tension:
NOTE:
For
torque
calculation,
refer
to
the
formulas
pr
avided
in
Fig,
2-4.
Fig.
2-5

BACK
TENSION
8.
9.
10.
11.
12,
Place
the
deck
in
reverse
(forward)
play
mode.
Using
a
steady,
smooth
motion,
pull
against
the
motor
torque
to
draw
the
scale
away
from
the
reel.
After
making
sure
that
the
reel
motion
is
smooth
(the
string
should
not
be
rubbing
against
the
reel
flanges),
note
the
value
in-
dicated
on
the
scale.
The
proper
values
are
given
in
Fig.
2-5.
if
necessary,
adjust
the
slider
of
resistor
(R802)
until
the
proper
torque
values
in
both
forward
and
reverse
play
modes
are
ob-
tained.
See
Fig.
2-6.
Resister
(R802)
Slider
Fig.
2-6
X300R/X300
2-6
PINCH
ROLLER
PRESSURE
1.
Hold
the
right
tension
arm
up
using
a
rubber
band,
string,
etc.
2.
Place
the
deck
in
the
forward
play
mode
without
threading
any
tape.
3.
Attach
a
spring
scale
to
the
pinch
roller
as
shown
in
Fig.
2-7,
4,
Pull
the
pinch
roller
away
from
the
capstan
shaft
(on
a
plane
in-
tersecting
the
center
of
the
capstan
shaft
and
the
pinch
roller)
until
the
capstan
shaft
and
the
pinch
roller
are
separated.
5.
Ease
pressure
on
the
scale
until
the
pinch
roller
just
begins
to
turn.
The
scale
should
then
read
1,5
kg
to
1.7
kg
(3.31
Ibs
to
3.75
Ibs).
6.
By
pressing
the
DIRECTION
switch,
change
play
mode
to
reverse
direction
and
measure
in
the
same
way
as
previously
described.
Specification
is
the
same
as
that
for
forward
play
mode,
Adjust
Screws
Pinch
Roller
Spring
Scale
Fig.
2-7
|
i
|
|
|
:

X300R/X300
2-7
REEL
TABLE
HEIGHT
1.
As
a
general
reference,
the
height
of
the
reel
table
should
rough-
ly
correspond
to
a
distance
of
38
mm
(1-7/16")
between
the
chassis
of
the
deck
and
the
rubber
mat
on
the
reel
table.
If
check-
ing
reveals
any
large
deviation
from
this
value,
loosen
the
two
ad-
justment
screws
on
the
reel
table,
adjust
the
height,
and
retight-
en
the
screws.
.
For
fine-adjustment,
check
that,
while
in
fast-forward
or
rewind
modes
starting
at
the
beginning
of
the
tape,
the
tape
does
not
touch
the
upper
or
ower
reel
flanges.
If
it
does,
fine-adjust
ac-
cordingly.
7
Standard
Empty
Reel
Reel
Table
LI
aS
IES,
Boe
aa
SR
BSS
ea
Fig.
2-8
2-8
TAPE
SPEED
NOTE:
Conduct
the
following
steps
in
both
forward
and
reverse
play
modes.
.
Connect
a
frequency
counter
to
either
OUTPUT
jack.
(See
Fig.
2-9).
.
Load
a
TEAC
YTT-2003
test
tape
containing
a
3000-Hz
test
tone,
and
set
the
SPEED
switch
to
HIGH
(19
cm/sec
or
7-1/2
ips).
.
Play
the
middle
of
the
test
tape
and
adjust
the
HIGH
speed
trim-
mer
resistor
until
the
frequency
counter
indicates
a
reading
of
3000
Hz
(+5
Hz).
See
Fig.
2-10.
(CAUTION:
Use
an
insulated
screwdriver
to
prevent
shorting.)
.
Playing
the
tape
at
both
the
beginning
and
the
end,
check
that
‘the
tape
speed
does
not
vary
any
more
than
the
limits
prescribed
in
the
specifications,
so
that
there
is
never
a
total
deviation
of
more
than
+30
Hz
from
the
3000-Hz
test
tone,
nor
a
drift
of
more
than
20
Hz
at
any
given
time.
.
Usinga
TEAC
YTT-2002
test
tape,
repeat
steps
#3
and
#4
above
with
the
SPEED
switch
set
to
LOW
(9.5
cm/sec
or
3-3/4
ips).
In
step
#3,
the
speed
may
be
adjusted
for
the
proper
initial
setting
by
using
the
LOW
speed
trimmer
resistor.
DECK
wow
@
FLUTTER
METER
under
TEST
Trees
Fig.
2-9
°
High
Speed
°°
sq—EF.
Ds
o©
»
$j
C0
oo)
Motor
Servo
P.C.B.
®
000090990
Fig.
2-10
2-9
WOW
AND
FLUTTER
PLAYBACK
NOTE:
This
paragraph
applies
to
both
forward
and
reverse
play
modes.
1.
Connect
a
wow-and-flutter
meter
to
the
deck
as
shown
in
Fig.
2-9.
2.
Load
a
TEAC
YTT-2003
test
tape
to
check
the
wow
and
flutter
when
the
deck
is
set
to
HIGH
speed,
or
a
YTT-2002
test
tape
to
check
when
set
to
LOW
speed.
3.
Play
the
beginning
and end
of
the
respective
test
tape
for
each
speed
setting.
The
measured
wow
and
flutter
should
be
at
least
0.06%
(WRMS)
and
0.12%
(RMS)
for the
HIGH
speed
setting
and
at
least
0.10%
(WRMS)
and
0.15%
(RMS)
for
the
LOW
speed
setting.
OVERALL
4.
Load
TEAC
YTT-8013
test
tape
and
record
a
3000-Hz
signal
on
it
in
both
HIGH
and
LOW
speed
settings
and
at
te
beginning
and end
of
the
tape,
and
while
recording
the
signal,
sirnultaneous-
ly
monitor
the
signal
from
the
play
head
by
setting
the
MONI-
TOR
switch
to
the
TAPE
position
(raised
position).
5.
The
wow-and-flutter
meter
should
indicate
a
readiny
of
no
more
than
0.08%
(WRMS)
in
the
HIGH
speed
setting
aad
no
more
than
0.15%
(WRMS)
in
the
LOW
speed
setting.
g

2-
1.
10
HEAD
AND
TAPE
PATH
ALIGNMENT
By
visual
observation,
align
the
erase,
record,
and
playback
heads
so
that
the
proper
tilt
is
obtained
for
each.
Coarse-adjust
the
azimuth
of
the
erase,
record,
and
playback
heads
by
observing
each
without
a
tape
threaded.
Load
a
TEAC
YTT-8013
test
tape
and
play
it
in
the
forward
direc-
tion.
Fine-adjust
the
height
of
each
head
as
shown
in
Fig.
2-12.
When
adjusting,
make
sure
all
the
screws
are
turned
proportionately
50
that
the
tilt
and
azimuth
previously
adjusted
is
not
altered.
.
If
required,
coarse
adjust
any
head
requiring
tangency
correction.
X300
Playback
°
+
nd
o
€oees”
°
©
©
X300R
Erase
Record
Playback
te
||
5]
[S|
I
@
Azimuth
GE}
Height
and
tilt
Fig.
2-11
©
Tangency
Example
of
misalignment
TILT
The
head
surface
should
be
parallel
to
the
tape
guide
pin
surface.
=
Fs
The
gap
of
the
head
core
should
be
perpen-
dicular
to
the
tape
path.
HEIGHT
(A)
Erase
head
The
upper
edge
of
the
upper
core
of
the
head
should
protrude
0.1
mm
above
the
upper
edge
of
the
tape.
(B)
Record
head,
Playback
head
(X-300)
The
brass-colored
spacer
of
the
head
should
mo
appear
about
as
thin
as
a
pencil
line
above
=
the
tape.
(C)
Playback
head
(X-300R)
The
distance
from
the
top
head
core
to
the
top
edge
of
the
tape
and
from
the
bottom
head
core
to
the
bottom
edge
of
the
tape
should
be
equal.
TANGENCY
ce
The
dotted
line
should
be
perpendicular
Fig.
2-12
Head
alignment
conditions
C
to
the
surface
of
the
tape.
f=
=I
|
_x%300R/%300
2-11
REVERSE
GUIDE
HEIGHT
(X-300R)
1.
Check,
and
if
necessary,
align
head
and
tape
path
mentioned
in
2-10.
2.
Thread
a
TEAC
YTT-8013
test
tape
on the
deck,
and
in
the
re-
verse
direction
run
the
tape
at
the
beginning
and
the
end
of
the
tape.
3.
Check
that
tape
moves
exactly
on
the
center
of
the
playback
head,
i.e.,
that
playback
head
height
(refer
to
Fig.
2-12)
is
also
maintained
in
reverse
play
mode,
4.
If
not,
loosen
the
set
screw
and
turn
the
reverse
guide
clockwise
or
counterclockwise
for
adjustment,
then
retighten
set
screw,
set
screw
Fig,
2-13
2-12
FREQUENCY
AND
VOLTAGE
CONVERSION
General
Export
Models
Only:
If
it
is
necessary
to
change
the
frequency
and
line
voltage
settings,
follow
the
instructions
below:
ALWAYS
DISCONNECT
THE
POWER
LINE
CORD
BEFORE
MAKING
THESE
ADJUSTMENTS.
1.
Remove
the
metal
housing*covering
the
top
and
sides
of
the
deck
by
unscrewing
the
three
screws
from
each
side.
2.
Locate
the
voltage
selector
on
the
right
(as
seen
from
the
front).
The
frequency
selectors
are
located
near
each
motor
as
illustrat-
ed.
VOLTAGE
CONVERSION:
3.
Turn
the
slotted
center
post
of
the
selector
with
a
crewdriver
or
coin
as
illustrated
until
the
proper
setting
is
obtained.
FREQUENCY
CONVERSION:
4,
For
each
reel
motor,
loosen
the
screws
on
the
pspective
fre-
quency
selector
bar
and
jumper
the
bar
to
the
trriinal
corre-
sponding
to
the
AC
line
frequency
of
your
area,
hes
retighten
the
screws.
5.
Replace
the
housing
and
retighten
the
screws.
*
Decks
in
some
areas
have
a
wooden
case
which
can
te
semoved
by
unscrewing
the
screws
on
the
bottom
(feet)
and
side;

X300R/X300
2-13
LUBRICATION
Qiling
is
needed
after
every
1,000
hours
of
operation
or
once
a
year
if
the
deck
is
used
infrequently.
TEAC
spindle
oil
(fram
TEAC
TZ-255
oil
kit),
Mobil
D.T.E.
Oil
Light,
and
similar
types
of
oil
are
recommended.
Lubrication
is
normally
not
necessary
except
at
the
points
shown.
1.
Place
the
deck
in
a
horizontal
position.
2.
Apply
a
few
drops
of
oil
to
the
respective
spindles
shown,
except
the
capstan
and
the
reel
motors,
Spread
the
oil
evenly
on
the
spindle
surfaces
using
a
cotton
cloth
or
similar
applicator.
3.
For
the
capstan
and
reel
motors,
apply
a
few
drops
to
the
indi-
cated
positions
but
do
not
spread
the
oil.
4.
After
oiling
all
points,
operate
the
deck
fer
1
to
2
hours
until
the
oil
is
thoroughly
absorbed,
Fig.
2-15
a
3
ELECTRICAL
ADJUSTMENT
AND
CHECKS
NOTES:
1.
Clean
and
demagnetize
the
entire
tape
path
prior
to
3-1
POWER
SUPPLY
CHECK
making
any
adjustments
or
checks.
2.
Make
sure
that
the
deck
is
properly
set
for
the
volt-
age
in
your
area,
3,
Adjustments
and
checks
are
generally
done
in
order:
of
L-ch,
then
R-ch.
Double
reference
numbers
in-
dicate
L-ch/R-ch.
(Example:
R121/R221)
R
&
P
AMPL
PCB
4.
0B
is
referenced
to
0.775
V.
If
an
AC
voltmeter
is
used
which
references
0
dB
to
1
V,
appropriate
com-
pensation
must
be
made.
5.
An
AC
voltmeter
with
an
input
impedance
of
1M
ohms
or
more
must
be
used.
6.
In
the
charts,
instruction
in
the
MODE/INSTRUC-
TION
column
at
each
step
is
continued
from
pre-
vious
step
indication
unless
specified
here.
1.
Connect
a
DC
voltmeter
to
pin
15
of
U102
on
the
R
&
P
AMPL
PCB.
2.
The
DC
voltage
shoud
be
+12
V.
(See
Fig.
3-1)
DC
VOLTMETER
Fig.
3-1
3-2
MONITOR
PERFORMANCE
[
Deck
settings:
MONITOR
sw.:
SOURCE
|
MODE/
SIGNAL
ADJUST
CONNECTION
|
=
iNSTRUCTION
SOURCE
|
(or
CHECK)
BUTEUE
j
EMBEDS
MIC
cont:
MIN
7
400
Hz/—22
dB
LINE
min,
input
sa[
3-2
LINE
cont:
MAX
R123/R223
+1
dB
(0.869
V)
ane
.
tafrase
|
OUTPUT
cont:
MAX
(61.6:m¥)
leve|
OUTPUT
cont.
(L/R)
If
channels
do
Sp
elie’
1.
MONITOR
|
1-2
not
match,
re-
—5
dB
(436
mV)
poss
tion
Tor
output
adjust
R123/
abel
R223
to
corres-
eon
re
pond
to
the
lower
OUTPUT.
OUTPUT
cont:
400
Hz/—12
dB
Speaified
position
Te
ue
my
oh
ke
eo
ie
sale
ares

X300R/X300
|
ot
Ee
TT
MODE/
IGNA
ADJUST
ITEM
CONNECTION
pore
eel
Senne
io
CHECIG
OUTPUT
REMARKS
erent
,
LINE
cont:
400
Hz/—12
dB
|
2.
VU
meter
|
2-1|
Fig.
3-2
Spec.
position
(1-3)
(195
mv)
R131/R231
O
VU
on
VU
meter
—
at
—
3.
MIC
input
|
3.4
Fig.
3-2
but
MIC
cont:
MAX
400
Hz/—70
dB
Check
—5
dB
+2
dB
MIC
min,
input
|*
level
|
LINE
IN
MIC
LINE
cont:
MIN
(245
pV)
(346
mV
to
548
mV)
|
level
4.
PHONES
LINE
cont:
400
Hz/—12
dB
;
iti
=
—24dB+2dB
output
4-1|
Fig.
3-3
Spec.
position
(1-3)
Check
level
MIC
cont:
MIN
(195
mV)
(38.8
mVto
61.5
mV)
IMPORTANT:
After
step
4-1
is
completed,
do
not
alter
any
of
the
controls
during
later
checks.
OSCILLOSCOPE
OSCILLATOR
piSTORTION
ANALYZER
ATTENUATOR
IkHz
FILTER
Fig.
3-2
Basic
connection
3-3
Deck
settings:
MONITOR
sw.:
MIC
controls
(L/R):
PLAYBACK
PERFORMANCE
TAPE
AC
Voltmeter
DECK
AC
Voitmeter
under
TEST
Fig.
3-3
Connection
for
PHONES
check
TEST
LOAD
ed
hes
By
Minimum
level.
position
TEAC
test
tapes:
LINE
controls
(L/R):
OUTPUT
controls
(L/R):
For
playback
alignment
Specified
position
(step
1-3)
Specified
position
(step
1-2)
YTT-1052:
For
9.5
cm/s
or
3-3/4
ips,
EE
YTT-1053:
For
19
cm/s
or
7-3/4
ips,
EE
For
recording
alignment
(blank)
YTT-8013:
For
LH
(1,
I)
YTT-8053:
For
EE
YTT-1002:
For
9.5
cm/s
or
3-3/4
ips,
LH
(1,11)
=.
NOTE:
TAPE
SELECTOR
(left)
switch
has
no
effect
on
playback
mode.
YTT-1003:
For
19
cm/s
or
7-3/4
ips,
LH
(1,
ID
‘a
]
MODE/
SIGNAL
ADJUST
|
ITEM
CONNECTION
INSTRUCTION
SOURCE
(or
CHECK)
OUTROS
REMARKS
|
4
5.
Playback
een
a
YTT-1003
Azimuth
adjust
|
Phase:
within
45°
head
5-1|
Fig.
3-4
ye
(16
kHz/—10
screw
on
head
on
oscilloscope
imuth
ean
dB)
(Fig.
2-11)
(Fig.
3-5)
azimut'
(R):
LH
a,
g.
Ig.
|
ei
Fig.
3-2
ET
IS
cy.
|
LI
aRat
A
—5
dB
(436
mV)
;
{400
Hz/0
dB)
SPEED:
HIGH
6.
i
a
es
.
TAPE
SELECT.
level.
b
(R):
LH
(t,
ID
He
Check
—5
dB
+2dB
ao
(346
mV
to
548
mV)
OSCILLOSCOPE
SPKR
O°
(IN
PHASE)
‘
AC
Voltmeter
T-1426
Fig.
3-4
Connection
for
azimuth
check
45°
90°
Fig.
3-5
Confirming
phase
relationship
é
T-
1493
|
:
{

X300R/X300
MODE/
SIGNAL
ADJUST
ITEM
CONNECTION
ee
an
nee
arate
OUTPUT
REMARKS
r
7-1|
Fig.
3-2
FWD
HIGH
|
YTT-1003
R116/R216
Fig.
3-6
|
“1]
Fig.
3-
TAPE
SELECT)
a.
(R):
LH
(1,
I)
Low
|
yrtT-1002
R120/R220
Fig.
3-7
Changing
play
mode
to
REV
direction,
check
whether
the
frequency
response
specs
are
met
according
to
7-1
and
7-2.
FWD
FWD
SELECT|HIGH
|
YTT-1053
R114/R214
Fig.
3-6
IEEE
Low
|
yTT-1052
R118/R218
Fig.
3-7
|
Changing
play
mode
to
REV
direction,
check
whether
the
frequency
response
7.
Frequency
response
74
specs
are
met
according
to
7-4
and
7-5.
ek
Zz
[
e
Ratio
of
spec.
FWD
and
REV
OUTPUT
signal
HIGH
and
LOW
LH
(1,
10)
(—5
dB)
to
in-
8.
Signal-to-
|
8-1]
Fig.
3-2
LH
(1,
ID)
and
EE
YTT-8013
Check
foe
49
dB
herent
noise
level
noise
and
LOW:
47
dB
®
Change-over
of
Use
fully-erased
YTT-8053
EE
AC
line
plug
tape
(Use
bulk
Hea
51dB
polarity.
The
worse
tape
eraser)
LOW:
49
dB
reading
should
be
with
in
specifica-
tion.
si
|
eterno
5
eee
ene
eh
be
——
3-4
RECORDING
PERFORMANCE
Deck
settings:
MONITOR
sw.:
TAPE
TEAC
test
tapes:
For
recording
alignment
(blank)
MIC
controls
(L/R):
Minimum
level
position
YTT-8013:
For
LHIL
LINE
controls
(L/R):
Specified
position
(step
1-3)
YTT-8053:
For
EE
OUTPUT
controls
(L/R):
Specified
position
(step
1-2)
MODE/
SIGNAL
ADJUST
CONNECTION
|
i
sTRUCTION
SOURCE
(or
CHECK)
OnerOT
REMARKS
AC
voltmeter
be-
tween
terminals
Min,
reading
on
AC
9-1
|
#72(75)
and
#78
|
Rec-pause
mode
az
L106/L206
voltmeter
R
&
P
AMPL
PCB
.
——+
1s
.
t
healed
Min.
reading
9-2
|
Fig.
3-2
”
-
L101/L201
{—40
dB
or
more
?
|
7.78
mV
or
less)]
—
a
Test
tape:
YTT-8013
”
:
7
10:
Fig.
22
seco
LON
|
ee
10.
Record
Bias/EQ:
LH
TI
7
bias
7
;
(LH
1)
Over
bias
value
10-2]
Fig.
3-2
a .
C141/C241
2dB~4dB
(from
peak)
11.
Record
Test
tape:
YTT-8013
he
level
44-4]
Fig,
3-2
SPEED
sw.:
HIGH
ee
ay
dB
|
R158/R258
—5
dB
(436
mV)
(LH
ID
Bias/EQ:
LH
IE
=
—
+
|
HIGH
Required
signal/
.
12-1]
Fig.
3-2
YTT-8013
—22dB
(61.5mV)
|L102/L202
Fig.
3-8
12.
Frequency
Bias/EQ:
LH
I
=
-
7
I
=
response
|
12-2
“i
iW
Required
signa
ee
Agi?
wea
dB
(19.6
mv)
LE
104/L204
Fig.
3-9
L
tHID
=
[—
t
————
ee
SPEED
sw.:
LOW
10
kHz/—32
dB
Check
When
Bias/EQ
are
changed
from
LH
IT
12-3
id
Bias/EQ:
LH
|
(19.5
mv)
to
LH
1,
output
level
should
be
raised
by
+3
dB
at
10
kHz.
13.
Record
Test
tape:
YTT-8053
7
kHz
and
400
Nearly
equal
bias
43-1)
Fig.
3-2
SPEED
sw.:
LOW
Hz/—32
dB
C142/C242
output
level
at
(EE)
Bias/EQ:
EE
(19.5
mv)
both
frequencies
J
22}
14.
Record
Test
tape:
YTT-8053
400
Hz/-12
level
14-1}
Fig.
3-2
SPEED
sw.:
HIGH
dB
R159/R259
—5
dB
(436
mV)
(EE)
Bias/EQ:
EE
(195
mV)
10

SIGNAL
ADJUST
X300R/X300
MODE/
CONNECTION
INSTRUCTION
SOURCE
(or
CHECK)
BUTE
REMARKS
~+—
;
:
TT
Reguired
signal/
HIGH
|
_994B
L103/L203
Fig,
3-8
15.
Frequency]
15-1]
Fig.
3-2
YTT-8053
(61.5
mV)
response
i :
(EE)
Bias/EQ:
EE
Required
signal/
LOW
—32
dB
L105/L205
Fig.
3-9
(19.5
mV)
a
eo
Peer
|
LHIT
1
kHz/—12
dB
we
YTT-8013
and
YTT-8053|
(195
mV)
er
eae
Ape
16.
Signal-to
|
16-1|
Fig.
3-2
HIGH
and
LOW
then
Check
EE
:
(—5
dB)to
inherent
noise
ratio
LH
(IH)
and
EE
no-signal
record-
HIGH:
48
dB
noise
level
ahi
{tow
46
dB
t-
:
Fig.
3-2
Test
tape:
YTT-8053
1
kHz/—2
dB
OUTPUT:
—65
dB
Ref.
OUTPUT
level:
i.
|17-1]
Switch
ON
1
kHz
|
SPEED
sw.:
HIGH
(615
mV,
+19
|
Check
or
more
7598
17,
Erase
effi-
|
17-
Bi
i
Bias/EQ:
EE
VU)
then
(436
nV
or
less)
The
worst
value
ciency
ilter
Hash:
no-signal
record-
(70
dB
min.
should
be
within
ing
ratio)
specification,
18.
REC
Fig.
3.2
Test
tape:
YTT-8053
1
ee
10
ph
ok
—60
dB
pelo
level:
MUTE
185
Pl
ONL
SHE
Boece
VU)
then
cheek
(0.775
mV
or
less
The
worst
value
function
iter
fess:
record
muting
(65
dB
min
should
be
within
ratio)
specification.
Fig,
3-2
Test
tape:
YTT-8053
[ti
1
cf2(12
dB
eo
19-1]
Switch
ON
1
kHz
|
SPEED
sw.:
HIGH
:
:
Check
Find
the
difference
19.
Channel
filter
Bias/EQ:
EE
R:
No
signal
(1.38
mV
or
less)
between
the
1
kHz
separa-
record.
(50
dB
min.
ratio)
recorded
portion
tion
:
and
the
no-signal-
L:
No
signal
record.
recorded
portion
19-2
i
=
R:
1
kHz/—12
dB
Co
Le
~
(195
mv)
20-1]
Fig.
3-2
Same
as
19-1
Leopard
as
Ss
20.
Adjacent
|
track
”
|
At
both
channels:
crosstalk
|
50.2
"
Interchange
R
and
L
=
Check
125
Hz:
—45
dB
or
reels
then
playback
more
(4.36
mV
or
less)
a
(40
dB
min.
ratio)
1.0%
or
less
7
YTT-8013
and
YTT-8053
-
21,
Distor-
|
94.1|
Fig.
3-2
SPEED
sw.:
HIGH
Woe
ane
||
Check
BM
aden
tion
LH
(II)
and
EE
Say
EE
_|
om
|
LH,
YTT-1003
LHI,
YTT-8013
sear
EE,
YTT-1053
-------
EE,
YTT-8053
+2
Pasi
ee
=|
+
3(aB)
-2
I
“2
]
-
4
N
~
4(aB)
-4
J
-4(aB)
d
26k
(dB)
(dB)
;
+4
JE)
i
i
dis
30k
40
400
20k
(Hz)
40
400
6K
20k
(Hz)
Fig.
3-6
Playback
frequency
response
(HIGH)
Fig.
3-8
Overall
frequency
response
(HIGH)
LH,
YTT-1002
LHI,
YTT-8013
ayn
ape
nis
EE,
YTT-1052
~-7----
EE,
YTT-8053
+4
+4
+2
at
+
3(dB)
+2
7
+
3(dB)
0
T
10]
-2
!
ak
|
_
4
SI
-
6
(4B)
-
4
4
-4
(4B)
(dB)
18k
(dB)
22k
L
1
iJ
L
i
—1__t—_
40
400
14k
(Hz)
40
400
10k
|@k
(Hz)
Fig.
3-7
Playback
frequency
response
(LOW)
Fig.
3-9
Overall
frequency
response
(1-OW)
14

X300R/X300
|
3-5
ADJUSTMENT
AND
TEST
POINT
LOCATIONS
_
J
a
(a
3
12
ibe
f
Ss
zs
=iire
Ath
-
Fig.
3-10
[.cra1/c2a1
Record
bias
(LH
Li)
]
C142/C242
Record
bias
(EE)
L101/L201
Bias
trap
(OUTPUT)
L102/L202
Record
EQ
(HIGH,
LHI)
_|
L103/L203
|
Record
EQ
(HIGH,
EE)
[
L104/L204
Record
EQ
(LOW,
LHIL)
L105/L205
Record
EQ
(LOW,
EE)
i
L106/L206
Bias
trap
R111/R211
Playback
level
R114/R214
Playback
EQ
(HIGH,
EE)
[
R116/R216
Playback
EQ
(HIGH,
LH)
R118/R218
Playback
EQ
(LOW,
EE)
R120/R220
Playback
EQ
(LOW,
LH)
_—i|
R123/R223
MONITOR
output
level
R131/R231
R158/R258
R159/R259
VU
meter
level
Record
level
(LH
IT)
Record
level
(EE)

|
X300R/X-300
1.
BRORBeFr
v7
Li
F#rAAPr-ARIFAbME
1.3
WU—+
Ree
lL
trp
TAaIys
Ye
ThBLUADARSTL—-b
L
RVIEOSORAR(AEHMYL,
L/N—(B),
EMMOS
SAA
0.1~O
3mmHATHSCLE
(ChELN-(EVENDF
AM
(A)
1
mMICBSKI
At
So
ICBEIS.
CMERLN—(B),
(CSHTTHS
COMOBAANICEVERL,
TITKI-VO2
CECRACEVE
DL
—FRROIT
ELVIN
E
KOILDRVEDSHABT
S.
Aone
ORBORRICESCERHVET).
2
PRKIIEOKRVZRELOMDUEMHBTCE.
2
FIVE
YVLIT
FOULS
TRL,
Fahl
(1
—1
Bea)
CaOtkA
0"
CRSCRTEHC
LAL
~12mm
ICHBKIICVL
IF
FOMBERUAZBLURY
ZICKUBRETS.
ULOMBICLY,
SIU
sea
<
HASH
SMAlANSVCeL~2mH<
49
EUEF.
(M1—3
Bsa)
Yes
FO
zsxzrem
“r7t
KU
LREMBIS
(scat
BIE
(FLY:
LY
F(t)
(f)=11~12mm
Bi-1l
LQJerybeArraty
Fee
:
ee
L
VIAIO*
AF
vVFRAIOKED
Ca,
ALEP
QF
4L—-PCAENT
SCADA
1
~
1.5m,
V
ADO*
RAV
FRAYOER
VII
Aty
FARKEVTIO+
A419
FRROP
VF
AL-—9%
(BEng
Sl
CBIAO
SmmICGSHKIDIC
2
AOE
OKVEMBET
So
2
PRRAIEMDRUVA2RE
LM
UEHOEBTCL.
(641
—
2
B88)
#!)
—G
_
VI
FAAT
oF
tale
*
|
MRL
BMT
RCA)
B1-3

X300R/X300
|
1.4
7—*+°-
bLA7nRE
1
HERMUMDET
TV
FOEVU-WEV—We
7
FWic#BL.
RMORMICAZATUY
T+
A2A7—-We
RU
HItSo
2
APYVA
+
Ae
-—NWeEBMCG
7
BRU
UIs
F—TFNUMHARHSECEDAZATUYI*2Z27—-NW
NDEAERRLET.
CORADMSFROMUA
CHECKS
3.
(bb)
JAORHEeEI1—4ICHRTA,
B,
C,
DOS
MPT
C17
Do
4A
MAM
hKVIMRERDOMBADE
AS,
ATVUYT
HII(D)(B1—-3)DRD4EMSHZTUL
TH
t(DowkeAW#T
S-
WEDMRALCHMEDIL—+
+
bWIMES
MRE
RAIL-#F°e
Ny
FODTIVEDREL
TWD,
£723
BOP
-+RRBABA
GLE
(CBRANTOSNENF
2c
v¥IFS.
HEHEHE
Y—Ibs
F-TFIVEKE
RAT
So
>
an
1000
~
1300
9-
cm
500
~
7009-
cm
150
9-
cm
EAS
RAANA
BAB
IB
)
bL7H
eX
KIL
Z=HC9)
X#R
(cm)
Bll-4
14
Nao
DFYY
ay
1.5
Y-Ib-€-9
+
IL
15.1
BmObhwvo
(1-5B2R)
lL
OTANI
baBAL.
APY
vay:
P-LELA
CRT
So
2
KARUEMUDET
f
VF
OEZU-WVERBRYU—-I
(AMDICBBL.
KORMICAZTU
YF
+
A2ZAT—-IW
ZRUGITS.
3.
F-TF+
FyFteBEE-
ICTS.
4
Y—-JLAMlRL,
ATUYF
©
A-WIlF
YUVA
YAMDVUHESS
ATU
YF
+
ZT-WOKRARE
EFSZERVCAZTVU
YA
+
27—-WVE-EIC
RHEL
Bei
L.
RIChIDIFHBTS.
(HBA
ADL
—++
KID
IME
OIGBER)
5.
bhIL
AOE
It
330
~
470
9-
cm
TH
So
6
BRU
bIVTAARRBNH
VEGAN
CMER
LS
WIRBSNEVESISMMBAHKUGBKOEH
#iTID.
APYYF*RAT—IN
|
B1-5§

|
X300R/X300
15.2
NWy7e*FVYVsavOWE
1
GAN
hKeBALL
AF
YY
ays
P-LELD
(CRASS.
:
Q
TAVFDEYV-NVERMRBY
IDs
F—-TIvle
EEG
SZ.
MOKRVICAZTUY
SD
>
AT—-IWERY
(TIT
So
3.
FHT
+
Fy
FeBEE-FICTS.
4A
AZDPYUYD*2AF-WE-EDRECATH2—5
NKDICEAICS
DIRU,
CDEADAZTVY
UI»
AV-NMBALRRL.
HIDES
RTS.
AT
YutF*-AY-WESREVSERL
ANVY—-IO
DovvemAlBEVKICFERTS
CE.
5
KILI
OWE
eA
IS
220
9-cmA
4S
2809-cmTHS
6.
irMABSHNEVeEald,
E-FOMBAM
AIK
HR802
DV
y
SWB
BE
LLINBSNSED
(IcM#SHA.
(M1
—6
Bsa)
ADPUVI*AT—IL
H1i-7
1.7
Y-w+-F-FPUBeWEZ
lL
DerH-LAHVU-
We
F-PUDALY—
bETO
Bat
lt—MH
(CBC
MRA
TIEFA'.
F-T
DRKVERISERL
ETE
F—TOEMOTAD
|
—h&TZERICF—-IRY-WOIS
VCH
SKIGERISMBBETS.
2.
VWs
F-FWUD
FMD
IEDRVED
SHY
—IL
1.6
€vF*-A-DFREBAME
-F—TWEELFICBHES
So
lL
DANY
FERPA
L.
AF
VV
ave
P-LEEA
(CRT
FT
So
see)
29
Y-NWABBLEWCF-T+FvFeBEE-F
(ct
So
3
ATUYA+AF-NWEMI-TicmeFKDICEY
FU-DeUVeThcAltSo
4
AAUYV
A+
APNE
SV
ER
DBRY,Y
EV
FO-DeF
ep
IAIV
Ye
TDAhPomele.
Ric
Mos
VEEVFO-DEF¢FIAIY
VET
(HO,
EX
FO-—SABUBHSLADATY
VI*2T-NOPERAET
W
Wir
Mls
1.8~2.8k9TF.
5.
COMOMAADE
SVL
1
FOUMBE
2
KO
IAKDEDSOMBIS.
(1-7
SR)
B1-8

X300R/X300
|
16
1.8
F-FREME
1.
ARBNDY
YeM1-INDKI
(CHIL.
TEAC
YTT-
200372
hk7T—7(3000Hz)##
SPEED
A
4yF#HIGHICL
THETS.
CHERABRNDY
FORA
3000Hz
+
30Hz
HAATHSCERBATS.
FATE
MOMRBMICA
cD
TORE
AI,
F-7
Fy
FRM
MICHSU-HBKR
EDEMA
EB
(High
Speed)
@#EDL
TMEST
S.
(Bl
1
—10B
88)
TEAC
YTT-
200207
-—PePAL.
FT-FTA
E—KeLOWICLCHELL
ARKRNDVION
Ah
3000Hz
+
30Hz
HMA
THS
CCEA
S
F—
TREMP
IC
Ao
TOBE
RIS,
HK
Rik
LOY
EE
(Low
Speed)
tW#TS.
GEL
F-TREORMMST—-TFeAS
BL
CiSHz
{EF
REI
BE
WUAECT
So
2
AS
AEA
ERAOL
BBLS
SBC
Tl
SOC,
MPI
AFIAZF
y
PREECDHBY
KSAT
NGMBAT
So
ARRADSF
Bjl-9
High
Speed
*‘l]
Low
Speed
!
|
(—E
.
!
!
!
|
pt
e’O
t
—RBR
1
—10
oT
BP
ae
>
de
es
Laer
le
a
M1—-9ICRFKDICIDD*
DI
A-FRGE
KT
So
TEACF
AK?
F—TAYTT-
2003
47-TFAE-
KHIGH
CT.
YTT-200247-—PFAE-FLOWT
SNENBELL
ITD
Day
IRM
OSBRUH
IC
PFROMBAICA
DT
TOSCEEMBAT
Sd
RICTEACF
AR?
F—-TFYTT-
8013
&(#AL,
3000Hz
ME
SEF
—FHRMHKBELVABRY
BD
ICF-FAE-—FHIGHSBKLULOWTREL
EN
ENORSBRAEBELID+
DVO
F7eIAHIC
A
ELL
FROMBANICA
TOS
CERHATS.
LOW
(9.5cm/s)
VD
PIAA
3S
BSF
HIGH
19
cm/s)
1.10
F-Aryvy
FORME
110.1
Ay
kite
EB
BEWARE
%
©
S
+
tH
ERS
»
BERT
ASS
®#
o8
an
BJ1-11

1.10.
2
AS
SE
BXy
KERDKDICMES
So
X300R/X300
1.11
Bikes
ARMANBRASBAALSTERISTEACIYLY
KD
SIKU
TH
O1TI
CE
lL
FyvyFOLHBLUMMHEAN-LTU6EBAN
—ABHORD
3ZMEALTRUR<K
CARAS
Yer
yvN—-SL—-hHABAKT.
ARAOe
Bl
BIRT
KE
SICARKIBAOY
p+
FER
t
&
ie
Es
Bi
tH
&
Ky
KOE
ySEF-THTE
EVé-FTICT
So
fH
=
SS
Ay
KOE
py
SETH
TEA
ee
fc
BIBI
ST
So
ae
Ay
REM
IP
bier
-
TOE
i=
UIC
E
4A
So
SEAR
Aghs—-TORM¢E
PAIS
}
KIC
TS.
Bll
-12
1.10.3
tae
FIR
L
HRICKUBA,
RE,
BEDSNY
FOMSET
NENA
F
So
9
Mic
kUHK
RE,
BEDRAy
FORRES
I
So
3.
TEAC
YTT-80137Ah*7-VERBL.
AT
Bo
4.
BRAY
Be
Jr
lhe
-
FORA
-
TRA
CO
im
ASH
TOS
CE
COMBA
SH
T
UDeOE
SHR
EMRL,
HF
ryIELERY
EMAHANISMaAHLG
aS
SARI
So
5
Ltt
Sr
-FOEAICHMEDAN-HRDOTD
ICCA
TUM
EORIDRASHIICREBLOBE
Ay
KOR
SEAKT
So
CDE
SAMBA
VILHIO
HEA
<
SHG
CEDRVEDC-OBRRVE
NF
colo
6
UBER
SIEF—-TFORTPICN
y
FORRAD
AR
ZF
So
hEILOTOSRVENL,
BSS
SA
RBH
ICY
>
YINe
SL-hEMETS.
1.12
#678
Pils
1000
REA
CEC.
SSUFYFALIELIS
PASH
SBS1LECEICMETS.
TEACAEYV
FIL
*ATIV(CTEAC
TZ-255+y
HE
(dale
BOA
{VEGAS
S
CE.
Pikld
FacOMMIOML
Tit,
SOMO
ICD
CBBLESVEttAS
lL
F-TFvyFEKFMBICT
So
2
ENENOAZAEYVPWIC2~3
BRS
Ss
CF
rT
AVYVBECU
I+
E-FISA<)
MRS
EEA
LATVEDSICRHT.
3.
FrAAZFVSBEVUV—-Ws
E-FlCDUTIL2~
37
FatO
RTM
ICRA
L.
SOMO
AAICH
th
LEWC.
4
POR.
BATSICRMaANSEIC1—
2
fel
F—-TF
vy
FeHESHS.
BJ1-14

X300R/X300
|
2.
FV
AROMBteFrvy7
1
BRBALUF
2
vy
VENT
IMICT—-TFHETBREAER
#AMICLL
HERTS.
2
MRBKLUF
zy
VIS—-BNICAF
vp
KIL,
Rie
AF
+
AVOWME
CHD.
LOMOMKBES.
HAIS
R121/R221
AENTH
AF
ve
RIV/EF
+
RIVA
ERT
o
3.
dBOR#
Alt
775mV
=0dBCHS~
Ho
COdB=1VCRESHKA-VEEAS
SE
AltM@ATSLBMHVET.
4.
F—-FAVNIL
A-JBC(AC
+
VIVMSH)SZAAT
Y
E-FYANRLMOYUENREDEBAT
S.
5.
FAK
F-TPETAPE
SELECTORAT
y
Fit
RAADIC—
RaetSct.
SPEED
YTT-1003
FAhF—7F
[ers
SELECTOR
LH(1/T)
HIGH
YTT-1002
LH(1/II)
LOW
YTT-1053
EE
HIGH
18
yt
[EE
|
tow
__|
YTT-8013
ee
YTT-8053
HIGH
:
LOW
LINE
IN
MONITOR
A‘
v
F
SOURCE
LINED3:
4
MAX
LINE
IN
MONITOR
A
yy
$
SOURCE
LINEDEA
MAX
{EJB
RFE
BS
meet
MONITORA‘
y
F
SOURCE
|
LINE
IN
OUTPUTX
EA
MAX
400H2/~—22dB
R123/R223
LINEDEA
MAX
(61.5mV)
400Hz/—22dB
(61.5mV)
400Hz/—
22dB
(61.5mV)
B2-2
#eH
2.1
BRFrcy7
1
DCSHEHetRBRROUIO2MEVISICHeT
S.
2
DCBSEHORAIL+LVTHSCED
(B12
—
1
BRR)
RABBI
RUE
AT
°
RSE
OUTPUT
Stn
f-
+1dB(869mV)
[xl2-2
33
WK
OUTPUT
2A
UAILEAMEL
fey
ir
ld
civ
I
|
OUTPUT
SF
MPa
(R123
—
5dB(436mV)
KIFR223)
SAK
BESS.
[x]2-2
HA
R131/R231
A
Otay
OVU
[x]2-2
BAK
aAy+rnaa7
(EER
ERE
2-3
mH

2.3
BER
X300R/X300
RE
TAAT
+
BE
aa
ff
AR
[
=m
mB
m-R
&
|
An
fe
MONITOR24y#
TAPE
YTT-1003
BAY
KORE
OUTPUT#
¥
:
ywRePLWA
3.
Be
AYE
STARN
|
oor
peep
aty
Fe
HIGH
(16kHz/—10dB)
GRY
(M11)
CAE
4S
LL
OUTPUTIEA
=
WELLE
YTT-1003
4.
BELA
yt
TAPESPEED
24
HIGH
R111/R211
OUTER
Tas
:
(400Hz/0dB)
—5dB
(436mV)
=—k
PLAY
e
VUX-9
hil
bhi
Fry
|
vwus-»
ovU
+£05VU
2-2258M
—
is)
at
a
aes
?
=
Sots
Ee
(400Hz/0dB)
oe
2
Bs)
MONONA
a1
aae
YTT-1003(LH)
R116/R216(LH)
SPEEDAT
7
HIGH)
_-yorp-10ss(BE)
R114/R214
(EE)
112-6344
Tal2-
231K
6.
BAe
Bt
b=
PLAY
SPEEDAT
vy
F
LO
YTT-1002(LH)
R120/R220(LH)
uae
ee
z
F
YTT-1052(EE)
R118/R218(EE)
“=
of
OAR
OWE
me
f-
BOE
Hk
HE
OUTPUTS
|
os
ae
MONITORA4
TAPE
Bie
kat
Ln
{
(24BELE
CHIGED
Paes
cae
ae
)
.
,
Et
=
1.
BES/NF292
ek
PLAY
|
22
eee
Fry?
47dBEL
F.(LOW)
|
Beet
7)
~
Se
PLAYAK
REIT
.
51dBELL
EK
(HIGH)
|
RHEL
AVE
SPEED
HIGH
EE
{
49aBLi
K(LOW)
|
+4.
LOW
L
2.4
€-
97%
(2)
OUTPUT
2X
EA
MIC
DEA
LINEDEA
.
MICBLADLNIL
Fry?
.
PHONESHALNIL
Fry?
MIC
DRA
LINEDEA
MONITOR
A
1
v
#
SOURCE
MONITOR
41
+
#
SOURCE
MAX
MAX
MIN
MIN
MAX
Buse
LA
+
SRE
|
|
OUTPUT
Sa:
—5dB
+
3dB
(308mV
~615mV)
A
nw
fe
a
OS
fl
AT
MIC
Fry
pa2-
2
33
8B
400H2/—70dB
(245uV)
ff.
U
(LINEIN-MIC)
PHONES
2)
py
7
=
+4dB
24dB
”
OSB
(48mV
~78mV)
LINE
IN
400Hz/
—
22dB
(61.5mV)
bq2-5
2
ie
8Q
A
fii
O°
TalsLte
45° 30°
180°
LH,
YTT-1003
ec---H
EE,
YTT-1053
+4
:
+2
—
+
3(¢B)
|
°
|
-2
|
mes
¥
-
4(68)
(4B)
26k
L
—_t
—
Bl2-4
MHAoORR
40
400
2Ok
(Hz)
H2-6
Bek
Rest
(HIGH)
LH,
YTT-1002
aaa
as
a
EE,
YTT-1052
+
4
+2
=
+
38)
)
|
X300
-
4
:
mons
oe
OL
ee
KR
-4
‘I=
41aB)
A
so)
(dB)
18k
L
1
tJ
40
400
14k
(HR)
Hl2-5
ic
B2-7
BER
RMS
(LOW)
19

X300R/X300
20
2.5
BEB
(i
(BL
ck
1081
PRA
OUTPUT
FESS)
eee
2
|
An
8
8
[wee]
nem
|
me
|
=
72/75
INA
P
ANB
=
{8
5
1L106/L20
%=-—-K
REC/PAUSE
L101/L201
eld
Natick
MONITORA1
yvF
TAPE
INA
P
Aika
died»
puwm
MONITORA(yF
TAPE
7kH2/—22dB
RAY
RAE
(AH:
45D
x12-395
4
11,
MME
TETAS
|
REC
(6.15mV)
MAY
un
(212-4
AK
5-7
YTT-8013
EK
REC
pd2-2
3384
SPEEDA1yF
LOW
ot
Sg
MONITORZ4
YF
TAPE
10.
44
FP
AsbSy
7
C141/C241(LH-
1)
C142/C242(EE)
R158/R258(LH-
1)
Bees
R159/R259(EE)
”
40H2~30kHz
L102/L202(LH-10)
ae
men
—32dB
(19mV)
L103,'L203(EE)
112-8398
Ix]2-23
FR
14,
Bite
:
fl,
RIEU
40Hz~
22kHz
L104/1204(LH-11)
Saale
SPEEDA1
yF
LOW
~42dB
(6.15mV)
105/205
(EE)
bd2-9%5
Ht
400Hz,
7kHz/
—
22dB
(61.5mV)
OUTPUTin
f
400Hz¢
7kHzAili):
-
DAU
12.
47
Reevb
fal,
EL
SPEEDA1yvF
HIGH
LINEDEA
MAX
400Hz/—22dB
42-284
(61.5mV)
bl2-2
13.
SRE
NIL
teh
Bll
SA
F-J
—-YTT-8013(LH-1)
LH.U
fe
en:
NIL
(=
5dB)
&
15.
WAS/NFIvF
YTT-8053
(EE)
Fry
woapicH)
|
Zhes
LINEDEA
MIN
EE
{
qaniLoW)
bl2-225.88
r—7F
YTT-8053
1kH2/-124B
d2-2
3588
16.
5
Fry?
SPEEDA1
y+
HIGH
Fry?
—70dBLL
t
-
ARETE
TINED
ea
MAX|
(195mV,
+10VU)
ae
beet
IkHz
B.P.FARH
—
65dBLLE
IkKHz@SRBL,
RPT
REC
MUTE€—kIe
FS,
COF—-TFEPVE
LEE
S
OMS
5
St
&
MUTEM
SP
LOW
L
NIUOR,
1kHz/—12dB
[2-288
fal_t
IkHz
B.P.F
ARH
17.
REC
MUTEMRF
277
FxiIvy7
(195mV,
+
10VU)
LINE
IN
Leh:1kHz/-—22dB
(61.5mV)
Leh
B/E
LAUDE
RHEL
L,
Rcht
OI
Lb
NILE
50dBEAE
Fah
18.
e8b—yvarsFxzy7
(LR)
FLD
Rch:1kHz/-—
22dB
fel
_E
(61.5mV)
Fry
Fre
bya
Fry?
(RL)
Reh
#84E
LD
WILDS
HE
UL,
Leche
mo
hypNve
50dBEL_E
RGONK
hy
7
eH
19.
LINE
IN
EULREE
OH
BEE
20
by
7M
Leh:
48
ere
ee
eee
sate
"
PARKS
Fave
Rch:125H2z/—22dB
EUR
4
(61.5mV)
@MRch
tt
73
UNIWER
WUNIVEDE
40dBLLE
LINE
IN
1kHz/—22dB
(61.5mV)
LINEDEA
MAX
MICDEA
MIN
2).
BEBRFxr7
ae
a
Ed
1%
[j2-2
BB
Other manuals for X-300R
2
This manual suits for next models
1
Other Teac Tape Deck manuals