Future Design FDC-9300 User manual

FDC-9300
Self-Tune Fuzzy / PID
Process / Temperature Controller
FDC-9300
Self-Tune Fuzzy /PID
Process /Temperature Controller
User's ManualUser's Manual

CONTENTS
Chapter 1 OverviewChapter 1Overview
1-1 Features -------------------------------------------------------------------------
1-2 Ordering Code ----------------------------------------------------------------
1-3 Programming Port and DIP Switch ---------------------------------------
1-4 Keys and Displays ------------------------------------------------------------
1-5 Menu Overview --------------------------------------------------------------
1-6 Parameters Description -----------------------------------------------------
1-1 Features -------------------------------------------------------------------------
1-2 Ordering Code ----------------------------------------------------------------
1-3 Programming Port and DIP Switch ---------------------------------------
1-4 Keys and Displays ------------------------------------------------------------
1-5 Menu Overview --------------------------------------------------------------
1-6 Parameters Description -----------------------------------------------------
Page NoPage No
Chapter 2 InstallationChapter 2Installation
2-1 Unpacking ----------------------------------------------------------------------2-1 Unpacking ----------------------------------------------------------------------
2-2 Mounting ------------------------------------------------------------------------2-2 Mounting ------------------------------------------------------------------------
2-3 Wiring Precautions -----------------------------------------------------------2-3 Wiring Precautions -----------------------------------------------------------
2-4 Power Wiring --------------------------------------------------------------------2-4 Power Wiring --------------------------------------------------------------------
2-5 Sensor Installation Guidelines ---------------------------------------------2-5 Sensor Installation Guidelines ---------------------------------------------
2-6 Thermocouple Input Wiring ------------------------------------------------2-6 Thermocouple Input Wiring ------------------------------------------------
2-7 RTD Input Wiring ---------------------------------------------------------------2-7 RTD Input Wiring ---------------------------------------------------------------
2-8 Linear DC Input Wiring -------------------------------------------------------2-8 Linear DC Input Wiring -------------------------------------------------------
2-9 CT / Heater Current Input Wiring ------------------------------------------2-9 CT / Heater Current Input Wiring ------------------------------------------
2-12 Event Input Wiring -----------------------------------------------------------2-12 Event Input Wiring -----------------------------------------------------------
2-10 Output 1 Wiring ------------------------------------------------------------2-10 Output 1 Wiring ------------------------------------------------------------
2-11 Output 2 Wiring -------------------------------------------------------------2-11 Output 2 Wiring -------------------------------------------------------------
2-13 Alarm 1 Wiring ---------------------------------------------------------------2-13 Alarm 1 Wiring ---------------------------------------------------------------
2-14 Alarm 2 Wiring ---------------------------------------------------------------2-14 Alarm 2 Wiring ---------------------------------------------------------------
2-15 RS-485 --------------------------------------------------------------------------2-15 RS-485 --------------------------------------------------------------------------
2-17 RS-232 -------------------------------------------------------------------------2-17 RS-232 -------------------------------------------------------------------------
2-16 Analog Retransmission ----------------------------------------------------2-16 Analog Retransmission ----------------------------------------------------
Chapter 3 Programming Special FunctionsChapter 3Programming Special Functions
3-1 Rearrange User Menu -------------------------------------------------------3-1 Rearrange User Menu -------------------------------------------------------
3-2 Dwell Timer ----------------------------------------------------------------------3-2 Dwell Timer ----------------------------------------------------------------------
3-3 Manual Control----------------------------------------------------------------3-3 Manual Control----------------------------------------------------------------
3-4 Failure Transfer -----------------------------------------------------------------3-4 Failure Transfer -----------------------------------------------------------------
3-5 Signal Conditioner DC Power Supply -----------------------------------3-5 Signal Conditioner DC Power Supply -----------------------------------
3-6 Bumpless Transfer -------------------------------------------------------------3-6 Bumpless Transfer -------------------------------------------------------------
3-7 Self-Tuning ----------------------------------------------------------------------3-7 Self-Tuning ----------------------------------------------------------------------
3-8 Auto-Tuning --------------------------------------------------------------------3-8 Auto-Tuning --------------------------------------------------------------------
3-9 Manual Tuning ----------------------------------------------------------------3-9 Manual Tuning ----------------------------------------------------------------
3-10 Pump Control ---------------------------------------------------------------3-10 Pump Control ---------------------------------------------------------------
3-11 Sleep Mode -----------------------------------------------------------------3-11 Sleep Mode -----------------------------------------------------------------
3-12 Remote Lockout ------------------------------------------------------------3-12 Remote Lockout ------------------------------------------------------------
Chapter 4 CalibrationChapter 4Calibration ----------------------------------------------------
Chapter 5 Error Codes and Troubleshooting -----------------------
Chapter 5Error Codes and Troubleshooting -----------------------
Chapter 6 Specifications -----------------------------------------------Chapter 6Specifications -----------------------------------------------
Appendix
A-1 Menu Existence / Your Settings -----------------------------------
A-2 Warranty ---------------------------------------------------------------
A-1 Menu Existence /Your Settings -----------------------------------
A-2 Warranty ---------------------------------------------------------------
3
4
5
6
7
8
15
15
16
17
17
18
18
19
19
20
22
22
22
24
21
23
23
25
26
26
27
27
28
29
30
32
36
35
36
38
42
45
48
51
3-13 Heater Break -----------------------------------------------------------------3-13 Heater Break -----------------------------------------------------------------
3-14 Reload Default Parameters --------------------------------------------3-14 Reload Default Parameters --------------------------------------------
37
37
UM9300 2.0UM9300 2.0
2

Chapter 1 OverviewChapter 1 Overview
1 1 Features1 1 Features
FDC-9300 Fuzzy Logic plus PID microprocessor-based controller, incorporates a bright,
easy to read 4-digit LED display, indicating process value. The technology
enables a process to reach a predetermined set point in the shortest time, with the
minimum of overshoot during power-up or external load disturbance. The units are
housed in a 1/16 DIN case, measuring 48 mm x 48 mm with 75 mm behind panel
depth. The units feature three touch keys to select the various control and input
parameters. Using a unique function, you can put at most 5 parameters in front of user
menu by using contained in the setup menu. This is particularly useful to
OEM's as it is easy to configure menu to suit the specific application.
Fuzzy Logic
SEL1 to SEL5
FDC-9300 Fuzzy Logic plus PID microprocessor-based controller, incorporates a bright,
easy to read 4-digit LED display, indicating process value. The technology
enables a process to reach a predetermined set point in the shortest time, with the
minimum of overshoot during power-up or external load disturbance. The units are
housed in a 1/16 DIN case, measuring 48 mm x 48 mm with 75 mm behind panel
depth. The units feature three touch keys to select the various control and input
parameters. Using a unique function, you can put at most 5 parameters in front of user
menu by using contained in the setup menu. This is particularly useful to
OEM's as it is easy to configure menu to suit the specific application.
Fuzzy Logic
SEL1 to SEL5
FDC-9300 is powered by 11-28 or 90 - 264 VDC / AC supply, incorporating a 2 amp.
control relay as standard. Up to two additional optional relay outputs can be
supported. Output two can be a cooling relay or alarm or dwell timer.The third relay
performs as a programmable alarm. Alternative output options include SSR Drive,
Triac, 0/4 - 20 mA and 0 - 10 volts. FDC-9300 is fully programmable for PT100,
thermocouple types J, K, T, E, B, R, S, C, P, 0 - 20mA, 4 -20mA and voltage signal input,
with no need to modify the unit. The input signals are digitized by using a
converter. Its allows the FDC-9300 to control fast processes such as
pressure and flow. is incorporated. The self- tune can be used to optimize the
control parameters as soon as undesired control result is observed. Unlike auto-tune,
Self-tune will produce less disturbance to the process during tuning, and can be used
any time.
18-bit A to D
fast sampling rate
Self tune
FDC-9300 is powered by 11-28 or 90 - 264 VDC / AC supply, incorporating a 2 amp.
control relay as standard. Up to two additional optional relay outputs can be
supported. Output two can be a cooling relay or alarm or dwell timer.The third relay
performs as a programmable alarm. Alternative output options include SSR Drive,
Triac, 0/4 - 20 mA and 0 - 10 volts. FDC-9300 is fully programmable for PT100,
thermocouple types J, K, T, E, B, R, S, C, P, 0 - 20mA, 4 -20mA and voltage signal input,
with no need to modify the unit. The input signals are digitized by using a
converter. Its allows the FDC-9300 to control fast processes such as
pressure and flow. is incorporated. The self- tune can be used to optimize the
control parameters as soon as undesired control result is observed. Unlike auto-tune,
Self-tune will produce less disturbance to the process during tuning, and can be used
any time.
18-bit A to D
fast sampling rate
Self tune
Two function complexity levelsTwo function complexity levels
User menu configurableUser menu configurable
Adaptive heat-cool High accuracy 18-bit input A DAdaptive heat-cool High accuracy 18-bit input A D
High accuracy 15-bit output D AHigh accuracy 15-bit output D A
Fast input sample rate (5 times / second)Fast input sample rate (5 times / second)
dead banddead band
Pump controlPump control
Fuzzy + PID microprocessor-based controlFuzzy + PID microprocessor-based control
Automatic programmingAutomatic programming
Differential controlDifferential control
Auto-tune functionAuto-tune function
Self-tune functionSelf-tune function
Sleep mode functionSleep mode function
Unique
Valuable
Unique
Valuable
" Soft-start " ramp and dwell timer" Soft-start " ramp and dwell timer
Programmable inputs( thermocouple, RTD, mA, VDC )Programmable inputs( thermocouple, RTD, mA, VDC )
Analog input for remote set point and CTAnalog input for remote set point and CT
Event input for changing function & set pointEvent input for changing function & set point
Programmable digital filterProgrammable digital filter
Hardware lockout + remote lockout protectionHardware lockout + remote lockout protection
Loop break alarmLoop break alarm
Heater break alarmHeater break alarm
Sensor break alarm + Bumpless transferSensor break alarm + Bumpless transfer
RS-485, RS-232 communicationRS-485, RS-232 communication
Analog retransmissionAnalog retransmission
Signal conditioner DC power supplySignal conditioner DC power supply
A wide variety of output modules availableA wide variety of output modules available
Approvals UR / CSA / CE / RHoS CompliantApprovals UR / CSA / CE / RHoS Compliant
EMC / CE EN50081-1 & EN50082-2EMC / CE EN50081-1 & EN50082-2
Front panel sealed to NEMA 4X & IP65Front panel sealed to NEMA 4X & IP65
The function of Fuzzy Logic is to adjust PID parameters internally in order to make
manipulation output value MV more flexible and adaptive to various processes.
The function of Fuzzy Logic is to adjust PID parameters internally in order to make
manipulation output value MV more flexible and adaptive to various processes.
PID + Fuzzy Control has been proven to be an efficient method to improve the control
stability as shown by the comparison curves below:
PID + Fuzzy Control has been proven to be an efficient method to improve the control
stability as shown by the comparison curves below:
Warm Up Load Disturbance
PID control when properly tuned
PID + Fuzzy control
Set point
Temperature
Time
Figure 1.1 Fuzzy PID
Enhances Control
Stability
Figure 1.1 Fuzzy PID
Enhances Control
Stability
UM9300 2.0UM9300 2.0
3

Accessories
CT94-1 = 0 - 50 Amp. AC Current Transformer
OM95-3 = Isolated4-20mA/0-20mAAnalog Output Module
OM95-4 = Isolated1-5V/0-5VAnalog Output Module
OM95-5 = Isolated 0 - 10V Analog Output Module
OM94-6 = Isolated 1A / 240VAC Triac Output Module ( SSR )
DC94-1 = Isolated 20V / 25mA DC Output Power Supply
DC94-2 = Isolated 12V / 40mA DC Output Power Supply
DC94-3 = Isolated 5V / 80mA DC Output Power Supply
CM94-1 = Isolated RS-485 Interface Module
CM94-2 = Isolated RS-232 Interface Module
CM94-3 = Isolated 4 - 20 mA/0-20mARetransmission Module
CM94-4 = Isolated 1 - 5V/0-5VRetransmission Module
CM94-5 = Isolated 0 - 10V Retransmission Module
CC94-1 = RS-232 Interface Cable (2M)
UM9300 2.0 = FDC-9300 User's Manual
CT94-1 = 0 - 50 Amp. AC Current Transformer
OM95-3 = Isolated 4 - 20 mA / 0 - 20 mA Analog Output Module
OM95-4 = Isolated 1 - 5V / 0 - 5V Analog Output Module
OM95-5 = Isolated 0 - 10V Analog Output Module
OM94-6 = Isolated 1A / 240VAC Triac Output Module ( SSR )
DC94-1 = Isolated 20V / 25mA DC Output Power Supply
DC94-2 = Isolated 12V / 40mA DC Output Power Supply
DC94-3 = Isolated 5V / 80mA DC Output Power Supply
CM94-1 = Isolated RS-485 Interface Module
CM94-2 = Isolated RS-232 Interface Module
CM94-3 = Isolated 4 - 20 mA / 0 - 20 mA Retransmission Module
CM94-4 = Isolated 1 - 5V / 0 - 5V Retransmission Module
CM94-5 = Isolated 0 - 10V Retransmission Module
CC94-1 = RS-232 Interface Cable (2M)
UM9300 2.0 = FDC-9300 User's Manual
Power InputPower Input
4: 90 - 264 VAC, 50/60 HZ
5: 11 - 26 VAC or VDC
9: Special Order
4: 90 - 264 VAC, 50/60 HZ
5: 11 - 26 VAC or VDC
9: Special Order
0: None
1: RS-485
2: RS-232
3: Retransmit 4-20mA/0-20mA
4: Retransmit1-5V/0-5V
5: Retransmit0-10V
9: Special order
0: None
1: RS-485
2: RS-232
3: Retransmit 4-20mA/0-20mA
4: Retransmit 1 - 5V / 0 - 5V
5: Retransmit 0 - 10V
9: Special order
Communications
1: Standard Input
Input 1 - Universal Input
Thermocouple: J, K, T, E, B,
R, S, N, L
RTD: PT100 DIN, PT100 JIS
Current: 4 - 20mA,0-20mA.
Voltage:0-1V,0-5V,1-5V,
0 - 10V
Input2-CTandAnalog Input
CT:0-50Amp.AC Current
Transformer
Analog Input:4-20mA,
0 - 20mA,0-1V,0-5V,
1-5V,0-10V.
Input 3 - Event Input ( EI )
9: Special Order
1: Standard Input
Input 1 - Universal Input
Thermocouple: J, K, T, E, B,
R, S, N, L
RTD: PT100 DIN, PT100 JIS
Current: 4 - 20mA, 0 - 20 mA.
Voltage: 0 - 1V, 0 - 5V, 1 - 5V,
0-10V
Input 2 - CT and Analog Input
CT: 0- 50 Amp. AC Current
Transformer
Analog Input: 4 - 20 mA,
0- 20mA, 0 - 1V, 0 - 5V,
1- 5V, 0 - 10V.
Input 3 - Event Input ( EI )
9: Special Order
Signal InputSignal Input
0: None
1: Relay rated 2A/240VAC
2: Pulsed voltage to
drive SSR, 5VDC@30mA
3:4-20mA/0-20mA
Isolated 500 ohm load max.
4:1-5V/0-5VIsolated
Min impedance 10K
5: 0 - 10V Isolated
Min. Impedance 10K
6: Triac Output
1A / 240VAC,SSR
C: Pulsed voltage to
drive SSR, 14VDC@40ma
9: Special order
0: None
1: Relay rated 2A/240VAC
2: Pulsed voltage to
drive SSR, 5VDC@30mA
3: 4 - 20mA / 0 - 20mA
Isolated 500 ohm load max.
4: 1 - 5V / 0 - 5V Isolated
Min impedance 10K
5: 0 - 10V Isolated
Min. Impedance 10K
6: Triac Output
1A / 240VAC,SSR
C: Pulsed voltage to
drive SSR, 14VDC@40ma
9: Special order
Output 1Output 1
9: Special order9: Special order
2A / 240VAC2A / 240VAC
2: Form B Relay2: Form B Relay
2A / 240VAC2A / 240VAC
1: Form A Relay1: Form A Relay
0: None0: None
Alarm 1Alarm 1
1 2 3 4 56
0: None
1: Form A Relay 2A/240VAC
2: Pulsed voltage to
drive SSR, 5V / 30mA
3:4-20mA/0-20mA Isolated
500 ohm load Max
4:1-5V/0-5VIsolated
Min impedance 10K
5: 0 - 10V Isolated
Min impedance 10K
6: Triac Output, 1A / 240VAC, SSR
7: 20V / 25mA DC Isolated
Output Power Supply
8: 12V / 40 mA DC Isolated
Output Power Supply
9: 5V / 80mA DC Isolated
Output Power Supply
C: Pulsed voltage to drive SSR,
14VDC @ 40ma
A: Special order
0: None
1: Form A Relay 2A/240VAC
2: Pulsed voltage to
drive SSR, 5V / 30mA
3: 4 - 20mA / 0 - 20mA Isolated
500 ohm load Max
4: 1- 5V / 0 - 5V Isolated
Min impedance 10K
5: 0 - 10V Isolated
Min impedance 10K
6: Triac Output, 1A / 240VAC, SSR
7: 20V / 25mA DC Isolated
Output Power Supply
8: 12V / 40 mA DC Isolated
Output Power Supply
9: 5V / 80mA DC Isolated
Output Power Supply
C: Pulsed voltage to drive SSR,
14VDC @ 40ma
A: Special order
Output2/Alarm2Output 2 / Alarm 2
FDC-9300-
1 2 Ordering Code1 2 Ordering Code
Standard Model:
FDC-9300-411111
90 - 264 operating voltage
Input: Standard Input
Output 1: Relay
Output 2: Relay
Alarm 1: Form A Relay
RS- 485 Communication Interface
Standard Model:
FDC-9300-411111
90 - 264 operating voltage
Input: Standard Input
Output 1: Relay
Output 2: Relay
Alarm 1: Form A Relay
RS- 485 Communication Interface
SNA10A = Smart Network Adaptor for Third
Party Software, Converts 255
channels of RS-485 or RS-422 to
RS-232 Network
SNA10A = Smart Network Adaptor for Third
Party Software, Converts 255
channels of RS-485 or RS-422 to
RS-232 Network
Example
Related ProductsRelated Products
Range set by front keyboard
Alternative between RS-232 and EI
Need to order an accessory CT94-1 if
Heater Break detection is required.
Range set by front keyboard
Alternative between RS-232 and EI
Need to order an accessory CT94-1 if
Heater Break detection is required.
***
***
**
**
**
*
*
*
*
*
*
*
UM9300 2.0UM9300 2.0
4

UM9300 2.0UM9300 2.0 5
*
Front
Panel
Rear
Terminal
1 3 Programming Port and DIP Switch1 3 Programming Port and DIP Switch
Figure 1.2 Access Hole
Overview
Figure 1.2 Access Hole
Overview
Table 1.1 DIP Switch
Configuration
Table 1.1 DIP Switch
Configuration
TC, RTD, mV
0-1V, 0-5V, 1-5V, 0-10V
0-20 mA, 4-20 mA
Input 1
Select
Input 1
Select
All parameters are Unlocked
Only SP1, SEL1 SEL5 are unlocked
Only SP1 is unlocked
All Parameters are locked
Lockout
1234
DIP SwitchDIP Switch
:ON :OFF
Factory Default SettingFactory Default Setting
*
The programming port is used for off-line automatic setup and testing
procedures only. Don't attempt to make any connection to these pins when the
unit is used for a normal control purpose.
The programming port is used for off-line automatic setup and testing
procedures only. Don't attempt to make any connection to these pins when the
unit is used for a normal control purpose.
When the unit leaves the factory, the DIP switch is set so that TC & RTD are selected for
input 1 and all parameters are unlocked.
When the unit leaves the factory, the DIP switch is set so that TC & RTD are selected for
input 1 and all parameters are unlocked.
Lockout function is used to disable the adjustment of parameters as well as operation
of calibration mode. However, the menu can still be viewed even under lockout
Lockout function is used to disable the adjustment of parameters as well as operation
of calibration mode. However, the menu can still be viewed even under lockout
SEL1- SEL5 represent those parameters which are selected by using SEL1, SEL2,...SEL5
parameters contained in Setup menu. Parameters been selected are then allocated at
the beginning of the user menu.
SEL1- SEL5 represent those parameters which are selected by using SEL1, SEL2,...SEL5
parameters contained in Setup menu. Parameters been selected are then allocated at
the beginning of the user menu.
Access Hole
1
ON DIP
234
The programming port is used to connect to
P10A hand-held programmer for automatic
programming, also can be connected to ATE
system for automatic testing & calibration.
The programming port is used to connect to
P10A hand-held programmer for automatic
programming, also can be connected to ATE
system for automatic testing & calibration.
1234
Control Chassis Bottom View
SW

Alarm 1 IndicatorAlarm 1 Indicator
Alarm 2 / Output 2 IndicatorAlarm 2 / Output 2 Indicator
Process Value IndicatorProcess Value Indicator
Process Unit IndicatorProcess Unit Indicator
Upper Display,
to display process value,
menu symbol and error
code etc.
Upper Display,
to display process value,
menu symbol and error
code etc.
Lower Display,
to display set point value,
parameter value or control
output value etc.
Lower Display,
to display set point value,
parameter value or control
output value etc.
3 Silicone Rubber Buttons
for ease of control setup
and set point adjustment.
3 Silicone Rubber Buttons
for ease of control setup
and set point adjustment.
Set point
Value
Indicator
Set point
Value
Indicator
Output 1
Indicator
Output 1
Indicator
A1 A2 PV LCLF
SV
OUT
FDC-9300
Table 1.2 Keypad OperationTable 1.2 Keypad Operation
For a number with decimal point the
display will be shifted one digit right:
For anumber with decimal point the
display will be shifted one digit right:
-19999 will be displayed by:-19999 will be displayed by:
45536 will be displayed by:45536 will be displayed by:
-9999 will be displayed by:-9999 will be displayed by:
The unit is programmed by using three keys on the front panel. The available key functions are listed in following table.The unit is programmed by using three keys on the front panel. The available key functions are listed in following table.
Press and release quickly to increase the value of parameter.
Press and hold to accelerate increment speed.
Press and release quickly to decrease the value of parameter.
Press and hold to accelerate decrement speed.
Select the parameter in a direct sequence.
Allow access to more parameters on user menu, also used to Enter manual
mode, auto-tune mode, default setting mode and to save calibration data
during calibration procedure.
Select the parameter in a reverse sequence during menu scrolling.
Select the operation Mode in sequence.
Reset the front panel display to a normal display mode, also used to leave
the specific Mode execution to end up the auto-tune and manual control
execution, and to quit the sleep mode.
The controller enters the sleep mode if the sleep function ( SLEP ) is enabled
( select YES ).
By entering correct security code to allow execution of engineering programs.
This function is used only at the factory to manage the diagnostic reports.
The user should never attempt to operate this function.
Press
for at least 3 seconds
Press
for at least 6 seconds
Press
Press
Press
Press
Press
for at least 3 seconds
Up Key
Down Key
Scroll Key
Enter Key
Start Record Key
Reverse Scroll Key
Mode Key
Reset Key
Sleep Key
Factory Key
TOUCHKEYS FUNCTION DESCRIPTION
Reset historical values of PVHI and PVLO and start to record the peak process
value.
How to display a 5-digit number ?How to display a 5-digit number ?
1 4 Keys and Displays1 4 Keys and Displays
: Confused Character: Confused Character
Figure 1.4 Front Panel DescriptionFigure 1.4 Front Panel Description
Table 1.3 Display Form of CharactersTable 1.3 Display Form of Characters
-199.99 will be displayed by -199.9
4553.6 will be displayed by 4553
-199.99 will be displayed by -199.9
4553.6 will be displayed by 4553
For a number without decimal point
the display will be divided into two
alternating phases:
For anumber without decimal point
the display will be divided into two
alternating phases:
AEINSX
BFJOTY
CGKPUZ
cHLQV
?
DhMRW=
Power On Sequence
1.) Display segments OFF for 0.5 secs.
2.) Display segments ON for 2.0 secs
3.) Display Program Code for 2.5 secs
4.) Display Date Code for 1.25 secs.
5.) Display S/N for 1.25 secs
Power On Sequence
1.) Display segments OFF for 0.5 secs.
2.) Display segments ON for 2.0 secs
3.) Display Program Code for 2.5 secs
4.) Display Date Code for 1.25 secs.
5.) Display S/N for 1.25 secs
Program CodeProgram Code
Program No.Program No.
Program VersionProgram Version
Year (1999)Year (1999)
Month (December)Month (December)
Date (31'st)Date (31'st)
Date CodeDate Code
UM9300 2.0UM9300 2.0
6

PV Value
SV Value
User
Menu
User
Menu
Setup
Menu
Setup
Menu
Hand (Manual)
Control
Mode
Hand (Manual)
Control
Mode
Auto-tuning
Mode
Auto-tuning
Mode
Display
Mode
Display
Mode
Default
Setting
Mode
Default
Setting
Mode
Calibration
Mode
Calibration
Mode
Apply these modes will break the control loop and change
some of the previous setting data. Make sure that if the
system is allowable to use these modes.
Apply these modes will break the control loop and change
some of the previous setting data. Make sure that if the
system is allowable to use these modes.
SEL1
SEL5
SEL4
SEL3
SEL2
FILE
To execute the
default setting
program
PVHI
PVLO
PV1
PV2
PB
TD
TI
DV
CJCT
PVR
PVRH
PVRL
H
C
SEL1
AOHI
IN1L
SP1H
SP2F
AOLO
DP1
SP1L
AOFN
IN1U
SPMD
STOP
IN1
IN1H
IN2H
SLEP
PARI
IN2L
SELF
FILT
PVMD
EIFN
SEL2
DATA
DP2
BAUD
IN2U
ADDR
IN2
PROT
COMM
FUNC
O1TY
O2TY
A1MD
A2FT
OUT1
OUT2
A1FN
A2MD
O1FT
O2FT
A2FN
CYC1
CYC2
A1FT
SEL5
SEL4
SEL3
H
C
V2G
MA2G
MA1G
SR1
REF1
CJG
CJTL
V1G
ADG
AD0
for 3 seconds
for
3 seconds
Press for 3 seconds to enter
the auto-tuning mode
The flow chart shows a complete listing of all parameters.
For actual application the number of available parameters
depends on setup conditions, and should be less
than that shown in the flow chart. See for the
existence conditions of each parameter.
Appendix A-1
The flow chart shows acomplete listing of all parameters.
For actual application the number of available parameters
depends on setup conditions, and should be less
than that shown in the flow chart. See for the
existence conditions of each parameter.
Appendix A-1
*1:
You can select at most 5 parameters put in front of the
user menu by using SEL1 to SEL5 contained at the bottom
of setup menu.
You can select at most 5 parameters put in front of the
user menu by using SEL1 to SEL5 contained at the bottom
of setup menu.
*2:
1 5 Menu Overview1 5 Menu Overview
*1
*2
Display Go HomeDisplay Go Home
The menu will revert to
PV/SV display after keyboard
is kept untouched for
except
and
. However, the
menu can revert to PV / SV
display at any time by
pressing and .
2 minutes Display
Mode Menu Manual
Mode Menu
The menu will revert to
PV/SV display after keyboard
is kept untouched for
except
and
.However, the
menu can revert to PV / SV
display at any time by
pressing and .
2minutes Display
Mode Menu Manual
Mode Menu
Press to enter Setup Mode. Press to select parameter. The upper
display indicates the parameter symbol, and the lower display indicates the
selection or the value of parameter.
Press to enter Setup Mode. Press to select parameter. The upper
display indicates the parameter symbol, and the lower display indicates the
selection or the value of parameter.
UM9300 2.0UM9300 2.0 7
RAMP
A2DV
A2SP
A1DV
A1SP
TIME
PB1
SHIF
CPB
REFC
TD1
OFST
TI1
TD2
TI2
PB2
SP2
PL2
PL1
A2HY
A1HY
O1HY
for 3
seconds
*1
DB

1 6 Parameter Description
Table 1.4 Parameter DescriptionTable 1.4 Parameter Description
Parameter
Description
Parameter
Description Range Default
Value
Default
Value
Contained
in
Contained
in
Basic
Function
Basic
Function
Parameter
Notation
Parameter
Notation
Display
Format
Display
Format
SP1 Set point 1 SP1L SP1H 100.0 C
(212.0 F)
TIME 0 6553.5 minutes 0.0
Dwell Time
A1SP 100.0 C
(212.0 F)
Alarm 1 Set point
A1DV Alarm 1 Deviation Value -200.0 C
(-360.0 F)
10.0 C
(18.0 F)
A2SP Alarm 2 Set point 100.0 C
(212.0 F)
A2DV Alarm 2 Deviation Value -200.0 C
(-360.0 F)
10.0 C
(18.0 F)
RAMP Ramp Rate 00.0
OFST
REFC
SHIF
PB1
TI1User
Menu
Setup
Menu
TD1
Offset Value for P control
PV1 Shift (offset) Value
Proportional Band 1 Value
Integral Time 1 Value
Derivative Time 1 Value
0
0
0
0
0
25.0
100
CPB Cooling Proportional Band
Value 1100
25.0
-200.0 C
(-360.0 F)
10.0 C
(18.0 F)
0.0
Reference Constant for
Specific Function 2
Low:
Low:
Low:
Low:
Low:
Low:
Low:
Low:
Low:
Low:
Low:
Low:
Low:
Low:
Low:
Low:
Low:
Low:
High:
High:
Low:
200.0 C
( 360.0 F)
500.0 C
(900.0 F)
100.0 %
60
200.0 C
( 360.0 F)
High:
High:
High:
High:
High:
SP2
PB2
TI2
TD2
O1HY
A1HY
A2HY
PL1
PL2
COMM
PROT
Set point 2
Proportional Band 2 Value
Integral Time 2 Value
Derivative Time 2 Value
Output 1 ON-OFF Control
Hysteresis
Hysteresis Control of Alarm 1
Hysteresis Control of Alarm 2
Output 1 Power Limit
Output 2 Power Limit
Function Complexity Level
Communication Interface
Type
COMM Protocol Selection
0
Low: 0
0
0
0.1
0.1
0.1
0
100
100
100
25.0
37.8 C
(100.0 F)
1000 sec
360.0 sec
255 %
500.0 C
(900.0 F)
200.0 C
( 360.0 F)
High:
High:
High:
High:
High:
High:
1000 sec
500.0 C
(900.0 F)
High:
High:
High:
High:
High:
High:
High:
100 %
100 %
360.0 sec
55.6 C
( 100.0 F)
10.0 C
(18.0 F)
10.0 C
(18.0 F)
10.0 C
(18.0 F)
0.1
0.1
0.1
FUNC
UM9300 2.0
UM9300 2.0
0Basic Function Mode
:
Full Function Mode
:
1
0:No communication function
:
1RS-485 interface
2:RS-232 interface
:
34 - 20 mA analog retransmission
output
4:0 - 20 mA analog retransmission
output
:
50 - 1V analog retransmission
output
6:0 - 5V analog retransmission
output
:
71 - 5V analog retransmission
output
8:
:
0 - 10V analog retransmission
output
1
1
0
See Table 1.5, 1.6
See Table 1.5, 1.7
See Table 1.5, 1.8
0Modbus protocol RTU mode
8
DB Heating-Cooling Dead Band
Negative Value= Overlap -36.0 0
Low: 36.0%
High:

Parameter
Description
Parameter
Description Range Default
Value
Default
Value
Contained
in
Contained
in
Basic
Function
Basic
Function
Parameter
Notation
Parameter
Notation
Display
Format
Display
Format
:
:
:
:
:
:
:
:
:
:
:
BAUD
DATA
PARI
STOP
AOFN
Baud Rate of Digital COMM
Data Bit count of Digital
COMM
Parity Bit of Digital COMM
Stop Bit Count of Digital
COMM
Analog Output Function
5
1
0
0
0
1
(0)
AOLO
AOHI
Analog Output Low Scale
Value
Analog Output High Scale
Value
-19999
-19999
45536
45536
ADDR
Address Assignment of Digital
COMM
Low:
Low:
Low:
High:
High:
High:
1 255
0
0
1
1
2
2
3
3
4
4
5
5
6
6
7
8
9
0.3 Kbits/s baud rate
0.6 Kbits/s baud rate
1.2 Kbits/s baud rate
2.4 Kbits/s baud rate
4.8 Kbits/s baud rate
9.6 Kbits/s baud rate
14.4 Kbits/s baud rate
19.2 Kbits/s baud rate
28.8 Kbits/s baud rate
38.4 Kbits/s baud rate
07 data bits
:
:
:
:
:
:
:
:
:
:
:
:
:
1 8 data bits
0
1
0
2
1
Even parity
Odd parity
No parity bit
One stop bit
Two stop bits
0:Retransmit IN1 process value
1:Retransmit IN2 process value
4:Retransmit set point value
5:Retransmit output 1 manipulation
value
6:Retransmit output 2 manipulation
value
2:Retransmit IN1 IN2 difference
process value
3:Retransmit IN2 IN1 difference
process value
7:Retransmit deviation(PV-SV)
Value
0C
(32.0 F)
100.0 C
(212.0 F)
IN1 IN1 Sensor Type Selection
T type thermocouple
E type thermocouple
B type thermocouple
R type thermocouple
S type thermocouple
J type thermocouple
K type thermocouple
Table 1.6 Parameter Description ( continued 2/7 )Table 1.6 Parameter Description (continued 2/7 )
Setup
Menu
UM9300 2.0UM9300 2.0 9

Low:
Low:
High:
High:
IN2U
DP2
IN2L
IN2H
IN2 Unit Selection
IN2 Decimal Point Selection
IN2 Low Scale Value
IN2 High Scale Value
-19999
-19999
45536
45536
Same as IN1U
Same as DP1
0
1000
2
1
Parameter
Description
Parameter
Description Range Default
Value
Contained
in
Contained
in
Basic
Function
Basic
Function
Parameter
Notation
Parameter
Notation
Display
Format
Display
Format
IN1U
IN1
DP1
IN1L
IN1H
IN1 Unit Selection
IN1 Sensor Type Selection
IN1 Decimal Point Selection
IN1 Low Scale Value
IN1 High Scale Value
-19999
-19999
45536
45536
7
13
4
8
14
5
9
0
15
6
10
1
16
7
11
2
17
12
3
0
0
1
1
2
2
3
C type thermocouple
P type thermocouple
PT 100 ohms DIN curve
PT 100 ohms JIS curve
4 - 20 mA linear current input
0 - 20 mA linear current input
0 - 1V linear Voltage input
0 - 5V linear Voltage input
1 - 5V linear Voltage input
0 - 10V linear Voltage input
Special defined sensor curve
Low:
Low:
High:
High:
0
1000
1
0
(1)
1
(0)
IN2 IN2 Signal Type Selection 1
IN2 no function
Current transformer input
4 - 20 mA linear current input
0 - 20 mA linear current input
0 - 1V linear voltage input
0 - 5V linear voltage input
1 - 5V linear voltage input
0 - 10V linear voltage input
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
Degree C unit
Degree F unit
Process unit
No decimal point
1 decimal digit
2 decimal digits
3 decimal digits
Output 1 Function 0
0
OUT1
O1TY
0
1
Reverse (heating ) control action
Direct (cooling) control action
:
:
0
1
2
3
Relay output
Solid state relay drive output
Solid state relay output
4 - 20 mA current module
:
:
:
:
Output 1 Signal Type
Table 1.6 Parameter Description ( continued 3/7 )Table 1.6 Parameter Description (continued 3/7 )
Setup
Menu
UM9300 2.0UM9300 2.0
10

Parameter
Description
Parameter
Description Range Default
Value
Default
Value
Contained
in
Contained
in
Basic
Function
Basic
Function
Parameter
Notation
Parameter
Notation
Display
Format
Display
Format
4
5
6
7
0 - 20 mA current module
0 - 1V voltage module
0 - 5V voltage module
1 - 5V voltage module
80 - 10V voltage module
:
:
:
:
:
CYC1
O1TY
Output 1 Cycle Time 100.0 sec 18.0
0
0.1
Low: High:
O1FT Output 1 Failure Transfer
Mode
Select BPLS ( bumpless transfer ) or 0.0 ~ 100.0
% to continue output 1 control function as the unit
fails, power starts or manual mode starts.
Select BPLS ( bumpless transfer ) or 0.0 ~ 100.0
% to continue output 2 control function as the unit
fails, power starts or manual mode starts.
BPLS
Output 2 Function
OUT2 2
0
1
2
: PID cooling control
: Perform alarm 2 function
: Output 2 no function
3: DC power supply module
installed
O2TY
CYC2
O2FT
Output 2 Signal Type
Output 2 Cycle Time
Output 2 Failure Transfer
Mode
100.0 sec
BPLS
18.0
0
0.1
Same as O1TY
Low: High:
A1FN Alarm 1 Function 2
6IN1 process value high alarm
:
9IN2 process value low alarm
:
0No alarm function
:
4Deviation band out of band alarm
:
1Dwell timer action
:
5Deviation band in band alarm
:
8 IN2 process value high alarm
:
3Deviation low alarm
:
2Deviation high alarm
:
11 IN1 or IN2 process value low
alarm
:
7 IN1 process value low alarm
:
10 IN1 or IN2 process value high
alarm
:
12 IN1 IN2 difference process value
high alarm
:
13 IN1 IN2 difference process value
low alarm
:
:
:
14 Loop break alarm
15 Sensor break or A-D fails
:
:
:
:
1
2
3
0Normal alarm action
Latching alarm action
Hold alarm action
Latching & actionHold
A1MD Alarm 1 Operation Mode 0
Table 1.6 Parameter Description ( continued 4/7 )Table 1.6 Parameter Description (continued 4/7 )
Setup
Menu
Output 1 Signal Type
UM9300 2.0UM9300 2.0 11

Parameter
Description
Parameter
Description Range Default
Value
Default
Value
Contained
in
Contained
in
Basic
Function
Basic
Function
Parameter
Notation
Parameter
Notation
Display
Format
Display
Format
:
:
SELF Self Tuning Function
Selection
:
:
0
1
Self tune function disabled
Self tune function enabled
SLEP Sleep mode Function
Selection
0Sleep mode function disabled
Sleep mode function enabled
1
0
0
:
:
A1FT
A2FT
A2FN
Alarm 1 Failure Transfer
Mode
Alarm 2 Failure Transfer
Mode
Alarm 2 Function
1
2
0
1
Alarm output OFF as unit fails
Alarm output ON as unit fails
Same as A1FN
Same as A1MD
Same as A1FT
A2MD Alarm 2 Operation Mode 0
1
1
EIFN Event Input Function
3
4
SP2, PB2, TI2, TD2 activated to
replace SP1, PB1, TI1, TD1
Reset alarm 1 output
9
11
Disable Output 1 & Output 2
Selects remote setpoint active
0Event input no function
:
1 SP2 activated to replace SP1
:
2
PB2, TI2, TD2 activated to replace
PB1, TI1, TD1
:
:
5Reset alarm 2 output
:
6Reset alarm 1 & alarm 2
:
7Disable Output 1
:
8Disable Output 2
:
:
:
PVMD PV Mode Selection
:
:
0
1
Use PV1 as process value
Use PV2 as process value
:
2Use PV1 PV2 (difference) as
process value
:
3Use PV2 PV1 (difference) as
process value
0
0
1
2
3
4
0 second time constant
0.2 second time constant
0.5 second time constant
1 second time constant
2 seconds time constant
5 seconds time constant
10 seconds time constant
20 seconds time constant
30 seconds time constant
60 seconds time constant
5
6
7
8
9
:
:
:
:
:
:
:
:
:
:
FILT Filter Damping Time
Constant of PV 2
Table 1.6 Parameter Description ( continued 5/7 )Table 1.6 Parameter Description (continued 5/7 )
Setup
Menu
:
UM9300 2.0
UM9300 2.0
12
10 Lock All Parameters
:

UM9300 2.0UM9300 2.0 13
:
:
SP2F Format of set point 2 Value
0
1
set point 2 (SP2) is an actual value
set point 2 (SP2) is a deviation
value
0
Parameter
Description
Parameter
Description Range Default
Value
Default
Value
Contained
in
Contained
in
Basic
Function
Basic
Function
Parameter
Notation
Parameter
Notation
Display
Format
Display
Format
:
:
:
:
:
:
SPMD Set point Mode Selection
0
1
2
3
4
5
Use SP1 or SP2 (depends on EIFN)
as set point
Use minute ramp rate as set point
Use hour ramp rate as set point
Use IN1 process value as set point
Use IN2 process value as set point
Selected for pump control
SEL1 Select 1'st Parameter
0
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
16
17
18
Parameter PB2 put ahead
Parameter TI2 put ahead
Parameter TD2 put ahead
0
1
2
3
4
5
6
No parameter put ahead
Parameter TIME put ahead
Parameter A1SP put ahead
Parameter A1DV put ahead
Parameter A2SP put ahead
Parameter A2DV put ahead
Parameter RAMP put ahead
Parameter OFST put ahead
Parameter REFC put ahead
Parameter SHIF put ahead
Parameter PB1 put ahead
Parameter TI1 put ahead
Parameter TD1 put ahead
Parameter CPB put ahead
Parameter SP2 put ahead
7
8
9
10
11
12
13
14
15
0
SEL2
SEL3
SEL4
Same as SEL1
Same as SEL1
Same as SEL1
0
0
0
Low:
Low:
High:
High:
SP1L
SP1H
SP1 Low Scale Value
SP1 High Scale Value
-19999
-19999
45536
45536
0C
(32.0 F)
1000.0 C
(1832.0 F)
Table 1.6 Parameter DescriptionTable 1.6 Parameter Description
Select 2'nd Parameter
Select 3'rd Parameter
Select 4'th Parameter
Select 5'th Parameter
SEL5 Same as SEL1 0
AD0
ADG
V1G
A to D Zero Calibration
Coefficient
A to D Gain Calibration
Coefficient
Voltage Input 1 Gain
Calibration Coefficient
-360 360
-199.9 199.9
-199.9 199.9
Low:
Low:
Low:
High:
High:
High:
Low: High:
CJTL
Cold Junction Low
Temperature Calibration
Coefficient -5.00 C 40.00 C
Calibration
Mode
Menu
Setup
Menu
:Parameter DB put ahead

Parameter
Description
Parameter
Description Range Default
Value
Default
Value
Contained
in
Contained
in
Basic
Function
Basic
Function
Parameter
Notation
Parameter
Notation
Display
Format
Display
Format
Low:
Low:
High:
High:
MA2G
V2G
mA Input 2 Gain Calibration
Coefficient
Voltage Input 2 Gain
Calibration Coefficient -199.9
-199.9
199.9
199.9
Low:
Low:
Low:
Low:
High:
High:
High:
High:
CJG
REF1
SR1
MA1G
Cold Junction Gain
Calibration Coefficient
Reference Voltage 1
Calibration Coefficient for
RTD 1
Serial Resistance 1
Calibration Coefficient for
RTD 1
mA Input 1 Gain Calibration
Coefficient
-199.9
-199.9
-199.9
-199.9
199.9
199.9
199.9
199.9
Table 1.6 Parameter Description ( continued 7/7 )Table 1.6 Parameter Description (continued 7/7 )
Calibration
Mode
Menu
Display
Mode
Menu
Low:
Low:
High:
High:
PVHI
PVLO
Historical Maximum Value of
PV
Historical Minimum Value of
PV
-19999
-19999
45536
45536
Low:
Low: High:
High:
MV1
MV2
Current Output 1 Value
Current Output 2 Value
0
0
100.00 %
100.00 %
Low:
Low:
Low:
Low:
Low:
Low:
Low:
Low:
Low:
Low:
High:
High:
High:
High:
High:
High:
High:
High:
High:
High:
DV
PV1
PV2
PB
TI
TD
CJCT
PVR
PVRH
PVRL
-12600
-19999
-19999
12600
45536
45536
0
0
Current Deviation (PV-SV)
Value
IN1 Process Value
IN2 Process Value
Current Proportional Band
Value
Current Integral Time Value
Current Derivative Time
Value
Cold Junction Compensation
Temperature
Current Process Rate Value
Maximum Process Rate Value
Minimum Process Rate Value
0
4000 sec
1440 sec
500.0 C
(900.0 F)
-40.00 C
-16383
-16383
-16383
90.00 C
16383
16383
16383
Table 1.5 Input ( IN1 or IN2 ) RangeTable 1.5 Input (IN1 or IN2 )Range
Input Type
Input Type
J_TC
C_TC
K_TC
P_TC
T_TC
PT.DN
E_TC
PT.JS
B_TC
CT
R_TC
Linear ( V, mA)
or SPEC
S_TC
Range Low
Range Low
Range High
Range High
-120 C
(-184 F)
1000 C
(1832 F)
2310 C
(4200 F)
-200 C
(-328 F)
0C
(32 F) -200 C
(-328 F)
1370 C
(2498 F)
-250 C
(-418 F)
0C
(32 F) -210 C
(-346 F)
400 C
(752 F)
700 C
(1292 F)
-100 C
(-148 F)
900 C
(1652 F)
1395 C
(2543 F) 600 C
(1112 F)
0C
(32 )L0C
(32 )F0C
(32 F)
1820 C
(3308 F) 1767.8 C
(3214 F) 1767.8 C
(3214 F)
0 Amp
90 Amp
-19999
45536
UM9300 2.0UM9300 2.0
14

Chapter 2 InstallationChapter 2Installation
2 2 Mounting2 2 Mounting
2 1 Unpacking2 1 Unpacking
Upon receipt of the shipment remove the unit from the carton and inspect the
unit for shipping damage.
If any damage due to transit , report and claim with the carrier.
Write down the model number, serial number, and date code for future reference
when corresponding with our service center. The serial number (S/N) and date
code (D/C) are labeled on the box and the housing of control.
Upon receipt of the shipment remove the unit from the carton and inspect the
unit for shipping damage.
If any damage due to transit ,report and claim with the carrier.
Write down the model number, serial number, and date code for future reference
when corresponding with our service center. The serial number (S/N) and date
code (D/C) are labeled on the box and the housing of control.
Make panel cutout to dimension shown in Figure 2.1.Make panel cutout to dimension shown in Figure 2.1.
Take both mounting clamps away and insert the controller into panel cutout.
Install the mounting clamps back. Gently tighten the screws in the clamp till the
controller front panels is fitted snugly in the cutout.
Take both mounting clamps away and insert the controller into panel cutout.
Install the mounting clamps back. Gently tighten the screws in the clamp till the
controller front panels is fitted snugly in the cutout.
Figure 2.1 Mounting DimensionsFigure 2.1 Mounting Dimensions
Dangerous voltages capable of causing death are sometimes
present
in this instrument. Before installation or beginning any troubleshooting
procedures the power to all equipment must be switched off and isolated.
Units suspected of being faulty must be disconnected and removed to a
properly equipped workshop for testing and repair. Component replacement
Dangerous voltages capable of causing death are sometimes
present
in this instrument. Before installation or beginning any troubleshooting
procedures the power to all equipment must be switched off and isolated.
Units suspected of being faulty must be disconnected and removed to a
properly equipped workshop for testing and repair. Component replacement
To minimize the possibility of fire or shock hazards, do not expose this
instrument to rain or excessive moisture.
To minimize the possibility of fire or shock hazards, do not expose this
instrument to rain or excessive moisture.
Do not use this instrument in areas under hazardous conditions such
as excessive shock, vibration, dirt, moisture, corrosive gases or oil. The
ambient temperature of the areas should not exceed the maximum rating
Do not use this instrument in areas under hazardous conditions such
as excessive shock, vibration, dirt, moisture, corrosive gases or oil. The
ambient temperature of the areas should not exceed the maximum rating
Panel
2.95”
SCREW
MOUNTING
CLAMP
Panel cutoutPanel cutout
1.77”
1.77”
.53”
.43”
UM9300 2.0UM9300 2.0 15

2 3 Wiring Precautions2 3 Wiring Precautions
Before wiring, verify the label for correct model number and options. SwitchBefore wiring, verify the label for correct model number and options. Switch
off the power while checking.off the power while checking.
Care must be taken to ensure that maximum voltage rating specified on theCare must be taken to ensure that maximum voltage rating specified on the
label are not exceeded.label are not exceeded.
It is recommended that power of these units to be protected by fuses or circuitIt is recommended that power of these units to be protected by fuses or circuit
breakers rated at the minimum value possible.breakers rated at the minimum value possible.
All units should be installed inside a suitably grounded metal enclosure toAll units should be installed inside asuitably grounded metal enclosure to
prevent live parts being accessible from human hands and metal tools.prevent live parts being accessible from human hands and metal tools.
All wiring must conform to appropriate standards of good practice and localAll wiring must conform to appropriate standards of good practice and local
codes and regulations. Wiring must be suitable for voltage, current, andcodes and regulations. Wiring must be suitable for voltage, current, and
temperature rating of the system.temperature rating of the system.
The " stripped " leads as specified in Figure 2.2 below are used for power andThe "stripped "leads as specified in Figure 2.2 below are used for power and
sensor connections.sensor connections.
Beware not to over-tighten the terminal screws.Beware not to over-tighten the terminal screws.
Unused control terminals should not be used as jumper points as they mayUnused control terminals should not be used as jumper points as they may
be internally connected, causing damage to the unit.be internally connected, causing damage to the unit.
Verify that the ratings of the output devices and the inputs as specified inVerify that the ratings of the output devices and the inputs as specified in
Chapter 6 are not exceeded.Chapter 6are not exceeded.
Electric power in industrial environments contains a certain amount of noise inElectric power in industrial environments contains acertain amount of noise in
the form of transient voltage and spikes. This electrical noise can enter andthe form of transient voltage and spikes. This electrical noise can enter and
adversely affect the operation of microprocessor-based controls. For thisadversely affect the operation of microprocessor-based controls. For this
reason we strongly recommend the use of shielded thermocouple extensionreason we strongly recommend the use of shielded thermocouple extension
wire which connects the sensor to the controller. This wire is a twisted-pairwire which connects the sensor to the controller. This wire is atwisted-pair
construction with foil wrap and drain wire. The drain wire is to be attached toconstruction with foil wrap and drain wire. The drain wire is to be attached to
ground at one end only.ground at one end only.
4.5 7.0 mm
0.18" 0.27"
~
~
2.0mm
0.08" max.
Figure 2.2 Lead TerminationFigure 2.2 Lead Termination
Figure 2.3 Rear Terminal
Connection Diagram
Figure 2.3 Rear Terminal
Connection Diagram
1
LN
9
2
10
3
11
4
12
5
13
6
14
7
15
8
16
90 - 264VAC
47 - 63HZ, 20VA
2A / 240 VAC 2A / 240 VAC
2A / 240 VAC
OUT2
ALM2
_
_
_
+
+
+
+
+
++
+
+
_
_
_
_
_
__
_
OUT1 ALM1
JA
JB
AO
TX1 PTA
AO
TX2
TC
PTB
EI
TC
PTB
EI
COM
AI
CT
AI+
CT+
I
BEVENT
INPUT
B
A
AI
CT
V
CAT.II
*
*
*
*
*
*
*
*
*
*
UM9300 2.0UM9300 2.0
16

2 4 Power Wiring2 4 Power Wiring
1
9
2
10
3
11
4
12
5
13
6
14
7
15
8
16
The controller is supplied to operate at 11-28 VAC / VDC or 90-264VAC.Check
that the installation voltage corresponds with the power rating indicated on the
product label before connecting power to the controller.
The controller is supplied to operate at 11-28 VAC /VDC or 90-264VAC.Check
that the installation voltage corresponds with the power rating indicated on the
product label before connecting power to the controller.
90 264 VAC or
11 28 VAC / VDC
~
~
Fuse
Figure 2.4
Power Supply Connections
Figure 2.4
Power Supply Connections
This equipment is designed for installation in an enclosure which provides
adequate protection against electric shock. The enclosure must be connected
to earth ground.
Local requirements regarding electrical installation should be rigidly observed.
Consideration should be given to prevent from unauthorized person access to
the power terminals.
This equipment is designed for installation in an enclosure which provides
adequate protection against electric shock. The enclosure must be connected
to earth ground.
Local requirements regarding electrical installation should be rigidly observed.
Consideration should be given to prevent from unauthorized person access to
the power terminals.
2 5 Sensor Installation Guidelines2 5 Sensor Installation Guidelines
Proper sensor installation can eliminate many problems in a control system.
The probe should be placed so that it can detect any temperature change
with minimal thermal lag. In a process that requires fairly constant heat
output, the probe should be placed closed to the heater. In a process where
the heat demand is variable, the probe should be closed to the work area.
Some experiments with probe location are often required to find this
optimum position.
In a liquid process, addition of a stirrer will help to eliminate thermal lag.
Since the thermocouple is basically a point measuring device, placing more
than one thermocouple in parallel can provide an average temperature
readout and produce better results in most air heated processes.
Proper sensor type is also a very important factor to obtain precise
measurements. The sensor must have the correct temperature range to
meet the process requirements. In special processes the sensor might need
to have different requirements such as leak-proof, anti-vibration, antiseptic,
etc.
Standard sensor limits of error are +/-4degrees F (+/- 2degrees C ) or 0.75%
of sensed temperature (half that for special ) plus drift caused by improper
protection or an over-temperature occurrence. This error is far greater than
controller error and cannot be corrected on the sensor except by proper
Proper sensor installation can eliminate many problems in a control system.
The probe should be placed so that it can detect any temperature change
with minimal thermal lag. In a process that requires fairly constant heat
output, the probe should be placed closed to the heater. In a process where
the heat demand is variable, the probe should be closed to the work area.
Some experiments with probe location are often required to find this
optimum position.
In a liquid process, addition of a stirrer will help to eliminate thermal lag.
Since the thermocouple is basically a point measuring device, placing more
than one thermocouple in parallel can provide an average temperature
readout and produce better results in most air heated processes.
Proper sensor type is also a very important factor to obtain precise
measurements. The sensor must have the correct temperature range to
meet the process requirements. In special processes the sensor might need
to have different requirements such as leak-proof, anti-vibration, antiseptic,
etc.
Standard sensor limits of error are +/-4degrees F (+/- 2degrees C ) or 0.75%
of sensed temperature (half that for special ) plus drift caused by improper
protection or an over-temperature occurrence. This error is far greater than
controller error and cannot be corrected on the sensor except by proper
UM9300 2.0UM9300 2.0 17

2 6 Thermocouple Input Wiring2 6 Thermocouple Input Wiring
1
9
2
10
3
11
4
12
5
13
6
14
7
15
8
16
+
Figure 2.5
Thermocouple Input Wiring
Figure 2.5
Thermocouple Input Wiring
1 2 3 4
ON
DIP SwitchDIP Switch
If the length of thermocouple plus the extension wire is too long, it may affect the
temperature measurement. A 400 ohms K type or a 500 ohms J type thermocouple
lead resistance will produce 1 degree C temperature error approximately.
If the length of thermocouple plus the extension wire is too long, it may affect the
temperature measurement. A 400 ohms K type or a 500 ohms J type thermocouple
lead resistance will produce 1 degree C temperature error approximately.
2 7 RTD Input Wiring2 7 RTD Input Wiring
Figure 2.6
RTD Input Wiring
Figure 2.6
RTD Input Wiring
1 2 3 4
ON
DIP SwitchDIP Switch
Two-wire RTD should be avoided, if possible, for the purpose of accuracy. A
0.4 ohm lead resistance of a two-wire RTD will produce 1 degree C
temperature error.
Two-wire RTD should be avoided, if possible, for the purpose of accuracy. A
0.4 ohm lead resistance of a two-wire RTD will produce 1 degree C
temperature error.
1
9
2
10
3
11
4
12
5
13
6
14
7
15
8
16
RTD
Three-wire RTDThree-wire RTD
1
9
2
10
3
11
4
12
5
13
6
14
7
15
8
16
RTD
Two-wire RTDTwo-wire RTD
RTD connection are shown in Figure 2.6, with the compensating lead connected
to
terminal 12. For two-wire RTD inputs, terminals 12 and 13 should be linked. The
three-wire RTD offers the capability of lead resistance compensation provided that
RTD connection are shown in Figure 2.6, with the compensating lead connected
to
terminal 12. For two-wire RTD inputs, terminals 12 and 13 should be linked. The
three-wire RTD offers the capability of lead resistance compensation provided that
UM9300 2.0UM9300 2.0
18
IThermocouple input connections are shown in Figure 2.5. The correct type of
thermocouple extension lead-wire MUST be used for the entire distance from
thermocouple sensor to connection to the controller. Splices and joints should be
avoided if at all possible. POLARITY MUST be observed when connecting
thermocouples.
IThermocouple input connections are shown in Figure 2.5. The correct type of
thermocouple extension lead-wire MUST be used for the entire distance from
thermocouple sensor to connection to the controller. Splices and joints should be
avoided if at all possible. POLARITY MUST be observed when connecting
thermocouples.

2 8 Linear DC Input Wiring2 8 Linear DC Input Wiring
DC linear voltage and linear current connections for input 1 are shown in Figure
2.7 and Figure 2.8 .
DC linear voltage and linear current connections for input 1are shown in Figure
2.7 and Figure 2.8 .
DC linear voltage and linear current connections for input 2 are shown in Figure
2.9 and Figure 2.10 .
DC linear voltage and linear current connections for input 2are shown in Figure
2.9 and Figure 2.10 .
Figure 2.7
Input 1 Linear Voltage Wiring
Figure 2.7
Input 1Linear Voltage Wiring
1 2 3 4
ON
DIP SwitchDIP Switch
0~1V, 0~5V
1~5V, 0~10V
0~1V, 0~5V
1~5V, 0~10V
1
9
2
10
3
11
4
12
5
13
6
14
7
15
8
16
+
1
9
2
10
3
11
4
12
5
13
6
14
7
15
8
16
0~20mA or
4~20mA
0~20mA or
4~20mA
1 2 3 4
ON
+
DIP SwitchDIP Switch
Figure 2.8
Input 1 Linear Current Wiring
Figure 2.8
Input 1Linear Current Wiring
Figure 2.9
Input 2 Linear Voltage Wiring
Figure 2.9
Input 2Linear Voltage Wiring
1
9
2
10
3
11
4
12
5
13
6
14
7
15
8
16
0~1V, 0~5V
1~5V, 0~10V
0~1V, 0~5V
1~5V, 0~10V
+
Figure 2.10
Input 2 Linear Current Wiring
Figure 2.10
Input 2Linear Current Wiring
1
9
2
10
3
11
4
12
5
13
6
14
7
15
8
16
0~20mA or
4~20mA
0~20mA or
4~20mA +
Figure 2.11
CT Input Wiring for
Single Phase Heater
Figure 2.11
CT Input Wiring for
Single Phase Heater
2 9 CT / Heater Current Input Wiring2 9 CT / Heater Current Input Wiring
CT Signal Input *Total current CT94-1 not to
exceed 50 A RMS.
CT Signal Input *Total current CT94-1 not to
exceed 50 A RMS.
+
1
9
2
10
3
11
4
12
5
13
6
14
7
15
8
16
UM9300 2.0UM9300 2.0 19

2 10 Output 1 Wiring210 Output 1Wiring
1
9
2
10
3
11
4
12
5
13
6
14
7
15
8
16
120V/240V
Mains Supply
120V/240V
Mains Supply
Max. 2A
Resistive
Max. 2A
Resistive
Load
Relay OutputRelay Output
+
1
9
2
10
3
11
4
12
5
13
6
14
7
15
8
16
5VDC@30ma or
14VDC @40ma
Pulsed Voltage
5VDC@30ma or
14VDC @40ma
Pulsed Voltage
Pulsed Voltage to Drive SSRPulsed Voltage to Drive SSR
Figure 2.12
Output 1 Wiring
Figure 2.12
Output 1Wiring
1
9
2
10
3
11
4
12
5
13
6
14
7
15
8
16
Linear CurrentLinear Current
Maximum Load 500 ohmsMaximum Load 500 ohms
++
0-20mA,
4-20mA
0 - 20mA,
4-20mA Load
1
9
2
10
3
11
4
12
5
13
6
14
7
15
8
16
0-1V, 0-5V
1-5V,0-10V
0 - 1V, 0 - 5V
1-5V, 0 - 10V
Linear VoltageLinear Voltage
Minimum Load
10Kohms
Minimum Load
10 Kohms
++
Load
1
9
2
10
3
11
4
12
5
13
6
14
7
15
8
16
Max.1A/240VMax. 1A /240V
Load
Triac
Triac (SSR) Output
Direct Drive
Triac (SSR) Output
Direct Drive
120V /240V
Mains Supply
120V /240V
Mains Supply
UM9300 2.0UM9300 2.0
20
Table of contents
Other Future Design Temperature Controllers manuals
Popular Temperature Controllers manuals by other brands

iNels
iNels RFTC-150/G/ice manual

Johnson Controls
Johnson Controls TM-11x1 series installation instructions

Dickson
Dickson KT8 USER MANUAL & PRODUCT GUIDE

oventrop
oventrop Unibox T vario operating instructions

ICMA
ICMA S301 Assembly and installation

elsner elektronik
elsner elektronik KNX eTR 101-BA2 Installation and adjustment