3
Unit Storage
When storing the unit it is important to protect it
from damage. Blow out any water from the unit;
cover it to keep dirt and debris from accumulating or
getting in, and store in an indoor sheltered area that
does not exceed 145°F.
Installation - Chiller
Foundation
Install the unit on a rigid, non-warping mounting
pad, concrete foundation, or level floor suitable to
support the full operating weight of the equipment.
When installed the equipment must be level within
¼ inch over its length and width.
Unit Location
To ensure proper airflow and clearance space for
proper operation and maintenance allow a minimum
of 36 inches of clearance between the sides of the
equipment and any walls or obstructions. Avoid
locating piping or conduit over the unit to ensure
easy access with an overhead crane or lift to lift out
heavier components during replacement or service.
In addition, ensure the condenser and evaporator
refrigerant pressure relief valves can vent in
accordance with all local and national codes.
Rigging
The chiller has a frame to facilitate easy movement
and positioning with a crane or forklift. Follow
proper rigging methods to prevent damage to
components. Avoid impact loading caused by
sudden jerking when lifting or lowering the chiller.
Use pads where abrasive surface contact may occur.
Process Fluid Piping
Proper insulation of chilled process fluid piping is
crucial to prevent condensation. The formation of
condensation adds a substantial heat load to the
chiller.
The importance of properly sized piping cannot be
overemphasized. See the ASHRAE Refrigeration
Handbook or other suitable design guide for proper
pipe sizing. In general, run full size piping out to the
process and reduce pipe size at connections as
needed. One of the most common causes of
unsatisfactory chiller performance is poor piping
system design. Avoid long lengths of hoses, quick
disconnect fittings, and manifolds wherever possible
as they offer high resistance to water flow. When
manifolds are required, install them as close to the
use point as possible. Provide flow-balancing valves
at each machine to assure adequate water
distribution in the entire system.
Condenser Water Piping
The performance of a water-cooled condenser is
dependent on the flow and temperature of the
cooling water used. Insufficient cooling of the
condenser will result in the reduction of cooling
capacity of the chiller and under extreme conditions
may result in the chiller shutting down due to high
refrigerant pressure. Allowing the condenser to plug
up from contaminants in the condenser water
stream adversely affects performance. In order to
reduce maintenance costs and chiller downtime, a
water treatment program is highly recommended for
the condenser cooling water. Contact our Customer
Service Department for assistance in the proper
procedure for cleaning out any plugged condenser.
The nominal water-cooled condenser is designed for
85°F condenser cooling water supply. Under normal
operation there will be about a 10°F rise through the
condenser resulting in 95°F exiting water. To ensure
proper water flow through the condenser, ensure the
condenser water pump provides at least 25 psi or
water at a flow rate of 3 gpm per ton of chiller
capacity.
The condenser has a two-way condenser water-
regulating valve. The condenser water-regulating
valve controls the amount of water allowed to pass
through the condenser in order to maintain proper
refrigeration pressures in the circuit.
To prevent damage to the condenser and/or water-
regulating valve, the water pressure should not
exceed 150 psig.
Water Pressure Gauges
Install pressure gauges in the inlet and outlet of both
the condenser and evaporator chilled water piping
to provide the ability to read the pressure drop
across the chiller and aid in preventive maintenance
and troubleshooting.