ABB AnalyzeIT ZMT Series Operating instructions

AnalyzeIT
Zirconia Oxygen Analyzer Systems
ZMT Series
Supplementary Operating Instructions –
Serial Data Communications
IM/ZMT–SER_2

ABB
The Company
We are an established world force in the design and manufacture of instrumentation for
industrial process control, flow measurement, gas and liquid analysis and environmental
applications.
As a part of ABB, a world leader in process automation technology, we offer customers
application expertise, service and support worldwide.
We are committed to teamwork, high quality manufacturing, advanced technology and
unrivalled service and support.
The quality, accuracy and performance of the Company’s products result from over 100 years
experience, combined with a continuous program of innovative design and development to
incorporate the latest technology.
The UKAS Calibration Laboratory No. 0255 is just one of the ten flow calibration plants
operated by the Company and is indicative of our dedication to quality and accuracy.
Health and Safety
To ensure that our products are safe and without risk to health, the following points must be noted:
1. The relevant sections of these instructions must be read carefully before proceeding.
2. Warning labels on containers and packages must be observed.
3. Installation, operation, maintenance and servicing must only be carried out by suitably trained personnel and in accordance with the
information given.
4. Normal safety precautions must be taken to avoid the possibility of an accident occurring when operating in conditions of high pressure
and/or temperature.
5. Chemicalsmustbestoredawayfromheat,protectedfromtemperatureextremesandpowderskeptdry.Normalsafehandlingprocedures
must be used.
6. When disposing of chemicals ensure that no two chemicals are mixed.
Safety advice concerning the use of the equipment described in this manual or any relevant hazard data sheets (where applicable) may be
obtained from the Company address on the back cover, together with servicing and spares information.
EN ISO 9001:2000
Cert. No. Q 05907
R
E
G
I
S
T
E
R
E
D
EN 29001 (ISO 9001)
Lenno, Italy – Cert. No.9/90A
0255
Stonehouse, U.K.
Warning – Refer to the manual for instructions
Caution – Risk of electric shock
Protective earth (ground) terminal
Earth (ground) terminal
Direct current supply only
Alternating current supply only
Both direct and alternating current supply
The equipment is protected
through double insulation
Electrical Safety
This instrument complies with the requirements of CEI/IEC 61010-1:2001-2 "Safety requirements for electrical equipment for
measurement, control, and laboratory use". If the instrument is used in a manner NOT specified by the Company, the protection
provided by the instrument may be impaired.
Symbols
One or more of the following symbols may appear on the instrument labelling:
Information in this manual is intended only to assist our customers in the efficient operation of our equipment.Use of this manual
for any other purpose is specifically prohibited and its contents are not to be reproduced in full or part without prior approval of the
Technical Publications Department.

1
CONTENTS
Section Page
1 INTRODUCTION ..........................................................2
2 PREPARATION ............................................................2
2.1 Company Standard Settings ..............................2
3 INSTALLATION ............................................................3
3.1 Serial Communication Adaptors
for Personal Computers .....................................3
3.1.1 Configuration ..........................................3
4 ELECTRICAL CONNECTIONS ...................................3
4.1 Serial Connections .............................................3
4.1.1 Cabling....................................................3
5 SETTING UP ................................................................4
5.1 Termination Resistors.........................................4
6 PROTOCOL..................................................................4
7 PROGRAMMING..........................................................5
7.1 Serial Interface Page..........................................5
8 COMMUNICATION.......................................................6
8.1 Communication between Master
and Slaves ..........................................................6
8.1.1 Mnemonics ...............................................6
8.2 Command Format...............................................6
8.2.1 Term Clarification for
Command Format...............................................6
8.3 Reply Format ......................................................7
8.3.1 Term Clarification for
Reply Format ......................................................7
8.4 Communication Examples..................................8
8.5 Status..................................................................8
8.6 Error Codes ........................................................9
8.7 Command Mnemonics .....................................10
8.7.1 General Mnemonics ...............................10
8.7.2 Multiple Read Mnemonics......................11
9 OPERATION...............................................................12
10 SPECIFICATION ........................................................12
APPENDICES ................................................................13
A1 The American Standard Code for
Information Interchange (ASCII) ......................13
A2 Non-volatile Memory Limitations ......................15
A3 Block Check Characters...................................15
A3.1 BCC Example.........................................15

2
The procedure is similar to that described in the Operating
Instructions (IM/ZMT)with additionsasdetailed inthissection.
2.1 Company Standard Settings
Only those parameters detailed on the customer order are
programmed at the factory. If any parameters are unsuitable
for the application they can be reprogrammed – see Section 9
of the Operating Instructions (IM/ZMT). Serial data
programming procedures are detailed in Section 7 of this
manual.
Standard parameter settings for the serial data programme
are as follows:
Instrument Identity 01
Parity None
Block Check
Character (BCC) BCC off
Transmission Rate 9600 baud.
Observe the limitations outlined in the Operating Instructions
(IM/ZMT). The maximum serial data transmission line length
for both RS422 and RS485 systems is 1200m.
The ZMT Series of oxygen analyzers is extended by the
addition of a serial data communication option which allows
addressing and reprogramming via a computer terminal or
host computer.
The RS422/485 communication standard is used with the
following logic levels:
a) for logic‘1’ (MARK condition or IDLE state) the‘A’ terminal
of the transmitter is negative (0V) with respect to the ‘B’
terminal (+5V)
b) for logic ‘0’ (SPACE condition or ACTIVE state) the ‘A’
terminal of the transmitter is positive (+5V) with respect to
the ‘B’ terminal (0V).
Note. ‘A’ terminal is Tx + or Rx + and ‘B’ terminal is
Tx – or Rx –.
Parity is used for simple error checking.The parity bit is a one-
bitcodewhich istransmittedinadditionto the ASCIIcharacter.
Itcandetectonly one error percharacter, since twoerrorsmay
cancel out. Parity is calculated by finding the sum of logic ‘1’s
in the character and either:
a) setting the parity bit to logic ‘1’ if the sum is odd, or logic ‘0’
if the sum is even, when using even parity
or
b) setting the parity bit to logic ‘0’ if the sum is odd, or logic ‘1’
if the sum is even, when using odd parity.
The block check character (BCC) is an additional form of
checking and is the arithmetic sum of all the characters in a
complete message (excluding parity bits) – see Appendix A3.
Error detection is achieved by comparison of the BCC’s of the
transmitted and received messages.
This manual must be read in conjunction with the instrument
operating instructions detailed in IM/ZMT.
1 INTRODUCTION 2 PREPARATION

3
3.1 Serial Communication
Adaptors for Personal Computers
An RS422/485 communications adaptor board is required for
serial links. It is strongly recommended that the card used has
galvanic isolation to protect the computer from lightning
damage and increase immunity from noise pick-up from
cables.
3.1.1 Configuration
The following OPTO22 boards are recommended for use with
the serial version of ZMT analyzers:
Part No. Computer Type
AC24 XT Bus IBM PC compatible
AC24 AT AT Bus IBM PC compatible
AC34 Microchannel IBM PC.
The following ‘Jumper’ selections are required on OPTO22
boards (usually supplied as the default configuration):
RX & TX install line termination jumper
Install pull-up and pull-down
jumpers
CTS & RTS disable jumper installed.
Select board address and interrupts as described in the
OPTO22 manual.
All connections, apart from those for serial data
communication, are made as shown in Figs.5.4 and 5.5 of the
Operating Instructions (IM/ZMT).
4.1 Serial Connections – Figs. 4.1 and 4.2
Thetransmittersmust beconnectedin parallelasshowninthe
schematic diagram – Fig. 4.1. The RS485 standard quotes
connection of maximum thirty two slaves (ZMT Analyzers) to
any single driver (computer terminal or host computer); the
RS422 standard quotes connection of up to ten slaves.
However, these numbers can be increased if the driver’s serial
port permits.
Make serial data connections as shown in Fig.4.2.The type of
cable used is dependent on the transmission speed and cable
length:
4.1.1 Cabling (refer also to Fig. 9.1 on page 13)
Up to 6m (all speeds) – standard screened or twisted pair
cable.
Up to 300m – twin twisted pair with overall foil screen and
an integral drain wire, e.g. Belden 9502 or equivalent
Up to 1200m – twin twisted pair with separate foil screens
and integral drain wires for each pair, e.g. Belden 9729 or
equivalent
Fig. 4.1 Schematic Diagram
3 INSTALLATION 4 ELECTRICAL CONNECTIONS
Chain of ZMT Analyzers
Connected
Termination Resistor
(on ZMT receive input)
Computer Terminal or
Host Computer Last ZMT
in Chain
Fig. 4.2 Serial Connections
123
Output Module 3
456
Tx
TB
Tx Rx
From PC
Rx 0V
Rx Rx Tx Tx 0V

4
For all aspects other than serial data transmission the
transmitter is set up as shown in the Operating Instructions
(IM/ZMT). Unless otherwise requested, the instrument is
despatched with a transmission rate of 9600 baud and
transmission line termination resistors linked-out. If these
settings are unsuitable, refer to Section 5.1.
5.1 Termination Resistors
and Baud Rate Settings – Fig. 5.1
5.1.1 Termination Resistors
For long transmission lines, termination resistors are
requiredonthe last ZMTAnalyzerin thechainand at thehost
computer/computer terminal. Under normal operating
conditions the resistors are required at the last ZMT receive
inputs only – see Fig. 4.1. The analyzer’s resistors are
selected using plug-in links – see Fig. 5.1.
Switch off the supply and gain access to the Serial Output
board in Output Module 3 – see
IM/ZMT, Section 6.2
.Set the
termination resistor links as shown in Fig. 5.1.
5.1.2 Hardware Baud Rate Setting
TosettheBaud rate totherequiredspeed, set the plug-inlink
as shown in Fig. 5.1
The protocol used is based on ANSI-X3.28-1976-2.5-A4 and
is used for master (host computer) to slave (ZMT Analyzer)
systems. This is the recommended protocol for use with
supervisory systems such as ABB Kent-Taylor PC30. The
Protocol is:
Start transmission (STX) – Command – Identification…
…End transmission (ETX) – see Figs. 8.1 to 8.6.
Transmissions of commands and processing of the
subsequent replies must be incorporated into the host
computer programme.
Fig. 5.1 Termination Resistor and Baud Rate Links
5 SETTING UP 6 PROTOCOL
IN
1
12
6
7
1
12
6
7OUT 98
161
1200
9600
4800
2400
Baud Rate Links
Termination Resistors

5
Page Header – Serial Interface
Transmission Rate
Select the transmission (baud) rate required (1200 slowest, 9600 fastest).
Note.The transmission rate selected must be the same as that selected in Section
5.1.2
Transmitter Identification
Assign the transmitter an identification number (1 to 99) – see Section 4.1. The
maximum number (99) allows transmitters to be connected to more than one
communication channel.
Block Check Character
Select ON or OFF as required – see Section A3.
Parity
Select the appropriate parity to match the computer terminal or host computer.
Return to the top of the Serial Interface Page or advance to the next page.
Fig. 7.1 Location of Serial Data Interface Page
Inst. Identity
1
SERIAL INTERFACE
–––––
Baud Rate 9600
–––––
Block Check ON
–––––
arity ODD
–––––
DIAGNOSTIC CHECKS
–––––
CLOCK SETU
–––––
Inst. Identity
1
SERIAL INTERFACE
–––––
Baud Rate 1200
–––––
2400
Block Check ON
4800
9600
–––––
OFF
arity EVEN
–––––
ODD
NONE
7 PROGRAMMING
The general programming procedure is as detailed in the Operating Instructions (IM/ZMT) but with an additional Serial Interface
page – see Fig. 7.1.
7.1 Serial Interface Page

6
8.2.1 Term Clarification for Command Format
Start – one ASCII control character (always ‘STX’) signifying
the start of transmission.
Command – one character, R, M or W – see Section 8.1.
Instrument Identification – two characters identifying the
ZMT Transmitter, 1 to 99.
Parameter – two-character mnemonic selected from
Section 8.7.
Sign – one character:
‘+’ – parameter value is positive (optional)
‘–’ – parameter value is negative.
Data – usually up to six characters (including decimal point)
used to write a new parameter value.
Limiter – one character (always ‘ETX’) signifying the end of
data transmission.
Block Check Character (BCC) – one character, the
arithmetic sum of the complete message (excluding parity
bits), transmitted by the host computer for error detection –
see Appendix A3.
8.1 Communication Between Master and Slaves
The commands from the master are coded as single
characters as follows:
R– ‘Read’ (read parameters)
M– ‘Multiple Read’ (read a selection of parameters)
W– ‘Write’ (write new parameter values).
8.1.1 Mnemonics
Each mnemonic for the ZMT Analyzer parameters comprises
two characters – see Section 8.7.
8.2 Command Format – Figs. 8.1 to 8.3
The protocol is based on ANSI-X3.28-1976-2.5-A4. Entries
are made directly from the host computer using the command
format shown in Figs. 8.1 to 8.3.
Fig. 8.3 'Write' Command Format
Fig. 8.2 'Multiple Read' Command Format
Fig. 8.1 'Read' Command Format
8 COMMUNICATION
R
Command
Instrument
Identification
(1 to 99) Mnemonic
(Section 8.6) BCC
(optional)
Limiter
STX
Start
ETX
M
Command
Instrument
Identification
(1 to 99) Mnemonic
(Section 8.6) BCC
(optional)
Limiter
STX
Start
ETX
Command
Instrument
Identification
(1 to 99)
Parameter
Mnemonic
(Section 8.6) BCC
(optional)
Limiter
W
Sign
(optional for
'Write'
command)
STX ETX
Start Data (up to 6 characters)
W

7
8.3 Reply Format – Figs 8.4 to 8.6
The ZMT Analyzer replies to the command using the reply
format shown in Figs. 8.4 to 8.6.
8.3.1 Term Clarification for Reply Format
Instrument Identification – two characters identifying the
ZMT Analyzer, 1 to 99.
Data – usually up to six characters (including decimal point)
showing the new parameter value.
Error Code – two-character mnemonic – see Section 8.6.
Reply – one ASCII control character (see Appendix A1):
‘ACK’ – command understood
‘NAK’ – command not understood
‘ETB’ – end of multiple read reply block.
Block Check Character (BCC) – one character, the
arithmetic sum of the complete message (excluding parity
bits), transmitted by the analyzer for error detection
– see Appendix A3.
Fig. 8.4 Reply Format (Command Understood)
Fig. 8.6 Reply Format (Command Not Understood)
Fig. 8.5 Multiple Read Reply Format
8 COMMUNICATION…
I
nstrument
Identification
(1 to 99)
P
arameter
Mnemonic
(Section 8.6) BCC
(optional)
Reply
ACK
Sign Data (up to 6 characters)
Instrument
Identification
(1 to 99)
Parameter
Mnemonic
(Section 8.6) BCC
(optional)
Reply
Sign Data (up to 6 characters)
ACK
ETB
ETB
Note. This reply format may be repeated several times – see Example c) overleaf
The last reply line is always:
First reply
Replies
2 to n
Last reply
(n+1)
ETB
Instrument
Identification
(1 to 99) Error Code BCC
(optional)
Reply
NAK

8
8.4 Communication Examples
The following examples show typical master-to-slave transmissions and the subsequent slave-to-master replies. For Error Code
and Parameter interpretations refer to Sections 8.6 and 8.7.
…8 COMMUNICATION
a) Command – STX R 06 O2 ETX
Reply – 06 02 20.9 ACK
06 Analyzer number 6
02 Oxygen
20.9 Oxygen value = 20.9
ACK Command understood
STX Start of text
R 'Read' command
06 Analyzer number 6
O2 Oxygen
ETX End of transmission
bCommand – STX M 06 M1 ETX
Reply – 06 02 20.9 ETB
06 CT 700 ETB
06 FT 200 ETB
06 AT 20 ETB
06 EF 98.0 ETB
06 CO 200 ETB
06 CD 10 ETB
06 SA 0 ETB
ACK
06 Analyzer number 6
02 Oxygen
20.9 Oxygen value = 20.9
ETB End of transmission block
06 Analyzer number 6
CT Cell temperature
700 Cell temperature = 700
ETB End of transmission block
06 Analyzer number 6
FT Flue temperature
200 Flue temperature = 200
ETB End of transmission block
06 Analyzer number 6
AT Air temperature
20 Air temperature = 20
ETB End of transmission block
06 Analyzer number 6
EF Efficiency
98.0 Efficiency value = 98.0
ETB End of transmission block
06 Analyzer number 6
CO Carbon Monoxide
200 Carbon Monoxide value = 200
ETB End of transmission block
06 Analyzer number 6
CD Carbon Dioxide
10 Carbon Dioxide value = 10
ETB End of transmission block
06 Analyzer number 6
SA Status
0 Status = No Alarms
ETB End of transmission block
ACK Command understood
STX Start of text
M 'Multiple Read' command
06 Analyzer number 6
M1 Multiple Read Mnemonic
ETX End of transmission
c) Command – STX W 06 DA ETX
Reply – 06 DA 01 ACK
06 Analyzer number 6
DA Carry out auto calibration
01 Auto calibration status
(01 – Yes, 00 – No)
ACK Command understood
STX Start of text
W 'Write' command
06 Analyzer number 6
DA Carry out auto calibration
ETX End of transmission
8.5 Status
The status code is assigned to any alarm conditions which may be present.
Status code Description
00 No Alarms (highest priority)
01 Cell Thermocouple reversed
02 Cell Thermocouple broken
03 Cell warming up
04 Cell stabilizing
05 Cell under temperature
06 Flue Thermocouple broken
07 Air Thermocouple broken
Status code Description
08 Cell low temperature
09 Cell high temperature
10 Flue high temperature
11 Flue low temperature
12 Oxygen 1 alarm
13 Oxygen 2 alarm
14 Auto Cal pass/fail
15 In auto cal
16 Cell at temperature (lowest priority)
8.6 Error Codes

9
8.7 Command Mnemonics
8 COMMUNICATION…
edoCrorrErorrE
10 .)daerelpitlum(Mro)etirw(W,)daer(Rtonsawdnammocdeviecereht–dnammocdilavnI
20 .dnammocdaeRhtiwdesuebtonnacretemarap–retemarap'daeR'dilavnI
30 .dnammocetirWhtiwdesuebtonnacretemarap–retemarap'etirW'dilavnI
40 .sretcarahc23nahtretaergsihtgnelegassemdeviecer–reffubotnideretnesretcarahcynamooT
50.noitisoptnioplamiceddilavnI
80.stimilsrellortnocehtnihtiwtonsieulav'etirW'ehT
01.atadnideretneretcarahcciremun-noN
51.rorreretcarahckcehckcolbdevieceR
61.tamrofxelpmocniretcarahcXTSoN
71.rorrekcehcytirapdevieceR
81.ataddeviecernidetcetedrorregnimarfronurrevO
91.dnammocdaerelpitluMnirorrE
02.dnammoc'etirW'niatadoN
12.atadnitnioplamicedenonahteroM
22.atadnitnioplamicedretfaatadoN
32.dleifatadnisretcarahcxisnahteroM
62.dnammoc'daeR'nisretcarahcdilavnI

10
…8 COMMUNICATION
Information. In the following Sections:
• All parameters can be 'Read'.
• Some parameters can be written to ('Write' Command) – see Sections 8.7.1.
• Some parameters can be read as a group ('Multiple' Read) – see Section 8.7.2.
8.7.1 General Mnemonics
retemaraPcinomenMetirWnoitaterpretnI
negyxO%2OoNeulavnegyxOdeyalpsiD
erutarepmeTlleCTCoNerutarepmeTlleCdeyalpsiD
erutarepmeTeulFTFoNerutarepmeTeulFdeyalpsiD
erutarepmeTriATAoNerutarepmeTriAdeyalpsiD
ycneiciffEFEoNycneiciffEdeyalpsiD
edixonoMnobraCOCoNedixonoMnobraCdeyalpsiD
edixoiDnobraCDCoNedixoiDnobraCdeyalpsiD
sutatStnemurtsnIASoNsutatStnemurtsnI
noitcA1yaleRARoNtniopteswolebroevobadesigrenE
ffO/nO1yaleRORoNffO–0nO–1
epyT1yaleRTRoN
1negyxO%–02negyxO%–12leuF/1leuF–2erutarepmetrednulleC–3nekorbelpuocomrehTynA–4nekorbelpuocomrehTlleC–5nekorbelpuocomrehTeulF–6nekorbelpuocomrehTriA–7hgiherutarepmeTlleC–8wolerutarepmeTlleC–9hgiherutarepmeTeulF–01 wolerutarepmeTeulF–11 mralalareneG–21
tnatsnoClleCCCoNtnatsnocllecfoeulavVm
epolSLSoN)%001ot%0.0(yroehtfo%epolS
epyTtuptuOtnerruCAToN
negyxO%–0erutarepmeTlleC–1erutarepmeTeulF–2erutarepmeTriA–3ycneiciffE–4
oreZegnaRtuptuOtnerruCZAoN%0.52ot0.0
napSegnaRtuptuOtnerruCSAoN%0.52ot0.0
sutatSffO/nOtuptuOtnerruCOAoNffO–0nO–1
sutatSoreZlaCotuA4SoNdessaP–0elbatsnU–1>–2±Vm03
sutatSnapSlaCotuA3SoNdessaP–0elbatsnU–1>–2±%01
tniopteS1yaleR1RseYtniopteS201yaleR
laCotuAoDADseY oN–0seY–1
epyTlaCotuAYTseY
enoN–0oreZ–1napS-2 napSdnaoreZ–3

11
8.7.2 Multiple Read Mnemonics
8 COMMUNICATION…
retemaraPcinomenMetirWnoitaterpretnI
negyxO%2OoNeulavnegyxOdeyalpsiD
erutarepmeTlleCTCoNerutarepmeTlleCdeyalpsiD
erutarepmeTeulFTFoNerutarepmeTeulFdeyalpsiD
erutarepmeTriATAoNerutarepmeTriAdeyalpsiD
ycneiciffEFEoNycneiciffEdeyalpsiD
edixonoMnobraCOCoNedixonoMnobraCdeyalpsiD
edixoiDnobraCDCoNedixoiDnobraCdeyalpsiD
sutatStnemurtsnIASoNsutatStnemurtsnI

12
Fig. 9.1 Pull-up and Pull-down Resistors
Before attempting any serial communication, first ensure that
theZMTAnalyzersconnectedto thecomputerterminalor host
computer by serial link are functioning correctly as individual
instruments.This is achieved by connecting all analog inputs,
applying the input signals and checking that the digital display
reads appropriately.
Ensure that the serial data connections to ZMT Analyzers
have been made correctly with respect to the computer
terminal, or host computer, interface. If the above check
appearssatisfactory, testtheserialcommunicationbysending
an appropriate message from the compcorrectly correctly uter
terminal or host computer to a transmitter and observe if it
replies; thus establishing communication. If communication is
not established, check that the computer terminal, or host
computer, interface is correctly set up and that the plug-in
links within each transmitter are positioned correctly
– see Section 5.
Check that the parameters programmed in the instrument’s
Serial Data Communication Page are compatible with those of
the computer terminal or host computer – see Section 7.
Ifcommunicationisstillnotpossibleoriserratic, checkthat the
computerterminal, or host computer, interfacehaspull-upand
pull-down resistors connected as shown in Figs.9.1
Note. If no reply is received from the instrument within
160ms, retransmit the command.If after five command re-
entries, a satisfactory reply has not been received, the
communication link has been broken and must be
rechecked.
9 OPERATION
Computer Terminal or Host Computer
+5V
+5V
Tx-
Tx+
Rx-
Rx+
0V
0V
'A'
'B'
'A'
'B'
Pull-up
Resistor
Pull-up
Resistor
Pull-down
Resistor
Pull-down
Resistor
123
O/P Module 3
456
Tx+ Tx- Rx+ Rx- 0V
10 SPECIFICATION
As detailed in the Operating Instructions (IM/ZMT), with the
following additions:
EIA Communication RS422, RS485
Standards 4-wire mode
Parity None
Odd
Even
Block check character Programmable on or off
Transmission line length 1200m max.
Transmission speeds 1200 baud
2400 baud
4800 baud
9600 baud
Programmable
Programmable

13
Character Significance Decimal Hex. Binary
NUL Null, Operation 0 00 0000000
SOH Start of Heading 1 01 0000001
STX Start of Text 2 02 0000010
ETX End of Text 3 03 0000011
EOT End of Transmission 4 04 0000100
ENQ Enquiry 5 05 0000101
ACK Acknowledgement 6 06 0000110
BEL Bell 7 07 0000111
BS Backspace 8 08 0001000
HT Horizontal Tabulation 9 09 0001001
LF Line Feed 10 0A 0001010
VT Vertical Tabulation 11 0B 0001011
FF Form Feed 12 0C 0001100
CR Carriage Return 13 0D 0001101
SO Shift Out 14 0E 0001110
SI Shift In 15 0F 0001111
DLE Data Link Escape 16 10 0010000
DC1 Device Control 1 17 11 0010001
DC2 Device Control 2 18 12 0010010
DC3 Device Control 3 19 13 0010011
DC4 Device Control 4 20 14 0010100
NAK Negative Acknowledge 21 15 0010101
SYN Synchronous Idle 22 16 0010110
ETB End of Transmission Block 23 17 0010111
CAN Cancel 24 18 0011000
EM End of Medium 25 19 0011001
SUB Substitute Character 26 1A 0011010
ESC Escape 27 1B 0011011
FS File Separator 28 1C 0011100
GS Group Separator 29 1D 0011101
RS Record Separator 30 1E 0011110
US Unit Separator 31 1F 0011111
SP Space 32 20 0100000
! .................................... 33 21 0100001
“ .................................... 34 22 0100010
# Number detection 35 23 0100011
$ Other currency symbol 36 24 0100100
% .................................... 37 25 0100101
& . ................................... 38 26 0100110
´ .................................... 39 27 0100111
( .................................... 40 28 0101000
) .................................... 41 29 0101001
*.................................... 42 2A 0101010
+ .................................... 43 2B 0101011
’ .................................... 44 2C 0101100
— .................................... 45 2D 0101101
. .................................... 46 2E 0101110
/ .................................... 47 2F 0101111
0 .................................... 48 30 0110000
1 .................................... 49 31 0110001
2 .................................... 50 32 0110010
3 .................................... 51 33 0110011
4 .................................... 52 34 0110100
5 .................................... 53 35 0110101
6 .................................... 54 36 0110110
7 .................................... 55 37 0110111
8 .................................... 56 38 0111000
9 .................................... 57 39 0111001
: .................................... 58 3A 0111010
; .................................... 59 3B 0111011
< .................................... 60 3C 0111100
= .................................... 61 3D 0111101
> .................................... 62 3E 0111110
? .................................... 63 3F 0111111
APPENDICES
A1 The American Standard Code for Information Interchange (ASCII)

14
Character Significance Decimal Hex. Binary
@ .................................... 64 40 1000000
A .................................... 65 41 1000001
B .................................... 66 42 1000010
C .................................... 67 43 1000011
D .................................... 68 44 1000100
E .................................... 69 45 1000101
F .................................... 70 46 1000110
G .................................... 71 47 1000111
H .................................... 72 48 1001000
I .................................... 73 49 1001001
J .................................... 74 4A 1001010
K .................................... 75 4B 1001011
L .................................... 76 4C 1001100
M .................................... 77 4D 1001101
N .................................... 78 4E 1001110
O .................................... 79 4F 1001111
P .................................... 80 50 1010000
Q .................................... 81 51 1010001
R .................................... 82 52 1010010
S .................................... 83 53 1010011
T .................................... 84 54 1010100
U .................................... 85 55 1010101
V .................................... 86 56 1010110
W .................................... 87 57 1010111
X .................................... 88 58 1011000
Y .................................... 89 59 1011001
Z .................................... 90 5A 1011010
[ .................................... 91 5B 1011011
\ .................................... 92 5C 1011100
] .................................... 93 5D 1011101
^ .................................... 94 5E 1011110
-- .................................... 95 5F 1011111
` .................................... 96 60 1100000
a .................................... 97 61 1100001
b .................................... 98 62 1100010
c .................................... 99 63 1100011
d .................................... 100 64 1100100
e .................................... 101 65 1100101
f .................................... 102 66 1100110
g .................................... 103 67 1100111
h .................................... 104 68 1101000
i .................................... 105 69 1101001
j .................................... 106 6A 1101010
k .................................... 107 6B 1101011
l .................................... 108 6C 1101100
m .................................... 109 6D 1101101
n .................................... 110 6E 1101110
o .................................... 111 6F 1101111
p .................................... 112 70 1110000
q .................................... 113 71 1110001
r .................................... 114 72 1110010
s .................................... 115 73 1110011
t .................................... 116 74 1110100
u .................................... 117 75 1110101
v .................................... 118 76 1110110
w .................................... 119 77 1110111
x .................................... 120 78 1111000
y .................................... 121 79 1111001
z .................................... 122 7A 1111010
{ .................................... 123 7B 1111011
| .................................... 124 7C 1111100
} .................................... 125 7D 1111101
~ .................................... 126 7E 1111110
DEL Delete 127 7F 1111111
…APPENDICES

15
Arithmetic sum =
298 decimal
100101010 binary
A2 Non-volatile Memory Limitations
Note. A non-volatile memory is used to store any
parameter changes made via the serial link to ensure that
the information is retained during mains interruption or
power-down.The memory used is rated at 104write cycles
per register and each register is assigned a particular
parameter, e.g. Alarm set point value. If the number of
write cycles to any particular register exceeds this value,
the register’s contents may not be retained.
A3 Block Check Characters
The block check character (BCC) transmitted is determined by
the seven least significant bits in the binary arithmetic sum of a
complete message (excluding parity bits). All characters
transmitted before the BCC must be included in the arithmetic
sum. Refer to Appendix A1 for ASCII characters.
A3.1 BCC Example
Message – STXR01A1ETX
Find the ASCII decimal equivalent of each character in the
message, calculate the decimal arithmetic sum and hence
obtain the binary arithmetic sum.
STX = 2
R=82
0=48
1=49
A=65
1=49
ETX = 3
Only the seven least significant bits (LSB) of the binary
arithmetic sum are required to determine the BCC:
MSB LSB
10 0101010
‘*’ is the BCC transmitted –
see Appendix A1
APPENDICES…

16
NOTES

PRODUCTS & CUSTOMER SUPPORT
Products
Automation Systems
• for the following industries:
–Chemical & Pharmaceutical
–Food & Beverage
–Manufacturing
–Metals and Minerals
–Oil, Gas & Petrochemical
–Pulp and Paper
Drives and Motors
• AC and DC Drives, AC and DC Machines, AC motors to 1kV
• Drive systems
• Force Measurement
• Servo Drives
Controllers & Recorders
• Single and Multi-loop Controllers
• Circular Chart , Strip Chart and Paperless Recorders
• Paperless Recorders
• Process Indicators
Flexible Automation
• Industrial Robots and Robot Systems
Flow Measurement
• Electromagnetic Flowmeters
• Mass Flow Meters
• Turbine Flowmeters
• Flow Elements
Marine Systems & Turbochargers
• Electrical Systems
• Marine Equipment
• Offshore Retrofit and Refurbishment
Process Analytics
• Process Gas Analysis
• Systems Integration
Transmitters
• Pressure
• Temperature
• Level
• Interface Modules
Valves, Actuators and Positioners
• Control Valves
• Actuators
• Positioners
Water, Gas & Industrial Analytics Instrumentation
• pH, conductivity, and dissolved oxygen transmitters and
sensors
• ammonia, nitrate, phosphate, silica, sodium, chloride,
fluoride, dissolved oxygen and hydrazine analyzers.
• Zirconia oxygen analyzers, katharometers, hydrogen purity
and purge-gas monitors, thermal conductivity.
Customer Support
We provide a comprehensive after sales service via a
Worldwide Service Organization. Contact one of the following
offices for details on your nearest Service and Repair Centre.
United Kingdom
ABB Limited
Tel: +44 (0)1453 826661
Fax: +44 (0)1453 829671
United States of America
ABB Inc.
Tel: +1 775 850 4800
Fax: +1 775 850 4808
Client Warranty
Prior to installation, the equipment referred to in this manual
must be stored in a clean, dry environment, in accordance with
the Company's published specification.
Periodic checks must be made on the equipment's condition. In
the event of a failure under warranty, the following
documentation must be provided as substantiation:
1. A listing evidencing process operation and alarm logs at time
of failure.
2. Copies of all storage, installation, operating and maintenance
records relating to the alleged faulty unit.

IM/ZMT–SER Issue 2
ABB Limited
Oldends Lane, Stonehouse
Gloucestershire,
GL10 3TA
UK
Tel: +44 (0)1453 826661
Fax: +44 (0)1453 829671
ABB Inc.
Analytical Instruments
9716 S. Virginia St., Ste. E
Reno, Nevada 89521
USA
Tel: +1 775 850 4800
Fax: +1 775 850 4808
ABB has Sales & Customer Support
expertise in over 100 countries worldwide
www.abb.com
The Company’s policy is one of continuous product
improvement and the right is reserved to modify the
information contained herein without notice.
Printed in UK (08.04)
© ABB 2004
Table of contents
Other ABB Measuring Instrument manuals

ABB
ABB FPD350 Torbar User manual

ABB
ABB SCC-E User manual

ABB
ABB Aztec 600 Color User manual

ABB
ABB ACF5000 User manual

ABB
ABB GLA232 Series User manual

ABB
ABB SM1000 User manual

ABB
ABB MagMaster MF/F Quick start guide

ABB
ABB MagMaster User manual

ABB
ABB MagMaster User manual

ABB
ABB Levelmeter 2000 User manual