ST X-NUCLEO-IHM02A1 User manual

October 2015 DocID028481 Rev 1 1/24
24
UM1964
User manual
Getting started with X-NUCLEO-IHM02A1; two-axis stepper motor
driver expansion board based on L6470 for STM32 Nucleo
Introduction
The X-NUCLEO-IHM02A1 is a two-axis stepper motor driver expansion board based on
L6470. It provides an affordable and easy to use solution for driving low voltage motor
control for stepper motors in your STM32 Nucleo project. The expansion board includes two
L6470 fully integrated micro stepping motor drivers for motor stepper control throughmotors
high-end motion control commands received via SPI. It is able to drive one or two stepper
motors when plugged on an STM32 Nucleo board. This board is equipped with an
Arduino™ UNO R3 connector and the layout is also compatible with ST morpho connectors.
One or more of these expansion boards can be plugged on a STM32 Nucleo board to
control one or more stepper motorss. The SPI peripherals from each L6470 are connected
in daisy chain configuration.
Figure 1. X-NUCLEO-IHM02A1; two-axis stepper motors driver expansion board
based on L6470
www.st.com

Contents UM1964
2/24 DocID028481 Rev 1
Contents
1 Getting started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1 Hardware and software requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2 Hardware description and configuration . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 Selecting the SPI lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Multi-motor configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
3 Set-up to try the provided example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4 Board schematic and bill of material . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.1 Bill of material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

DocID028481 Rev 1 3/24
UM1964 Getting started
24
1 Getting started
The X-NUCLEO-IHM02A1 expansion board extends the application landscape for STM32
Nucleo board user. It directly handles two-axis stepper motors driving, through the L6470,
and can be used in a wide range of relevant applications.. The maximum ratings of the
L6470 are the following:
•Power stage supply voltage (VS) from 8 V to 45 V DC;
•motors phase current up to 3 A r.s.m. (related to the L6470)
To function correctly, the X-NUCLEO-IHM02A1 (two-axis stepper motors driver expansion
board based on L6470) has to be plugged on an STM32 Nucleo board as shown in Figure 2.
Figure 2. X-NUCLEO-IHM02A1 plugged on STM32 Nucleo board
The interconnection between the STM32 Nucleo board and the X-NUCLEO-IHM02A1 is
designed to permit the use of any STM32 Nucleo board. The firmware has been written and
tested for the NUCLEO-F401RE, NUCLEO-F302R8 and NUCLEO-F072RB.
Note: For correct use of the NUCLEO-F401RE with the X-NUCLEO-IHM02A1, the solder bridge
SB15 on the NUCLEO-F401RE has to be removed (see the NUCLEO-F401RE user manual
for further information).

Getting started UM1964
4/24 DocID028481 Rev 1
1.1 Hardware and software requirements
Using the STM32 Nucleo boards with the X-NUCLEO-IHM02A1 expansion board requires
the following software and hardware:
•a Windows PC (XP, Vista, 7, 8) to install the software package;
•from one to four X-NUCLEO-IHM02A1 expansion boards;
•an STM32 Nucleo board chosen from among NUCLEO-F401RE, NUCLEO-F302R8 or
NUCLEO-F072RB;
•a USB type A to Mini-B USB cable to connect the STM32 Nucleo board to the PC;
•the X-CUBE-SPN2 software package (available on www.st.com);
•an IDE chosen from among IAR Embedded Workbench for ARM (EWARM), keil
microcontroller development Kit (MDK-ARM) and System Workbench for STM32
(SW4STM32);
•two-axis stepper motors with compatible voltage and current for the L6470;
•an external power supply able to provide the right voltage for the stepper motors used;
•(optional) a terminal emulator, serial console (i.e. PuTTY) to send commands via
USART.

DocID028481 Rev 1 5/24
UM1964 Hardware description and configuration
24
2 Hardware description and configuration
This section describes the X-NUCLEO-IHM02A1 features and provides useful information
for understanding the board schematics. Figure 3 shows the position of the connectors and
the configuration board jumpers.
Figure 3. Jumper and connector positions
Below is the detailed pinout of the ST morpho and Arduino™ UNO R3 connectors.
Table 1. ST morpho connector table
Connector Pin Default Signal Solder bridge
CN7
1PC10
2PC11
3PC12
4PD2
5VDD
6E5V
7 BOOT0
8GND
9 NC/PF6
10 NC
11 NC/PF7

Hardware description and configuration UM1964
6/24 DocID028481 Rev 1
CN7
12 IOREF
13 PA13
14 RESET
15 PA14
16 +3V3 +3V3 SB40
17 PA15
18 +5V +5V SB40
19 GND
20 GND
21 PB7
22 GND
23 PC13
24 VIN
25 PC14
26 NC
27 PC15
28 PA0
29 PH0/PF0/PD0
30 PA1
31 PH1/PF1/PD1
32 PA4 L6470 nCS SB23
33 VLCD/VBAT
34 PB0 ST1S14 PGOOD SB6
35
PC2
36 PC1 L6470 nFLAG
37 PC3
38 PC0 L6470 nBUSY\SYNC
CIN10
1PC9
2PC8
3 PB8
4PC6
5 PB9
6PC5
7 AVDD
8U5V
Table 1. ST morpho connector table (continued)
Connector Pin Default Signal Solder bridge

DocID028481 Rev 1 7/24
UM1964 Hardware description and configuration
24
CIN10
9GND
10 PD8/NC
11 PA5/PB13 L6470 SCK SB12
12 PA12
13 PA6/PB14 L6470 #0 SDO SB32
14 PA11
15 PA7/PB15 L6470 #1 SDI SB26
16 PB12
17 PB6 L6470 nCS SB8
18 PB11/NC
19 PC7
20 GND
21 PA9
22 PB2
23 PA8
24 PB1
25 PB10
26 PB15/PA7 L6470 #1 SDI SB10
27 PB4 L6470 nCS SB9
28 PB14/PA6 L6470 #0 SDO SB11
29 PB5 L6470 nSTBY\nRST
30 PB13/PA5 L6470 SCK SB13
31 PB3 L6470 SCK SB34
32 AGND
33 PA10 L6470 nCS SB7
34 PC4
35 PA2
36 NC/PF5
37 PA3
38 NC/PF4
Table 1. ST morpho connector table (continued)
Connector Pin Default Signal Solder bridge

Hardware description and configuration UM1964
8/24 DocID028481 Rev 1
Table 2. Arduino UNO R3 connector table
Connector Pin Default Signal Solder bridge
CN5
1D8
2 D9/PWM
3 D10/CS/PWM L6470 nCS SB8
4 D11/MOSI/PWM L6470 #1 SDI SB26
5 D12/MISO L6470 #0 SDO SB32
6 D13/SCK L6470 SCK SB12
7NC
8NC
9 D14/SDA
10 D15/SCL
CN6
1NC
2IOREF
3 RESET
4+3V3
5+5V
6GND
7GND
8VIN
CN8
1A0
2A1
3 A2 L6470 nCS SB23
4 A3 ST1S14 PGOOD SB6
5 A4 L6470 nFLAG
6 A5 L6470 nBUSY\SYNC
CN9
1D0/RX
2D1/TX
3 D2 L6470 nCS SB7
4 D3/PWM L6470 SCK SB34
5 D4 L6470 nSTBY\nRST
6 D5/PWM L6470 nCS SB9
7 D6/PWM
8D7

DocID028481 Rev 1 9/24
UM1964 Hardware description and configuration
24
Note: Only one among SB10 and SB26 can be short.
Only one among SB11 and SB32 can be short.
Only one among SB12, SB13 and SB34 can be short.
Only one among SB7, SB8, SB9 and SB23 can be short.
Only one among SB40 and SB41 can be short.
Table 3. Solder bridge table
Solder
bridge Function Group Sub group Default
condition
SB1 Connect L6470 #0 OSCIN to the crystal External
crystal L6470 #0 Open
SB2 Connect L6470 #0 OSCOUT to the crystal Open
SB3 Connect L6470 #1 OSCIN to the crystal L6470 #1 Open
SB4 Connect L6470 #1 OSCOUT to the crystal Open
SB5 Connect L6470 #0 OSCOUT with L6470 #1 OSCIN Clock Synchronism Open
SB6 Connect ST1S14 PGOOD with CN7-34 and CN8-4 ST1S14 Power good Open
SB10 Connect L6470 #1 SDI with CN10-26
SPI
SDI Open
SB26 Connect L6470 #1 SDI with CN10-15 and CN5-4 Short
SB11 Connect L6470 #0 SDO with CN10-28 SDO Open
SB32 Connect L6470 #0 SDO with CN10-13 and CN5-5 Short
SB12 Connect any L6470 SCK with CN10-11 and CN5-6
SCK
Open
SB13 Connect any L6470 SCK with CN10-30 Open
SB34 Connect any L6470 SCK with CN10-31 and CN9-4 Short
SB7 Connect any L6470 nCS with CN10-33 and CN9-3
nCS
Open
SB8 Connect any L6470 nCS with CN10-17 and CN5-3 Open
SB9 Connect any L6470 nCS with CN10-27 and CN9-6 Open
SB23 Connect any L6470 nCS with CN7-32 and CN8-3 Short
SB40 Connect any L6470 VDD to +3V3 of control board VDD Nucleo Short
SB41 Connect any L6470 VDD to +5V of control board Arduino Open

Hardware description and configuration UM1964
10/24 DocID028481 Rev 1
Note: If SB41 is short then J1 pins 2 and 3 must also be shorted.
2.1 Selecting the SPI lines
The lines of the SPI interface can be selected through the dedicated solder bridges. The
following table (Table 6) shows the possible options for the STM32 Nucleo board and
Arduino Uno R3.
Table 4. Jumper table
Jumper Permitted configurations Default condition
J1
Selection for L6470 VDD:
– 2-3 short: ST1S14 is inhibited.
1-2 short and 3-4 short: ST1S14 is enabled, any L6470
VDD is connected to the +3.3V coming from the ST1S14
(step down monolithic power switching regulator).
Note: short SB40 if you intend to supply the STM32 Nucleo
board through the X-NUCLEO-IHM02A1; if so, refer to the
section in the STM32 Nucleo board User Manual (available
on www.st.com) regarding external power supply.
SB40 open otherwise.
SB41 must be open.
2-3 short
J2 Selection for L6470 external switch input pin:
– Connect a limit switch between 1-2 or 3-4 for L6470 #1.
– Connect a limit switch between 5-6 or 7-8 for L6470 #0 All open
J3 Step-clock input for L6470 #0. Open
J4 Step-clock input for L6470 #1. Open
Table 5. Screw terminal table
Screw terminal Function
ST1 To connect the two couples of wiresconnected to the two motors phases with the
two full bridge output couples of L6470 #1.
ST2 To connect the two couples of wiresconnected to the two motors phases with the
two full bridge output couples of L6470 #0.
ST3 motors power supply input (8V÷45V).

DocID028481 Rev 1 11/24
UM1964 Hardware description and configuration
24
Note: Default shorted solder bridges are written in bold.
2.2 Multi-motors configuration
It is possible to synchronously drive two-axis stepper motors with one X-NUCLEO-IHM02A1
board only. However, up to four X-NUCLEO-IHM02A1 expansion boards can be stacked on
a single STM32 Nucleo board, so it is possible to drive up to eight stepper motors. Each X-
NUCLEO-IHM02A1 expansion board is addressable through the nCS pin that must be
connected to one pin only of the microcontroller. So, when using more than one expansion
board, the user must short a different solder bridge among SB7, SB8, SB9 and SB23, for
each X-NUCLEO-IHM02A1. Be sure to align the firmware with any hardware change.
Table 6. SPI lines table
SPI wire
Solder bridge
NUCLEO-F401RE
NUCLEO-F302R8
NUCLEO-F072RB
ARDUINO UNO
R3
ST morpho
connector
ARDUINO
Connector
SDI SB10 PB15
SPI2_MOSI PA7
(1)
1. Not applicable.
PB15
SPI2_MOSI / CN10-26 /
SB26 PA7
SPI1_MOSI PB15
SPI2_MOSI PA7
SPI1_MOSI D11
MOSI CN10-15 CN5-4
SDO SB11 PB14
SPI2_MISO PA6
(1)
PB14
SPI2_MISO / CN10-28 /
SB32 PA6
SPI1_MISO PB14
SPI2_MISO PA6
SPI1_MISO D12
MISO CN10-13 CN5-5
SCK
SB12 PA5
SPI1_SCK PB13
SPI2_SCK PA5
SPI1_SCK D13
SCK CN10-11 CN5-6
SB13 PB13
SPI2_SCK PA5
(1)
PB13
SPI2_SCK / CN10-30 /
SB34 PB3
SPI1_SCK PB3
(1)
PB3
SPI1_SCK D3
(1)
CN10-31 CN9-4
nCS
SB7 PA10 PA10 PA10 D2
(1)
CN10-33 CN9-3
SB8 PB6 PB6 PB6 D10
CS CN10-17 CN5-3
SB9 PB4 PB4 PB4 D5
(1)
CN10-27 CN9-6
SB23 PA4 PA4 PA4 A2
(1)
CN7-32 CN8-3

Set-up to try the provided example UM1964
12/24 DocID028481 Rev 1
3 Set-up to try the provided example
Follow this sequence to start your project with the board:
1. Choose an STM32 Nucleo board from among NUCLEO-F401RE, NUCLEO-F302R8
and NUCLEO-F072RB.
2. Get the right firmware from the X-CUBE-SPN2 (available on www.st.com) for the
chosen STM32 Nucleo board and program it properly.
– X-CUBE-SPN2_F401.bin for NUCLEO-F401RE
– X-CUBE-SPN2_F302.bin for NUCLEO-F302R8
– X-CUBE-SPN2_F072.bin for NUCLEO-F072RB
3. Disconnect the STM32 Nucleo board from the PC.
4. Put a jumper between pin 2 and 3 of J1.
5. Leave all J2 pins open.
6. Check the solder bridges meet the default configuration (see Table 3).
7. Connect two stepper motors to ST1 and ST2.
8. Stack the X-NUCLEO-IHM02A1 expansion board on an STM32 Nucleo board through
ST morpho or Arduino UNO R3 connectors.
9. Supply the board through the pin 1 (GND) and 2 (VS) of the connector ST3 with 9.0 V
DC. The green LEDs D1 and D4 will turn on to show each L6470 VREG is on.
10. Connect the STM32 Nucleo board to the PC via USB type A to Mini-B USB cable. The
orange LED D9 will turn on to show the digital voltage is on.
11. The two connected stepper motors will perform a few movements.
Note: The example is set to use motors such as the hybrid stepping motor 42BYGHM809 by
Wantai Motor. If your motors have different parameters, modify the array named
“MotorParameterInitData” in the “params.c” source file accordingly.
You can now proceed to develop your application using the examples provided with the
firmware library (X-CUBE-SPN2) with yourpreferred IDE among IAR EWARM, Keil MDK-
ARM and Open STM32 SW4STM32.
Note: Further support material regarding L6470, X-NUCLEO-IHM02A1, X-CUBE-SPN2 and
STM32 Nucleo board is available on www.st.com.

DocID028481 Rev 1 13/24
UM1964 Board schematic and bill of material
24
4 Board schematic and bill of material
Figure 4. Schematic - L6470_0
6WHSSHU
0RWRU
3ODFHFORVHG
WKHWZRVLGHV
RIWKH/3'
/BB$
/BB%
/BB%
/BB$
/BB96
/BB96
/BB96
/BB96
/BB*1'
/BB*1'
/BB*1'
/BB*1'
/BB*1'
/BB%
/BB%
/BB$
/BB$
/BB26&287
96
96
96
/BBQ&6
/BB6',
/BB6&.
/BB67&.
/BBQ)/$*
/BBQ%86<?6<1&
/BB6'2
/BB6:
/BBQ67%<?Q567
/BB9''
/BB26&287
/BB67&.
5
N
10
&
Q)
9
&
Q)
9
&
Q)
9
&
Q)
9
&
X)
9
&
X)
9
&
Q)
9
<
0+]
10
&
Q)
9
&
Q)
9
6%
&
S)
10
5
N
-
&21
'
%=;-&9
10
&
S)
10
&
Q)
9
&
Q)
9
10
5
67
WHUPLQDOV
8
/3'
287$B
96$B
Q67%<BQ567
6:
$'&,1
95(*
26&,1
26&287
$*1'
&3
9%227
96%B
3*1'B
287%B
287%B
96%B
9''
6'2
&.
6',
'*1'
Q%86<B6<1&
Q&6
Q)/$*
67&.
96$B
3*1'B
287$B
287$B
96$B
96%B
287%B
287%B
96%B
96$B
287$B
([S3DG
5
'
*5((1B/('
'
%$9
6%
5
N
10
&
X)
9
&
Q)
9
&
Q)
9
&RQILJXUDWLRQIRU96 9
*63*',

Board schematic and bill of material UM1964
14/24 DocID028481 Rev 1
Figure 5. Schematic - L6470_1
4UFQQFS
.PUPS
1MBDFDMPTFE
UIFUXPTJEFT
PGUIF-1%
/BB$
/BB%
/BB%
/BB$
/BB96
/BB96
/BB96
/BB96
/BB*1'
/BB*1'
/BB*1'
/BB*1'
/BB*1'
/BB%
/BB%
/BB$
/BB$
/BB26&,1
96
96
96
/BBQ&6
/BB6',
/BB6&.
/BB67&.
/BBQ)/$*
/BBQ%86<?6<1&
/BB6'2
/BB6:
/BBQ67%<?Q567
/BB9''
/BB26&,1
/BB67&.
6%
&
Q)
9
67
WHUPLQDOV
&
Q)
9
10
<
0+]
10
&
Q)
9
&
X)
9
5
N
10
&
Q)
9
5
N
10
&
Q)
9
5
5
5
N
&
S)
10
&
Q)
9
&
Q)
9
&
Q)
9
&
X)
9
&
Q)
9
&
S)
10
'
%$9
-
&21
&
Q)
9
'
%=;-&9
10
6%
&
X)
9
'
*5((1B/('
&
Q)
9
8
/3'
287$B
96$B
Q67%<BQ567
6:
$'&,1
95(*
26&,1
26&287
$*1'
&3
9%227
96%B
3*1'B
287%B
287%B
96%B
9''
6'2
&.
6',
'*1'
Q%86<B6<1&
Q&6
Q)/$*
67&.
96$B
3*1'B
287$B
287$B
96$B
96%B
287%B
287%B
96%B
96$B
287$B
([S3DG
&RQILJXUDWLRQIRU96 9
'ULYHUB
*63*',

DocID028481 Rev 1 15/24
UM1964 Board schematic and bill of material
24
Figure 6. Schematic - L6470 Interfaces with STM32 Nucleo
9·9
676 LV LQKLELWHG
9'' LVSURYLGHGE\ 9 RI WKHPDLQ ERDUG
DQG
7DNH FDUH 5HIHU WR WKH 80 RI WKH PDLQ ERDUG DERXW H[WHUQDO SRZHU VXSSO\
676 LV HQDEOHG
9'' LV SURYLGHG E\ 9 RI WKH 676 RI WKH H[SDQVLRQ ERDUG
7KH PDLQ ERDUG LV VXSSOLHG E\ 676 RI WKH H[SDQVLRQ ERDUG
3&
3'
(9
*1'
,25()
5(6(7
9
9
*1'
*1'
9,1
3$ $
3$ $
3$ $
3% $
3& $
3& $
3$'
3%'3:0
3%'3:0
3%'
3%
'3:0
3$
'
3$
'7;
3$'5;
3&
3&
9''
%227
1&3)
1&3)
3$
3$
3$
*1'
3%
3&
3&
3&
3+3)3'
3+3)3'
9/&'9%$7
3&
3&
3&
3&
3&
89
3'
3$
3$
3%
3%1&
*1'
3%
3%
3%
3%
3%
$*1'
3&
1&3)
1&3)
3%'6&/
3%
'6'$
$9''
*1'
3$'6&.
3$'0,62
3$
' 026,3:0
3%'&63:0
3&
'3:0
3$
'
3&
3&
3&
3%
3$
3$
3%
3%
3%
3%
3$
3$
3%
3$
3%
3%
96
9B676
99
/BBQ%86<?6<1&
/BBQ%86<?6<1&
/BBQ)/$*
/BBQ)/$*
676BQ(1
/BBQ67%<?Q567
/BBQ67%<?Q567
676B3*22'
/BBQ&6
/BBQ&6
/BB6:
/BB6:
/BB9''
/BB9''
/BB6'2
/BB6',
/BB6&.
/BB6',/BB6'2
/BB6&.
/BB26&,1
/BB26&287
6%
&1
'
5('B/('
'
25$1*(B/('
5
6%
6%
&
S)
9 6%
6%
10
'
60$-$
6%
'
<(//2:B/('
&1
6%
&1
-
&21
5
N
&
S)
9
67
WHUPLQDOV
-
&21
6%
&
S)
9
6%
6%
&1
&1
6%
6%
&
S)
9
5
N
6%
6%
5
&1
6%
5
18&/(2&211(&725
3DVV7KURXJK
)HPDORQ%RWWRP0DOHRQ7RS
67PRUSKR
&1RI18&/(2ERDUG
$UGXLQR
&1RI18&/(2ERDUG
$UGXLQR
&1RI18&/(2ERDUG
3DVV7KURXJK
0DOHRQ%RWWRP)HPDOHRQ7RS
3DVV7KURXJK
0DOHRQ%RWWRP)HPDOHRQ7RS
6;VLGH ';VLGH
$UGXLQR
&1RI18&/(2ERDUG
$UGXLQR
&1RI18&/(2ERDUG
67PRUSKR
&1RI18&/(2ERDUG
3DVV7KURXJK
0DOHRQ%RWWRP)HPDOHRQ7RS
3DVV7KURXJK
0DOHRQ%RWWRP)HPDOHRQ7RS
3DVV7KURXJK
)HPDORQ%RWWRP0DOHRQ7RS
*63*',

Board schematic and bill of material UM1964
16/24 DocID028481 Rev 1
Figure 7. Schematic - step-down monolithic switching regulator
4.1 Bill of material
9·9
96
9B676
676BQ(1
676B3*22'
5 N
&
Q)
9 & S)
9
&
X)
9
8
676
%227
3*
Q(1
)%
(1
*1'
9,1
6:
([S3DG
/ X+
5
N
&
Q)
9
5 N
'
6736/
&
X)
9
*63*',
Table 7. BOM (part 1)
Item Qty Reference Part/value Tol % Voltage / current Watt
1 1 CN5 ARDUINO_10x1
2 2 CN6, CN9 ARDUINO_8x1
3 2 CN7, CN10 ST_MORPHO_19x2
4 1 CN8 ARDUINO_6x1
5 4 C1, C11, C17, C27 100nF 0.1 6.3V
6 2 C2, C18 10uF 0.1 6.3V
78
C3, C4, C5, C6, C19, C20,
C21, C22 100nF 0.1 50V
8 2 C7, C23 100uF 0.2 63V
9 2 C8, C24 1nF 0.1 6.3V
10 4 C9, C10, C25, C26 18pF 0.05 6.3V
11 2 C12, C28 47uF 0.1 6.3V
12 2 C13, C29 3.3nF 0.1 6.3V
13 2 C14, C30 220nF 0.1 16V

DocID028481 Rev 1 17/24
UM1964 Board schematic and bill of material
24
14 2 C15, C31 10nF 0.1 6.3V
15 2 C16, C32 10nF 0.1 50V
16 4 C33, C34, C40, C41 100pF 0.05 6.3V
17 2 C35, C37 100nF 0.1 100V
18 1 C36 4.7uF 0.2 100V
19 1 C38 5.1pF 0.1 50V
20 1 C39 47uF 0.1 6.3V
21 2 D1, D4 GREEN_LED
22 2 D2, D5 BZX84J-C3V6 0.05 3.6V 0.25W
23 2 D3, D6 BAV99 215mA/100V
24 1 D7 YELLOW_LED
25 1 D8 RED_LED
26 1 D9 ORANGE_LED
27 1 D10 STPS1L60 60V / 2A
28 1 D11 SMAJ48A 48V
29 1 J1 CON4
30 1 J2 CON8
31 2 J3, J4 CON1
32 1 L1 27uH 0.2 2.3A
33 2 R1, R6 560 0.01 0.1W
34 4 R2, R7, R21, R22 39k 0.01 0.1W
35 2 R3, R8 62k 0.01 0.1W
36 2 R4, R9 9.76k 0.01 0.1W
37 2 R5, R10 100 0.01 0.1W
38 3 R28, R29, R30 620 0.01 0.1W
39 1 R37 47k 0.01 0.1W
40 1 R38 100k 0.01 0.1W
41 1 R39 59k 0.01 0.1W
Table 7. BOM (part 1) (continued)
Item Qty Reference Part/value Tol % Voltage / current Watt

Board schematic and bill of material UM1964
18/24 DocID028481 Rev 1
42 13 SB1, SB2, SB3, SB4, SB5,
SB6, SB7, SB8, SB9, SB10,
SB11, SB12, SB13 0 0.01 0.1W
43 5 SB23, SB26, SB32, SB34,
SB40 0 0.01 0.1W
44 1 SB41 0 0.01 0.1W
45 2 ST1, ST2 4 terminals 400V
46 1 ST3 2 terminals 400V
47 2 U1, U2 L6470PD
48 1 U3 ST1S14
49 2 Y1, Y2 16MHz
Table 7. BOM (part 1) (continued)
Item Qty Reference Part/value Tol % Voltage / current Watt
Table 8. BOM (part 2)
Item Technology information Package Manufacturer
1 ELEVATED SOCKET TH 4UCONN
2 ELEVATED SOCKET TH 4UCONN
3 ELEVATED SOCKET TH 4UCONN
4 ELEVATED SOCKET TH 4UCONN
5 X7R Ceramic Multilayer Capacitors SMD 0603 any
6 X5R Ceramic Multilayer Capacitors SMD 0805 TDK
7 X7R Ceramic Multilayer Capacitors SMD 0603 any
8 Aluminium Electrolytic Capacitor SMD 10mm x 10.5mm Nichicon
9 X7R Ceramic Multilayer Capacitors SMD 0603 any
10 C0G Ceramic Multilayer Capacitor SMD 0603 any
11 Tantalum capacitor SMD 1206 AVX
12 X7R Ceramic Multilayer Capacitors SMD 0603 any
13 X7R Ceramic Multilayer Capacitors SMD 0603 any
14 X7R Ceramic Multilayer Capacitors SMD 0603 any
15 X7R Ceramic Multilayer Capacitors SMD 0603 any
16 C0G Ceramic Multilayer Capacitors SMD 0603 any

DocID028481 Rev 1 19/24
UM1964 Board schematic and bill of material
24
17 X7R Ceramic Multilayer Capacitor SMD 0805 TDK
18 X7S Dielectric Ceramic Multilayer SMD 1210 TDK
19 C0G Ceramic Multilayer Capacitor SMD 0603 any
20 Tantalum Electrolytic Capacitor SMC 3528-21 AVX
21 LED SMD 0603 Lite-On
22 Zener diode SOT23 NXP
23 Switching diode SOT23 NXP
24 LED SMD 0603 Lite-on
25 LED SMD 0603 Lite-on
26 LED SMD 0603 Lite-on
27 Power Schottky rectifier SMA ST
28 Transil JEDEC DO-214AC ST
29 2.54 PIN HEADER SINGLE ROW 4 PIN TH 2.54 mm pitch 4UCONN
30 2.54 PIN HEADER DUAL ROW 2x4 PIN TH 2.54 mm pitch 4UCONN
31
32 Shielded Wire-wound SMD Inductor SMD 12x12mm Panasonic
33 metal film SMD resistor SMD 0603 any
34 metal film SMD resistor SMD 0603 any
35 metal film SMD resistor SMD 0603 any
36 metal film SMD resistor SMD 0603 any
37 metal film SMD resistor SMD 0603 any
38 metal film SMD resistor SMD 0603 any
39 metal film SMD resistor SMD 0603 any
40 metal film SMD resistor SMD 0603 any
41 metal film SMD resistor SMD 0603 any
42 SMD 0603 any
43 SMD 0603 any
44 SMD 0603 any
Table 8. BOM (part 2) (continued)
Item Technology information Package Manufacturer

Board schematic and bill of material UM1964
20/24 DocID028481 Rev 1
45 Through Hole 4 Way Screw Terminal (2x
2way connector) TH 3.81 mm pitch 4UCONN
46 Through Hole 2 Way Screw Terminal TH 3.81 mm pitch 4UCONN
47 dSPIN Microstepping Driver with Motion
Engine and SPI POWERSO36 ST
48 step-down switching regulator HSOP8 ST
49 Crystal / Ceramic Resonator HC-49-US SMD Abracon
Table 8. BOM (part 2) (continued)
Item Technology information Package Manufacturer
Table 9. BOM (part 3)
Item Manufacturer code Supplier Supplier code More info
1 15286 Alternative: Samtec ESQ-110-24-T-S
Mounting info: female on top, male on bottom
2 15284 Alternative: Samtec ESQ-108-24-T-S
Mounting info: female on top, male on bottom
3 8413 Alternative: Samtec: ESQ-119-24-T-D
Mounting info: male on top, female on bottom
Not Mounted
4 15282 Alternative: Samtec ESQ-106-24-T-S
Mounting info: female on top, male on bottom
5
6 C2012X5R0J106K125AB Digi-Key 445-4113-2-ND Alternative: Murata GRM21BR60J106KE19L
7
8 UUX1J101MNL1GS Digi-key 493-7453-2-ND Alternative: Panasonic EEEFK1J101P, Farnell
2254433
9
10 Not Mounted
11 TAJA476K006RNJ Farnell 2217224
12 Not Mounted
13
14
15
16
17 C2012X7R2A104K125AA Digi-Key 445-1418-2-ND Alternative: Murata GCM21BR72A104KA37L
Other manuals for X-NUCLEO-IHM02A1
1
Table of contents
Other ST Computer Hardware manuals

ST
ST X-NUCLEO-IOD02A1 User manual

ST
ST UPSD3212A User manual

ST
ST X-NUCLEO-OUT19A1 User manual

ST
ST X-NUCLEO-EEPRMA2 User manual

ST
ST X-NUCLEO-OUT02A1 User manual

ST
ST X-NUCLEO-IHM02A1 User manual

ST
ST STEVAL-IFP041V1 User manual

ST
ST 32L152CDISCOVERY User manual

ST
ST STM32 Nucleo User manual

ST
ST PCC020V1 User manual

ST
ST UM2727 User manual

ST
ST QFN20 User manual

ST
ST STMPE811 Specification sheet

ST
ST STM32F10 Series Installation and operating instructions

ST
ST X-NUCLEO-BNRG2A1 User manual

ST
ST X-NUCLEO-OUT10A1 User manual

ST
ST STM32 Nucleo User manual

ST
ST MB467 User manual

ST
ST I-CUBE-LRWAN User manual

ST
ST X-NUCLEO-6283A1 User manual