ST X-NUCLEO-IKS4A1 User manual

Introduction
The X-NUCLEO-IKS4A1 is a motion MEMS and environmental sensor evaluation board kit consisting of the main board X-
NUCLEO-IQS4A1, which hosts the motion MEMS and environmental sensors, and the detachable add-on board STEVAL-
MKE001A, which hosts the Qvar swipe electrodes.
It is compatible with the Arduino UNO R3 connector layout and features the LSM6DSO16IS and LSM6DSV16X MEMS 3D
accelerometers, the LIS2MDL 3-axis magnetometer, the LIS2DUXS12 3-axis accelerometer, the LPS22DF MEMS pressure
sensor, the SHT40AD1B humidity and temperature sensor, and the STTS22H temperature sensor.
The X-NUCLEO-IKS4A1 interfaces with the STM32 microcontroller via the I²C pin or, for external sensors mounted on DIL24
adaptor, SPI Pins.
Figure 1. X-NUCLEO-IKS4A1 expansion board
Getting started with the X-NUCLEO-IKS4A1 motion MEMS and environmental
sensor expansion board for STM32 Nucleo
UM3239
User manual
UM3239 - Rev 1 - October 2023
For further information contact your local STMicroelectronics sales office. www.st.com

1 Getting started
1.1 Hardware requirements
The X-NUCLEO-IKS4A1 is designed to be used with STM32 Nucleo boards (visit www.st.com for further
information).
Figure 2. X-NUCLEO-IKS4A1 plugged on an STM32 Nucleo board
The X-NUCLEO-IKS4A1 must be connected on the matching pins of any STM32 Nucleo board with the Arduino
UNO R3 connector.
Note: X-NUCLEO-IKS4A1 components are ESD sensitive and, as the board has male/female pass-through
connectors, it is important to handle it with care to avoid bending or damaging the pins.
Related links
See the X-CUBE-MEMS1 product page for firmware and related documentation
UM3239
Getting started
UM3239 - Rev 1 page 2/23

2 System requirements
To complete the system setup, you need:
•a Windows® (7, 8, 10) PC
• a USB type A to mini-B USB cable to connect the STM32 Nucleo to the PC
• board firmware and software package (X-CUBE-MEMS1) installed on the user PC
UM3239
System requirements
UM3239 - Rev 1 page 3/23

3 Hardware description
The board lets you test the functionality of the motion MEMS accelerometer, gyroscope and magnetometer, and
environmental humidity, temperature and pressure sensors, via the I²C communication bus.
It also allows complete testing of all LSM6DSO16IS and LSM6DSV16X functionalities and Qvar touch and swipe
gestures. There is also the possibility to attach the STHS34PF80 IR sensor to enable presence and motion
detection applications.
The board features:
• LSM6DSO16IS: MEMS 3D accelerometer (±2/±4/±8/±16 g) + 3D gyroscope (±125/±250/±500/±1000/±2000
dps) with ISPU (Intelligent Processing Unit)
• LIS2MDL: MEMS 3D magnetometer (±50 gauss)
• LIS2DUXS12: ultralow power MEMS 3D accelerometer (±2/±4/±8/±16 g) with Qvar, AI, & anti-aliasing
• LPS22DF: Low-power and high-precision MEMS pressure sensor, 260-1260 hPa absolute digital output
barometer
• SHT40AD1B
• STTS22H: Low-voltage, ultralow power, 0.5 °C accuracy temperature sensor (-40°C to +125°C)
• LSM6DSV16X: MEMS 3D accelerometer (±2/±4/±8/±16 g) + 3D gyroscope
(±125/±250/±500/±1000/±2000/±4000 dps) with embedded sensor fusion, AI, Qvar
• DIL 24-pin socket available for additional MEMS adapters and other sensors
• Free comprehensive development firmware library and example for all sensors compatible with
STM32Cube firmware
• Equipped with Qvar touch/swipe electrode
• I²C sensor hub features on LSM6DSO and LSM6DSV16X available
• MIPI I3C® compatibility for communication with LIS2DUXS12, LSM6DSV16X and LPS22DF
• Compatible with STM32 Nucleo boards
• Equipped with Arduino UNO R3 connector
• Equipped with industrial connector for IR sensor (STHS34PF80) application development. It can be
connected at the same time of external MEMS through DIL24 adapter
• Available interface for external camera module applications coupled with LIS2DUXS12 through aux SPI
(3/4 w)
• RoHS compliant
• WEEE compliant
• UKCA compliant
Each device has a separate power supply to allow power consumption measurement of every sensor.
The expansion board is power supply compatible with STM32 Nucleo boards: it mounts an LDO to generate 1.8 V
for all the MEMS sensors except for the external sensor mounted on DIL24 adapter, which can be supplied both
from 1.8 V and 3.3 V (main supply from Nucleo board).
All signals between the sensors and the main board are translated by a level shifter.
3.1 Default solder bridge configuration
The user can configure several aspects of the X-NUCLEO-IKS4A1 through several solder bridges which can be
left open (not mounted) or closed (mounted) to configure different hardware settings.
UM3239
Hardware description
UM3239 - Rev 1 page 4/23

3.2 Block diagram
The LSM6DSO16IS and the LSM6DSV16X have an I²C sensor hub that allows them to behave as the I²C master
for other slave devices connected via an I²Caux bus. Various bus configurations are possible to select the I²C
master of the environmental/DIL24 sensors.
Mode 1: standard I²C bus connection (all sensors)
In standard I²C mode, all devices are connected to an external main board via the same I²C bus.
The board configuration is:
• J4: 1-2, 11-12 (STM_SDA = SENS_SDA, HUB_SDx = GND)
• J5: 1-2, 11-12 (STM_SCL = SENS_SCL, HUB_SCx = GND)
Figure 3. X-NUCLEO-IKS4A1 standard I²C
Mode 2: LSM6DSO16IS I²C sensor hub (all sensors)
In this sensor hub I²C mode, it is possible to power-up the 6-axes IMU (Inertial Measurement Unit) functionalities
by collecting external data through a direct control of the on-board environmental sensors (temperature, pressure
and magnetometer) and external sensor (DIL24) through the auxiliary I²Cz bus "SENS_I2C". LSM6DSV16X,
LIS2DUXS12 and SHT40AD1B remains connected to the main bus "uC_I2C" coming from the external board.
The board configuration is:
• J4: 5-6 (HUB2_SDx = SENS_SDA)
• J5: 5-6 (HUB2_SCx = SENS_SCL)
Figure 4. X-NUCLEO-IKS4A1 LSM6DSO16IS I²C sensor hub
UM3239
Block diagram
UM3239 - Rev 1 page 5/23

Mode 3: LSM6DSV16X I²C sensor hub
In this sensor hub, it is possible to power-up the 6-axes IMU (Inertial Measurement Unit) functionalities by
collecting external data through a direct control of the on-board environmental sensors (temperature, pressure
and magnetometer) and external sensor (DIL24) through the auxiliary I2C bus "SENS_I2C". LSM6DSO16IS,
LIS2DUXS12 and SHT40AD1B remains connected to the main bus "uC_I2C" coming from the external board.
The board configuration is:
• J4: 7-8 (HUB1_SDx = SENS_SDA)
• J5: 7-8 (HUB1_SDx = SENS_SDA)
DIL24 adapter (to I²C2): SB16, SB21
Not mounted: SB6, SB10, SB12, SB14, SB18, SB19, SB20, SB22
Figure 5. LSM6DSV16X I²C sensor hub
Mode 4: DIL24 I²C sensor hub (all sensors)
In case a sensor with sensor hub embedded functionality is mounted to the board through DIL24 adapter, it is
possible to exploit this functionality as for LSM6DSO16IS and the LSM6DSV16X.
In this configuration, may be necessary to connect the DIL24 to the external board through SPI lines in order to
avoid an address conflict on I2C bus with the LSM6DSO16IS and the LSM6DSV16X. This is done by changing
the SBx configuration.
The board configuration is:
• J4: 9-10 (DIL_SDx = SENS_SDA)
• J5: 9-10 (DIL_SDx = SENS_SDA)
Figure 6. X-NUCLEO-IKS4A1 DIL24, I²C sensor hub (all sensors)
Mode 5: LSM6DSO16IS as Qvar controller
In this configuration, it is possible to use the equipped Qvar swipe electrode (by plugging it on JP6 and JP7
connectors) through the LSM6DSO16IS.
The board configuration is:
• J4: 3-4 (HUB1_SDx = QVAR1)
• J5: 3-4 (HUB1_Scx = QVAR2)
UM3239
Block diagram
UM3239 - Rev 1 page 6/23

3.3 Sensor I²C address selection
Most sensors allow I²C address LSB selection by pulling the SD0 pin low or high. The board has solder bridges to
control SD0 level.
Table 1. Solder bridges for I²C address
Address in bold are the default I2C addresses
Sensor SD0 low SD0 high
STTS22H (U8) ADD= 71h
LIS2DUXS12 (U5) SB19 ADD=31h SB20 ADD=33h
LSM6DSO16IS (U9) SB35 ADD=D5h SB34 ADD=D7h
LPS22DF (U6) SB31 ADD=B9h SB29 ADD=BBh
LIS2MDL (U7) ADD =3Ch ADD =3Ch
SHT40AD1B (U10) ADD= 89h ADD= 89h
DIL24 Adapter (J1) SB43/SB44 SB41/SB42
LSM6DSV16X (U4) SB17 ADD=D5h SB15 ADD=D7h
3.4 Sensor current consumption measurement
The X-NUCLEO-IKS4A1 expansion board is equipped with OR resistors that allow separate current consumption
measurement for each sensor.
To measure current consumption, connect an ammeter to the appropriate pads.
Note: As the sensors have very low current consumption, you should set a suitable range and use an ammeter with
low burden voltage.
Table 2. Resistors/jumpers for current consumption measurement
Sensor Resistor/jumper
LIS2MDL (U7) R18
LSM6DSO16IS (U9) R21
SHT40AD1B (U10) R22
LIS2DUXS12 (U5) R16
STTS22H (U8) R19
LPS22DF (U6) R32
DIL24 Adapter (J1) JP5
LSM6DSV16X R33
3.5 Sensor disconnection
To disconnect a sensor, you should disconnect the I²C bus as well as the power supply. See the table below for
the relevant jumpers and solder bridges.
Table 3. Link between sensors, jumpers and I²C solder bridges
Sensor SDA SCL
LIS2MDL (U7) SB30 SB26
LSM6DSO16IS (U9) SB38 SB36
SHT40AD1B (U10) SB39 SB37
LIS2DUXS12 (U5) SB22 SB16
UM3239
Sensor I²C address selection
UM3239 - Rev 1 page 7/23

Sensor SDA SCL
STTS22H (U8) SB33 SB32
LPS22DF (U6) SB28 SB25
DIL24 Adapter (J1) SB47, SB49, SB48 SB51, SB53, SB52
LSM6DSV16X SB21 SB18
3.6 Adapter board for DIL24 socket
An additional sensor can be connected as an adapter board to J6 DIL24 socket.
As there are a few different interrupt signal assignments for DIL24 pins, the appropriate pin can be selected using
the J2 header.
Related links
Please visit the ST website to find other available sensors
3.7 Connectors
Table 4. Arduino R3 UNO connectors
Connector Pin(1) Signal
CN5
7 GND
9 I²C SDA
10 I²C SCL
CN6
2 3.3 V
4 3.3 V
6 GND
7 GND
8 N.C.[FT1]
CN8
3 LIS2MDL DRDY
4 LIS2DUXS12 INT
5 STTS22H INT
6 LSM6DSO16IS INT1
CN9
3 USER INT
4 SPI CLK
5 LSM6DSV16X INT2
6 LSM6DSV16X INT1
7 LPS22DF INT1
8 LSM6DSO16IS INT2
1. unlisted pins are not connected.
UM3239
Adapter board for DIL24 socket
UM3239 - Rev 1 page 8/23

Table 5. ST morpho connectors
Connector Pin(1) Signal
CN7
12 3.3 V
16 3.3 V
20 GND
22 GND
32 LIS2MDL DRDY
34 LIS2DUXS12 INT
36 STTS22H INT
38 LSM6DSO16IS INT1
CN10
3 I²C SCL
5 I²C SDA
23 LSM6DSO16IS INT2
25 LPS22DF INT1
27 LSM6DSV16X INT1
29 LSM6DSV16X INT2
31 SPI CLK
33 USER INT
1. The unlisted pins are not connected.
UM3239
Connectors
UM3239 - Rev 1 page 9/23

4 Schematic diagrams
Figure 7. X-NUCLEO-IKS4A1 circuit schematic (1 of 4)
STTS22H_INT
LPS22DF_INT
LIS2MDL_DRDY
1V8
M_INT_Pin16
M_INT_Pin24
M_INT_Pin17
M_SA0/DEN
M_SA0/DRDY
M_INT1
M_INT2 3V3
STHS34PF80_INT
SPI
I2C2
LIS2DUXS12_INT2
LIS2DUXS12_INT1
LSM6DSO16IS_INT1
LSM6DSO16IS_INT2
LSM6DSV16X_INT2
LSM6DSV16X_INT1
U_Arduino_Nucleo Connectors
Arduino_Nucleo Connectors.SchDoc
1V8
STHS34PF80_INT
LPS22DF_INT
STTS22H_INT
LIS2MDL_DRDY
LIS2DUXS12_INT2
QVAR2
QVAR1
SENS_I2C
STM_I2C
HUB2_I2C
DIL24_I2C
LIS2DUXS12_INT1
LSM6DSO16IS_INT1
LSM6DSO16IS_INT2
LSM6DSV16X_INT2
LSM6DSV16X_INT1
U_Sensors
Sensors.SchDoc
M_INT_Pin17
M_INT1
M_INT_Pin16
M_INT2
M_INT_Pin24
M_SA0/DEN
M_SA0/DRDY
3V3
1V8
SPI
Q2
Q1
HUB2_I2C
STM_I2C
DIL_I2C
SENS_I2C
U_Adapter Board
Adapter Board.SchDoc
UM3239 - Rev 1 page 10/23
UM3239
Schematic diagrams

Figure 8. X-NUCLEO-IKS4A1 circuit schematic (2 of 4)
Arduino & Morpho Connectors
Morpho connector
3V3
1
2
3
4
5
6
7
8
CN6
1
2
3
4
5
6
CN8
1 2
3 4
5 6
7 8
9 10
11 12
13 14
15 16
17 18
19 20
21 22
23 24
25 26
27 28
29 30
31 32
33 34
35 36
3837
Header 19x2
CN7
Arduino Connector Arduino Connector
Morpho connector
1
2
3
4
5
6
7
8
9
10
CN5
1
2
3
4
5
6
7
8
CN9
1 2
3 4
5 6
7 8
9 10
11 12
13 14
15 16
17 18
19 20
21 22
23 24
25 26
27 28
29 30
31 32
33 34
35 36
3837
Header 19x2
CN10
Arduino Connector Arduino Connector
GND
GND
SB1
SB2
SB6
SB5
SB11
SB10
SB8
SB7
SB9
SB12
SDA
SCL
1
2
3
JP2
BT_Irq
1
2
3
JP1
Vio
LIS2MDL_DRDY_O
LIS2MDL_DRDY_O
LPS22DF_INT_O
SPI_MOSI_O
SPI_MISO_O
SPI_CK_O
SPI_CS_O
SB3
SB4
5V
GND
GND
1V8
GND
1V8 1V8
4k7
R1
4k7
R2
SDA
SCL
100nFC6
100nFC8
100nFC7
100nFC9
10uF
C4
Vio
Vio Vio
Vio
GND
1
2
3
4
J1
SDA
SCL
I2C2 Vio header
Vio
LSM6DSV16X_INT2_O
1V8
USER_INT routing selector
USER_INT_O
LSM6DSV16X_INT1_OSTTS22H_INT_O
3V3
3V3
GND
3V3
10uF
C2
USER_INT
GND
1V8Vio 1V8
LIS2MDL_DRDY
SCK
MISO
MOSI
CS
SPI
SPI
SCL
SDA
I2C
I2C2
LIS2MDL_DRDY_O
LIS2DUXS12_INT_O
SPI_CK_O
SPI_MISO_O
SPI_MOSI_O
SPI_CS_O
SCL
SDA
I2C_SCL2
I2C_SDA2
GND
Vout = 0.8*(1+R3/R4)
SB13
LIS2DUXS12_INT1
LIS2DUXS12_INT_O
LIS2DUXS12_INT_O
LIS2DUXS12_INT2_O
1 2
3 4
5 6
7 8
9 10
11 12
13 14
15 16
J2
TMM-108-01-G-D
LSM6DSO16IS_INT1_O
SB14LSM6DSO16IS_INT2_O
M_INT_Pin24
M_INT_Pin16
M_INT_Pin17
M_INT2
M_INT1
STHS34PF80_INT
M_SA0/DRDY
M_SA0/DEN
LSM6DSV16X_INT2_O
LSM6DSO16IS_INT2_O
LPS22DF_INT_O
LSM6DSV16X_INT1_O
USER_INT_O
LSM6DSO16IS_INT1_O
STTS22H_INT_O
LSM6DSV16X_INT2
LIS2DUXS12_INT2
LSM6DSO16IS_INT2
LPS22DF_INT
LSM6DSV16X_INT1
USER_INT
LSM6DSO16IS_INT1
STTS22H_INT
LIS2DUXS12_INT2_O
B8
12 B7
13 B6
14 B5
15 B4
16 B3
17 B2
18 B1
20
EPAD 21
OE
10
A1 1
A2 3
A3 4
A4 5
A5 6
A6 7
A7 8
A8 9
VCC(A) 2
VCC(B)
19
GND 11
U2
NXS0108BQX
GND GND
B8
12 B7
13 B6
14 B5
15 B4
16 B3
17 B2
18 B1
20
EPAD 21
OE
10
A1 1
A2 3
A3 4
A4 5
A5 6
A6 7
A7 8
A8 9
VCC(A) 2
VCC(B)
19
GND 11
U3
NXS0108BQX
15k
R3
Vin
1
EN
3
2
Adj 4
Vout 5
GND
LDK130M-R
U1
12k
R4
GND
100nF
C3
100nF
C5
1V8 1V8
UM3239 - Rev 1 page 11/23
UM3239
Schematic diagrams

Figure 9. X-NUCLEO-IKS4A1 circuit schematic (3 of 4)
Accelerometer
Accelerometer + Gyroscope (HUB 1)
Relative humidity + Temperature
Pressure sesnsor
VDD
LIS2MDL_DRDY
220nF
C19
1V8 9
1V8_IO 10
NC 11
NC 12
C1
5
SDA/SDI/SDO
4
CS
3
NC
2
SCL
1
GND
6
INT/DRDY 7
GND 8
LIS2MDL
U7
100nFC15
SB30
SENS_SDA
SENS_SCL SB26
Magnetometer sesnsor LIS2MDL
10uFC14
Temperature sesnsor
I2C ADDw = 3Ch
SCL/SPC
2
CS
6
SDA/SDI/SDO
4
VDD_IO
1VDD 10
GND_IO
8
GND
9
RES
3
SDO/SA0 5
INT_DRDY 7
U6
LPS22DF
Infra-red sesnsor connector
SCL
2
SDA
1
VDD 3
VSS 4
U10
SHT40-AD1B-R3
INT1
4
INT2
9
CS
12
OCS_AUX 10
SCL
13
SCx/AH2/QVAR2 3
SDA
14
SDx/AH1/QVAR1 2
VDD_IO
5VDD 8
GND
6
GND
7
SDO/SA0 1
SDO_AUX 11
U4
LSM6DSV16XTR
Vdd 9
Vdd_IO 10
INT2 - QV2 11
INT1 - QV1 12
Res
5
SDA/SDI/SDO
4
SDO/SA0
3
CS
2
SCL/SPC
1
GND
6
ALT INT 7
GND 8
U5
LIS2DUXS12
I2C BUS ROUTING + QVAR
- Place the shunt in order to select the master for the environmental
I2C routing description
4k7
R13
4k7
R14
4k7
R11
4k7
R12
1V8
SB22
SB16
SB20SB19
100nF
C11 10uF
C10
100nF
C13 10uF
C12
SB18
SB21
1
2
JP3
SB23
LSM6DSV16X_INT2
100nF
C22
SB37
SB39
100nF
C17
4k7
R15
LSM6DSV16X_INT1
SB25
SB28
SENS_SCL
SENS_SDA
SB29
I2C ADDw = BAh
SB31
I2C ADDw = B8h LPS22DF_INT
LIS2MDL_DRDY
100nF
C16
SB27
SB24
STM_SCL
STM_SDA
STHS34PF80_INT
100nF
C18
SB32
SB33
SENS_SCL
SENS_SDA
I2C ADDw = 70h
STTS22H_INT
STM_SCL
STM_SDA
SB15
I2C ADDw = D6h
SB17
I2C ADDw = D4h
LIS2DUXS12_INT1
VDD
VDD
VDD
VDD
VDD
VDD VDD VDD
VDD
SCL
SDA
I2C
STM_I2C
STM_SCL
STM_SDA
SCL
SDA
I2C
SENS_I2C
SENS_SDA
SCL
SDA
I2C
HUB2_I2C
SENS_SCL
4k7
R9
4k7
R10
VDD
STM_SDA
STM_SCL
I2C ADDw = 88h
I2C ADDw = 30h I2C ADDw = 32h
I2C ADDw= B4h
LIS2DUXS12_INT2
1
122
3
344
5
566
7
788
9
910 10
11
11 12 12
J3
SHF-106-01-L-D-SM
QVAR1 QVAR2
0R
R32
0R
R33
0R
R16
0R
R18
0R
R17
0R
R19
0R
R22
Accelerometer + Gyroscope (HUB 2)
100nF
C21 10uF
C20
SB36
SB38
1
2
JP4
SB40
4k7
R23
SB34
I2C ADDw = D6h
SB35
I2C ADDw = D4h
VDD
0R
R21
LPS22DF_INT
LPS22DF_INT
LIS2MDL_DRDY
LSM6DSO16IS_INT1
LSM6DSO16IS_INT2
HUB2_SDx
HUB2_SCx
HUB1_SDx HUB1_SCx
HUB2_SDx HUB2_SCx
DIL_SCx
DIL_SDx
SENS_SCL
STM_SDA STM_SCL
sensors U6,U7,U8 and Adapter, or to enable the Qvar electrode control.
- HUB1 must be connected to GND if not used!
SDA ROUTING SCL ROUTING
HUB2_SDx
HUB2_SCx
HUB2_SCx
HUB2_SDx
SENS_SCL
SENS_SDA
STM_SDA
STM_SCL
SENS_SDA
SCL
SDA
I2C
DIL24_I2C
DIL_SDx
DIL_SCx
1 2
3 4
5 6
7 8
9 10
11 12
J4
TMM-106-01-G-D
1 2
3 4
5 6
7 8
9 10
11 12
J5
TMM-106-01-G-D
SDO / SA0 1
MSDA
2
MSCL
3
INT1
4
VDDIO 5
GND 6
GND 7
VDD 8
INT2
9
RES
10
RES
11
CS 12
SCL 13
SDA 14
U9
LSM6DSO16IS
STM_SDA
STM_SCL
STM_SDA
STM_SCL
4k7
R34
4k7
R35
SCL
1
AL/INT 2
VDD
3
SDA
6
GND
5
ADDR
4
PAD
7
U8
STTS22H
1
1
2
2
3
3
4
4
5
5
J7
M50-3530542
HUB1_SCx
HUB1_SDx
SDO_AUX
OCS_AUX
SDO_AUX
OCS_AUX
0R
R20
UM3239 - Rev 1 page 12/23
UM3239
Schematic diagrams

Figure 10. X-NUCLEO-IKS4A1 circuit schematic (4 of 4)
M_INT_Pin16
INT2
INT1
M_INT_Pin17
GND
DIL24 Socket for Adapter Board
M_INT_Pin24
M_SA0/DEN 2k2
R27
SB42
SB44
SB48
SB52 HUB2_SCL
HUB2_SDA
1V8_IO 2k2
R26
1
2
3
4
5
6
7
8
9
10
11
12
24
23
22
21
20
19
18
17
16
15
14
13
DIL24 Socket
J6
SB41
SB43
SB47
SB51
SB49
SB53
SDA2
SCL2
DIL24_SCL
DIL24_SDA
1
2
3
JP5
3V3_IO
1V8_IO
1V8_IO
1V8_IO
1V8_IO
SB46
SB45
SB50
SB54 SPI_CS
SB56
1V8_IO
SB55
M_INT_Pin16
INT2
INT1
M_INT_Pin17
M_INT1
M_INT2
M_INT_Pin16
M_INT_Pin17
M_INT_Pin24 M_INT_Pin24
SPI_CK
SDA1
SPI_MISO
M_SA0/DRDY
M_SA0/DEN
M_SA0/DRDY
M_SA0/DEN
1V8_IO3V3_IO
1V8
3V3
GND
GND
CS
MISO
MOSI
SCK
SPI
SPI
SCL
SDA
I2C
STM_I2C
SCL
SDA
I2C
SENS_I2C
SCL
SDA
I2C
HUB2_I2C
SPI_MOSI
SPI_MOSI
SPI_CS
SPI_MISO
SPI_CK
SCL2
SDA2
SCL1
SDA1
HUB2_SCL
HUB2_SDA
M_SA0/DRDY
SCL1
1
2
3
JP6
1
2
3
JP7
2 x Header 3pin SMD for QVAR electrode
GND
GND
1V8_IO
1V8_IO
Q1
Q2
ESDAXLC6
D1
ESDAXLC6
D2
4k7
R28
4k7
R29
GND
GND
GND
GND
100nF
C24
4k7
R24
4k7
R25
1V8_IO
DIL24_SCL
DIL24_SDA
SCL
SDA
I2C
DIL_I2C
DIL24_SCL
DIL24_SDA
11
22
33
QVAR2
Header 3pin SMD for QVAR electrode
GND_QVAR
QVAR1 QVAR2
QVAR1
QVAR2
VDD_QVAR
VDD_QVAR
VDD_QVAR VDD_QVAR
GND_QVAR
GND_QVAR GND_QVAR
QVAR Swipe electrode
220pF
C23
220pF
C25
10M
R5
10M
R6
10M
R7
10M
R8
11
22
33
QVAR1
Header 3pin SMD for QVAR electrode
UM3239 - Rev 1 page 13/23
UM3239
Schematic diagrams

5 Bill of materials
Table 6. X-NUCLEO-IKS4A1 bill of materials
Item Quantity Reference Part / value Description Manufacturer Part number
1 2 C23, C25 220pF
Multilayer Ceramic
Capacitors 220pF
±5% 100V C0G
SMD 0402
TDK C1005C0G2A221J050BA
2 6
C2, C4,
C10, C12,
C14, C20
10uF
CAP CER 0603
10uF 6.3V X5R
20%
Walsin 0603X106M6R3CT
3 12
C3, C5,
C6, C7,
C8, C9,
C11, C13,
C15, C16,
C17, C18,
C21, C22
100nF
CAP CER 0603
100nF 25V X7R
10%
MULTICOMP MC0603B104K250CT
4 1 C19 220nF
CAP CER 0603
220nF 25V X7R
10%
KEMET C0603X224K4RACTU
5 1 CN5 1x10 Pin elevated
socket Samtec ESQ-110-24-T-S
6 2 CN9, CN6 1x8 Pin elevated
socket Samtec ESQ-108-24-T-S
7 1 CN8 1x6 Pin elevated
socket Samtec ESQ-106-24-T-S
8 2 D1, D2 SOD-882
Trans Voltage
Suppressor Diode,
40W, Bidirectional,
1 Element, Silicon
STMicroelectronics ESDAXLC6-1BT2
9 1 J1 Header 4 MULTICOMP 2211S-04G
10 1 J2
16 Position, Dual -
Row, Shrouded
Terminal Strip,
2mm pitch
Adam Tech 2PH2-16-UA
11 1 J3
12 Position, Dual -
Row, Shrouded
Terminal Strip,
2mm pitch
Samtec SHF-106-01-L-D-SM
12 2 J4, J5
12 Position, Dual -
Row, Shrouded
Terminal Strip,
2mm pitch
Adam Tech 2PH2-12-UA
13 1 J6 Adapter DIL24 E-TEC 2BL1-036-G-700-01
14 5
JP1, JP2,
JP5, JP6,
JP7
Header 3 MULTICOMP 2211S-03G
15 2 JP3, JP4 Header 1x2 pins,
2.54mm, stright MULTICOMP 2211S-02G
16 2 QVAR1,
QVAR2 Header_3pin_SMD GCT BG125-03-A-1-1-0440-N-
D
UM3239
Bill of materials
UM3239 - Rev 1 page 14/23

Item Quantity Reference Part / value Description Manufacturer Part number
17 15
R1, R2,
R9, R10,
R11, R12,
R13, R14,
R15, R23,
R24, R25,
R28, R29,
R34
4k7 RES 0603 4k7 1%
1/16W, RESISTOR YAGEO RC0603FR-074K7L
18 1 R3 15k RES 0603 15k 1%
1/16W, RESISTOR YAGEO RC0603FR-1315KL
19 1 R4 12k RES 0603 12k 1%
1/16W, RESISTOR YAGEO RC0603FR-1312KL
20 9
R32, R33,
R16, R17,
R18, R19,
R20, R21,
R22
0R RES 0603 0R0 1%
1/16W YAGEO RC0603FR-070RL
21 2 R26, R27 2k2 RES 0603 2k2 1%
1/16W YAGEO RC0603FR-132K2L
22 4 R5, R6,
R7, R8 10M
RES Thick Film,
10MΩ, 1%, 0.1W,
100ppm/°C, 0603
YAGEO RC0603FR-0710ML
23 40
SB1, SB2,
SB4, SB5,
SB6, SB7,
SB8, SB9,
SB10,
SB11,
SB12,
SB14,
SB15,
SB16,
SB18,
SB20,
SB21,
SB22,
SB23,
SB24,
SB25,
SB26,
SB27,
SB28,
SB29,
SB30,
SB32,
SB33,
SB35,
SB36,
SB37,
SB38,
SB39,
SB40,
SB42,
SB44,
SB47,
SB51,
SB55,
SB56
0R RES 0603 0R0 1%
1/16W YAGEO RC0603FR-070RL
24 1 U1 SOT23-5L
LDO Voltage
Regulators 300mA
Low Quiescent
Crnt low noise
LDO
STMicroelectronics LDK130M-R
UM3239
Bill of materials
UM3239 - Rev 1 page 15/23

Item Quantity Reference Part / value Description Manufacturer Part number
25 2 U2, U3
IC TRANSLATOR
BIDIRECTIONAL
20VQFN
Nexperia NXS0108BQX
26 1 U4 VFLGA2.5X3X.86 14L P.5
L.475X.25
6-axis IMU with
embedded sensor
fusion, AI, Qvar for
high-end
applications
STMicroelectronics LSM6DSV16XTR
27 1 U5 LGA 2X2X0.74MAX 12
LEADS
Ultra-low-power 3-
axis smart
accelerometer with
embedded
machine learning
core and anti-
aliasing filter
STMicroelectronics LIS2DUXS12TR
28 1 U6 HLGA 2X2X.8 10L EXP.
SILIC .91SQ
Low-power and
high-precision
MEMS nano
pressure sensor:
260-1260 hPa
STMicroelectronics LPS22DFTR
29 1 U7 LGA 2x2 12L
Ultra-low-power,
high-performance
3-axis
magnetometer
STMicroelectronics LIS2MDLTR
30 1 U8 UDFN-6L_2X2X0P5_STM
Low-voltage,
ultralow-power, 0.5
°C accuracy
temperature
sensor
STMicroelectronics STTS22HTR
31 1 U9 VFLGA2.5X3X.86 14L P.5
L.475X.25
3-axis
accelerometer and
3-axis gyroscope
with ISPU
STMicroelectronics LSM6DSO16ISTR
32 1 U10
Digital Relative
Humidity
Temperature
Sensor, ±1.8 /
max 3.5 %RH,
±0.2 °C, Ultra-
Low-Power
Sensirion SHT40-AD1B-R3
UM3239
Bill of materials
UM3239 - Rev 1 page 16/23

6 Kit versions
Table 7. X-NUCLEO-IKS4A1 versions
Finished good Schematic diagrams Bill of materials
X$NUCLEO-IKS4A1A (1) X$NUCLEO-IKS4A1A schematic diagrams X$NUCLEOIKS4A1A bill of materials
1. This code identifies the X-NUCLEO-IKS4A1 evaluation kit first version. The kit consists of the main board X-NUCLEO-
IQS4A1 whose version is identified by the code X$NUCLEO-IQS4A1A and the detachable board STEVAL-MKE001A whose
version is identified by the code STEVAL$MKE001AA.
UM3239
Kit versions
UM3239 - Rev 1 page 17/23

7 Regulatory compliance information
Notice for US Federal Communication Commission (FCC)
For evaluation only; not FCC approved for resale
FCC NOTICE - This kit is designed to allow:
(1) Product developers to evaluate electronic components, circuitry, or software associated with the kit to
determine
whether to incorporate such items in a finished product and
(2) Software developers to write software applications for use with the end product.
This kit is not a finished product and when assembled may not be resold or otherwise marketed unless all
required FCC equipment authorizations are first obtained. Operation is subject to the condition that this product
not cause harmful interference to licensed radio stations and that this product accept harmful interference. Unless
the assembled kit is designed to operate under part 15, part 18 or part 95 of this chapter, the operator of the kit
must operate under the authority of an FCC license holder or must secure an experimental authorization under
part 5 of this chapter 3.1.2.
Notice for Innovation, Science and Economic Development Canada (ISED)
For evaluation purposes only. This kit generates, uses, and can radiate radio frequency energy and has not been
tested for compliance with the limits of computing devices pursuant to Industry Canada (IC) rules.
À des fins d'évaluation uniquement. Ce kit génère, utilise et peut émettre de l'énergie radiofréquence et n'a pas
été testé pour sa conformité aux limites des appareils informatiques conformément aux règles d'Industrie Canada
(IC).
Notice for the European Union
This device is in conformity with the essential requirements of the Directive 2014/30/EU (EMC) and of the
Directive 2015/863/EU (RoHS).
Notice for the United Kingdom
This device is in compliance with the UK Electromagnetic Compatibility Regulations 2016 (UK S.I. 2016 No. 1091)
and with the Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment
Regulations 2012 (UK S.I. 2012 No. 3032).
UM3239
Regulatory compliance information
UM3239 - Rev 1 page 18/23

Revision history
Table 8. Document revision history
Date Version Changes
11-Oct-2023 1 Initial release.
UM3239
UM3239 - Rev 1 page 19/23

Contents
1Getting started ....................................................................2
1.1 Hardware requirements .........................................................2
2System requirements ..............................................................3
3Hardware description ..............................................................4
3.1 Default solder bridge configuration ................................................4
3.2 Block diagram .................................................................5
3.3 Sensor I²C address selection.....................................................7
3.4 Sensor current consumption measurement .........................................7
3.5 Sensor disconnection ...........................................................7
3.6 Adapter board for DIL24 socket ..................................................8
3.7 Connectors....................................................................8
4Schematic diagrams ..............................................................10
5Bill of materials...................................................................14
6Kit versions ......................................................................17
7Regulatory compliance information ...............................................18
Revision history .......................................................................19
List of tables ..........................................................................21
List of figures..........................................................................22
UM3239
Contents
UM3239 - Rev 1 page 20/23
Table of contents
Other ST Computer Hardware manuals

ST
ST STM32CubeF2 User manual

ST
ST X-NUCLEO-OUT16A1 User manual

ST
ST STM32 Nucleo User manual

ST
ST X-NUCLEO-IDS01A4 User manual

ST
ST STM32C0 Series User manual

ST
ST X-CUBE-OUT3 User manual

ST
ST X-NUCLEO-OUT02A1 User manual

ST
ST STEVAL-IFP047V1 User manual

ST
ST X-NUCLEO-53L1A1 User manual

ST
ST X-NUCLEO-OUT10A1 User manual