INGENIA Triton Go User manual

INGENIA-CAT S.L.
8-14 MARIE CURIE, ADVANCED INDUSTRY PARK
08042 BARCELONA
Triton Go Product Manual
Edition 05/29/2017
For the most up to date information visit the online manual.

1 Table of Contents
1 Table of Contents 2
2 General Information 5
2.1 Manual revision history ..................................................................................................................................... 5
2.2 Disclaimers and limitations of liability ............................................................................................................. 5
2.3 Contact ............................................................................................................................................................... 5
3 Safety Information 7
3.1 About this manual.............................................................................................................................................. 7
3.2 Warnings............................................................................................................................................................. 7
3.3 Precautions ........................................................................................................................................................ 7
4 Product Description 8
4.1 Triton part numbering ....................................................................................................................................... 8
4.2 Specifications................................................................................................................................................... 10
4.3 Hardware revisions .......................................................................................................................................... 16
4.4 Power and current ratings............................................................................................................................... 16
4.4.1 Power losses calculation (heat dissipation)................................................................................................... 17
4.4.2 Current ratings ................................................................................................................................................. 18
4.4.3 System temperature ........................................................................................................................................ 20
4.4.4 Improving heat dissipation with a heatsink ................................................................................................... 20
4.5 Architecture...................................................................................................................................................... 21
5 Connectors Guide 23
5.1 Supply, shunt and motor connector............................................................................................................... 24
5.2 Milli-Grid connectors mating........................................................................................................................... 25
5.3 Halls and motor temperature connector ....................................................................................................... 27
5.4 Absolute encoder connector ........................................................................................................................... 29
5.5 Incremental and Sin-Cos encoder connector................................................................................................. 31
5.6 USB connector ................................................................................................................................................. 33
5.7 I/O and LEDs connector ................................................................................................................................... 35
5.8 RS485 interface connector .............................................................................................................................. 39
5.9 Safe Torque Off (STO) connector .................................................................................................................... 41
5.10 EtherCAT connectors (TRI-x/48-E-C) ............................................................................................................... 43
5.11 CAN connectors (TRI-x/48-C-C) ....................................................................................................................... 46
6 Signalling LEDs 48
6.1 Power and operation signalling LEDs............................................................................................................. 48
6.2 CAN signalling LEDs (onlyTRI-x/48-C-C)......................................................................................................... 49
6.3 EtherCAT signalling LEDs (only TRI-x/48-E-C)................................................................................................. 50
7 Wiring and Connections 52
7.1 Protective earth ............................................................................................................................................... 52
7.2 Power supply.................................................................................................................................................... 55
7.2.1 Power supply requirements ............................................................................................................................ 55
7.2.2 Power supply connection................................................................................................................................ 56
7.2.3 Battery supply connection .............................................................................................................................. 57
7.2.4 Connection of multiple drives with the same power supply ......................................................................... 57

7.2.5 Power supply wiring recommendations......................................................................................................... 58
7.2.5.1 Wire section...................................................................................................................................................... 58
7.2.5.2 Wire ferrules ..................................................................................................................................................... 58
7.2.5.3 Wire length ....................................................................................................................................................... 59
7.3 Motor and shunt braking resistor.................................................................................................................... 59
7.3.1 AC and DC brushless motors ........................................................................................................................... 59
7.3.2 DC motors and voice coils actuators .............................................................................................................. 60
7.3.3 Motor wiring recommendations ..................................................................................................................... 62
7.3.3.1 Wire section ..................................................................................................................................................... 62
7.3.3.2 Wire ferrules ..................................................................................................................................................... 62
7.3.3.3 Motor choke ..................................................................................................................................................... 62
7.3.3.4 Wire length ....................................................................................................................................................... 63
7.3.4 Shunt braking resistor ..................................................................................................................................... 63
7.4 Feedback connections..................................................................................................................................... 64
7.4.1 Digital Halls interface....................................................................................................................................... 65
7.4.2 Analog Halls interface...................................................................................................................................... 67
7.4.3 Digital Incremental Encoder............................................................................................................................ 69
7.4.3.1 Digital encoders with single ended 24 V outputs ........................................................................................... 72
7.4.4 Analog encoder (Sin-Cos encoder) interface.................................................................................................. 72
7.4.5 Absolute encoder interface ............................................................................................................................. 74
7.4.6 Digital input feedback - PWM encoder............................................................................................................ 75
7.4.7 Analog input feedback..................................................................................................................................... 77
7.4.7.1 Potentiometer.................................................................................................................................................. 77
7.4.7.2 DC tachometer ................................................................................................................................................. 77
7.4.8 Feedback wiring recommendations ............................................................................................................... 78
7.4.8.1 Recommendations for applications witch close feedback and motor lines ................................................ 78
7.5 I/O connections................................................................................................................................................ 79
7.5.1 General purpose single ended digital inputs interface (GPI1, GPI2, GPI3, GPI4).......................................... 79
7.5.2 High-speed digital inputs interface(HS_GPI1, HS_GPI2) .............................................................................. 82
7.5.3 Analog inputs interface (AN_IN1, AN_IN2)...................................................................................................... 87
7.5.4 Digital outputs interface (GPO1, GPO2,GPO3,GPO4)..................................................................................... 90
7.5.4.1 Wiring of 5V loads............................................................................................................................................. 91
7.5.4.2 Wiring of 24V loads........................................................................................................................................... 92
7.5.5 Motor brake output (GPO1, GPO2, GPO3, GPO4) ........................................................................................... 94
7.5.6 Motor temperature input (MOTOR_TEMP) ..................................................................................................... 95
7.6 Command sources ........................................................................................................................................... 96
7.6.1 Network communication interface................................................................................................................. 97
7.6.2 Standalone ....................................................................................................................................................... 97
7.6.3 Analog input ..................................................................................................................................................... 98
7.6.4 Step and direction............................................................................................................................................ 99
7.6.5 PWM command .............................................................................................................................................. 100
7.6.5.1 Single input mode.......................................................................................................................................... 101
7.6.5.2 Dual input mode ............................................................................................................................................ 102
7.6.6 Encoder following or electronic gearing....................................................................................................... 103
7.7 Communications............................................................................................................................................ 104
7.7.1 USB interface.................................................................................................................................................. 104
7.7.1.1 USB powered drive ........................................................................................................................................ 105
7.7.1.2 USB wiring recommendations ...................................................................................................................... 105
7.7.2 RS485 interface .............................................................................................................................................. 105
7.7.2.1 Multi-point connection using daisy chain .................................................................................................... 107
7.7.3 CANopen interface ......................................................................................................................................... 108

7.7.3.1 CAN interface for PC....................................................................................................................................... 110
7.7.3.2 CAN wiring recommendations ...................................................................................................................... 110
7.7.4 EtherCAT interface ......................................................................................................................................... 111
7.8 Safe Torque Off (STO) .................................................................................................................................... 112
8 Dimensions 115
8.1 Triton Go with CAN (TRI-x/48-C-C) ................................................................................................................ 115
8.2 Triton Go with EtherCAT (TRI-x/48-E-C)........................................................................................................ 116
9 Application Software 118
9.1 Configuration ................................................................................................................................................. 118
9.2 Applications.................................................................................................................................................... 118
9.3 Arduino ........................................................................................................................................................... 118
10 Service 119

Triton Go Product Manual|General Information
INGENIA |05/29/2017 5
1 http://ingeniamc.com/support/triton
2 http://doc.ingeniamc.com/display/TR
2 General Information
2.1 Manual revision history
Revision Release Date Changes PDF
v1 July 2016 Preliminary draft. --
v2 November 2016 First public manual. Major corrections. --
v3 February 2017 Minor improvements. Added wiring and connections
information.
Downloa
d1
v4 May 2017 Improved PDF export format. Downloa
d
For the most up to date information use the onlineProduct Manual2. The PDF manual is generated only after
major changes.
Please refer toproducthardware revisions (see page 16)page for information on previous hardware revisions and
changes.
2.2 Disclaimers and limitations of liability
The information contained within this document contains proprietary information belonging toINGENIA-CAT
S.L..
Such information is supplied solely for the purpose of assisting users of the product in its installation.
INGENIA-CAT S.L.rejects all liability for errors or omissions in the information or the product or in other
documents mentioned in this document.
The text and graphics included in this document are for the purpose of illustration and reference only. The
specifications on which they are based are subject to change without notice.
This document may contain technical or other types of inaccuracies.The information contained within this
document is subject to change without notice and should not be construed as a commitment byINGENIA-CAT
S.L..INGENIA-CAT S.L.assumes no responsibility for any errors that may appear in this document.
Some countries do not allow the limitation or exclusion of liability for accidental or consequential damages,
meaning that the limits or exclusions stated above may not be valid in some cases.
2.3 Contact
INGENIA-CAT S.L.
8-14 Marie Curie
Advanced Industry Park
08042 Barcelona
Spain

Triton Go Product Manual|General Information
INGENIA |05/29/2017 6
3 mailto:[email protected]
4 http://www.ingeniamc.com/
Telephone: +34 932 917 682
E-mail:[email protected]3
Web site:www.ingeniamc.com4

Triton Go Product Manual|Safety Information
INGENIA |05/29/2017 7
3 Safety Information
3.1 About this manual
Read carefully this chapter to raise your awareness of potential risks and hazards when working with the Triton
Servo Drive.
To ensure maximum safety in operating the Triton Servo Drive, it is essential to follow the procedures included
in this guide. This information is provided to protect users and their working area when using the Triton Servo
Drive, as well as other hardware that may be connected to it. Please read this chapter carefully before starting
the installation process.
3.2 Warnings
The following statements should be considered to avoid serious injury to those individuals performing the
procedures and/or damage to the equipment:
•To prevent the formation of electric arcs, as well as dangers to personnel and electrical contacts, never
connect/disconnect the Triton Servo Drive while the power supply is on.
•Disconnect the Triton Servo Drive from all power sources before proceeding with any possible wiring
change.
•After turning off the power and disconnecting the equipment power source, wait at least 10 seconds
before touching any parts of the controller that are electrically charged or hot.
3.3 Precautions
The following statements should be considered to avoid serious injury to those individuals performing the
procedures and/or damage to the equipment:
•The Triton Servo Drive components temperature may exceed 100 ºC during operation.
• Some components become electrically charged during and after operation.
•The power supply connected to this controller should comply with the parameters specified in this
document.
• When connecting the Triton Servo Drive to an approvedpower source, do so through a line that is
separate from any possible dangerous voltages, using the necessary insulation in accordance with safety
standards.
•High-performance motion control equipment can move rapidly with very high forces. Unexpected
motion may occur especially during product commissioning. Keep clear of any operational machinery
and never touch them while they are working.
•Do not make any connections to any internal circuitry. Only connections to designated connectors are
allowed.
•All service and maintenance must be performed by qualified personnel.
•Before turning on the Triton Servo Drive, check that all safety precautions have been followed, as well as
the installation procedures.

Triton Go Product Manual|Product Description
INGENIA |05/29/2017 8
5 http://doc.ingeniamc.com/display/EMCL/CANopen+protocol
4 Product Description
The Triton Go Servo Drive is an ultra-compact solution providing top performance, advanced networking and
built-in safety, as well as a fully featured motion controller. It can control multiple motor types and supports
almost any feedback sensor including absolute serial encoders.
Its incredibly compact design includes multiple communication ports carryingCANopen protocol5, and thus
enabling a wide choice of interfacing methods.Its small form factor, its capability to operate up to 110 ºC and
the bunch of features that come packed with it makes Triton a valid OEM for critical-size applications.
The Triton Go Servo Drive has been designed with efficiency in mind. It incorporates cutting-edge MOSFET
technology as well as optimized control algorithms to provide the perfect trade-off between EMI and
performance.
Triton Go Servo Drive is provided with several general purpose inputs and outputsdesigned for 5 V TTL logic but
tolerant up to 24 V and fully rugged. By using these inputs and outputs it is possible to implement alarm signals,
connect digital sensors, activate external devices (LEDs, actuators, solenoids, etc.).Some of the digital and
analog inputs can also be used as command / target sources.
4.1 Triton part numbering

Triton Go Product Manual|Product Description
INGENIA |05/29/2017 10
Triton Go TRI-7/48-C-C
TRI-4/48-C-C
TRI-1/48-C-C
TRI-7/48-E-C
TRI-4/48-E-C
TRI-1/48-E-C
4.2 Specifications
A list of features of the Triton Go Servo Drive is shown next.
ACTIVE
ACTIVE
ACTIVE
ACTIVE
ACTIVE
ACTIVE
Changes in Part Numbers
Part numbers have changed from version 1.0.0 due to a current re-scaling of the whole product range.
Follow this equivalence to identify your old Triton:
•Version 1.0.0 →1.1.0 or later
•TRI-8/48-C-P →TRI-7/48-C-P
•TRI-2/48-C-P →TRI-4/48-C-P
•TRI-0.5/48-C-P →TRI-1/48-C-P
•TRI-8/48-E-P →TRI-7/48-E-P
•TRI-2/48-E-P →TRI-4/48-E-P
•TRI-0.5/48-E-P →TRI-1/48-E-P
•TRI-8/48-C-C →TRI-7/48-C-C
•TRI-2/48-C-C →TRI-4/48-C-C
•TRI-0.5/48-C-C →TRI-1/48-C-C
•TRI-8/48-E-C →TRI-7/48-E-C
•TRI-2/48-E-C →TRI-4/48-E-C
•TRI-0.5/48-E-C →TRI-1/48-E-C

Triton Go Product Manual|Product Description
INGENIA |05/29/2017 11
7http://doc.ingeniamc.com/display/KB/Motor+inductance+effects+on+servo+drives
Electrical and power specifications
Part number → TRI-1/48-y-C TRI-4/48-y-C TRI-7/48-y-C
Power supply voltage +8 VDC to +48 VDC
Transient peak voltage 65 VDC
Internal DC bus capacitance 20 µF
Minimum motor inductance 200 µH
(Triton still can control motors with lower inductances.
Check our Knowledge Base7)
Nominal phase continuous
current (BLDC mode)
0.67 ARMS 3.33 ARMS
(with heatsink)
5.6 ARMS
(with heatsink)
Nominal phase continuous
current (DC mode)
1 ADC 5 ADC
(with heatsink)
6.3 ADC
(with heatsink)
Maximum phase peak current 1 ADC
(continuous)
5 ADC
(continuous, with
heatsink)
8.5 ADC
(5 s, with
heatsink)
Current sense range ± 1.02 A ± 5.10 A ± 12.7 A
Current sense resolution 1.99 mA/
count
9.96 mA/count 24.8 mA/count
Shunt braking transistor Shunt braking transistor on board. 8 A maximum current.
Cold plate 1.5 mm aluminum sheet 6082-T6.
Power connectors Screw terminal block 3.5 mm pitch
Standby power consumption ≤2.5 W (EtherCAT version TRI-x/48-E-C)
≤1.5 W (CAN version TRI-x/48-C-C)
Efficiency >96% at the rated power and current

Triton Go Product Manual|Product Description
INGENIA |05/29/2017 12
8 http://doc.ingeniamc.com/display/EMCL/0x2020+-+Enable+alternative+frequency+PWM
Motion control specifications
Supported motor types •Rotary brushless (trapezoidal and sinusoidal)
•Linear brushless (trapezoidal and sinusoidal)
•DC brushed
•Rotary voice coil
•Linear voice coil
Power stage PWM frequency 20 kHz (default)
80 kHz (alternative PWM frequency, configurable8)
Current sensing Precision current sense on phases A, B. (Phase C is generated
digitally)
Accuracy is ± 1% full scale. 10 bit ADC resolution
Sensors for commutation
(brushless motors)
•Digital Halls (Trapezoidal)
•Analog Halls (Sinusoidal / Trapezoidal)
•Quad. Incremental encoder (Sinusoidal / Trapezoidal)
•PWM encoder (Sinusoidal / Trapezoidal)
•Analog potentiometer (Sinusoidal / Trapezoidal)
•Sin-Cos encoder (Sinusoidal / Trapezoidal)
•Absolute encoder SSI over RS-485 (Sinusoidal /
Trapezoidal)
Sensors for servo loops • Digital Halls
• Analog Halls
•Quad. Incremental encoder
• PWM encoder
• Analog potentiometer
•Sin-Cos encoder
• Absolute encoder SSI (over RS-485)
•DC tachometer

Triton Go Product Manual|Product Description
INGENIA |05/29/2017 13
Supported target sources • Network communication – USB
• Network communication – CANopen
• Network communication – RS-485
• Network communication – EtherCAT
•Standalone (execution from internal EEPROM memory)
•Analog inputs
•Step and Direction (Pulse and Direction)
•PWM command
•Encoder Following / Electronic Gearing
Inputs/outputs and protections
General purpose Inputs and
outputs
•4 x non-isolated single-ended digital inputs. GPI1, GPI2,
GPI3, GPI4 (5 V TTL logic, 24 V tolerant).
•2 x non-isolated high speed differential digital inputs.
HS_GPI1, HS_GPI2 (5 V logic, 24 V tolerant).
•1 x (±10 V) differential analog input (12 bits). AN_IN2. (24
V tolerant).
•1 x 0 V... 5 V single ended analog input (12 bits). AN_IN1.
(24 V tolerant).
•4 x open open drain digital outputs with a weak pull-up
to 5 V. (24 V tolerant and 1 A; short-circuit and over-
current protected).
Dedicated Inputs and outputs •2 x isolated Safe Torque Off inputs. 5 to 30 V inputs.
•4 x open collector LED output (50 mA maximum). See
Signalling LEDs (see page 48) section for more details.
Output Supplies •1 x 5 V output supply for powering external circuitry (up
to 200 mA)
•1 x 3.3 V output supply for powering external circuitry (up
to 50 mA)

Triton Go Product Manual|Product Description
INGENIA |05/29/2017 14
Protections •User configurable:
•DC bus over-voltage
•DC bus under-voltage
•Drive over-temperature
•Drive under-temperature
•Over-current
•Overload (I2t)
• Short-circuit protections:
•Phase to DC bus
•Phase to phase
•Phase to GND
•Mechanical limits for homing functions
•Hall sequence/combination error
•ESD protections in all inputs, outputs, feedbacks and
communications
•EMI protections (noise filters) in all inputs, outputs and
feedbacks
•Supply inverse polarity protection
•High power transient voltage suppressor (600 W peak
TVS diode)
•Can drive an external power braking resistor in case of
re-injection (up to 7 A)
Safe Torque Off 2x STO inputs, 5 V to 30 V isolated inputs
Motor Brake Motor brake output through a general purpose output
(GPO1, GPO2, GPO3 or GPO4). Up to 24 V and 1 A.
Communications
Part number → TRI-x/48-C-C TRI-x/48-E-C
USB µUSB (2.0) vertical connector. The board can be supplied
from USB for configuration purposes but will not power
the motor.
Serial RS-485 full-duplex (compatible with RS-422), non-
isolated.
(default 115200 bps, 8 data bits, no parity, 1 stop bit, no
flux control)

Triton Go Product Manual|Product Description
INGENIA |05/29/2017 15
9 https://ingeniamc.atlassian.net/browse/TRITON-96?src=confmacro
10 http://ingeniamc.com/uploads/media/default/0001/01/4c83d7ac4a45382fd22cc82fc76750fa924ce036.pdf
CANopen Available.Non-isolated (1 Mbps by
default). 120 Ω
termination not included on board.
CiA-301, CiA-303,
CiA-305, CiA-306 and CiA-402
compliant.
-
EtherCAT -Available
(magnetics
included)
Environmental and mechanical specifications
Part number →TRI-x/48-C-C TRI-x/48-E-C
Cold plate temperature •-40 ºC to +85 ºC full current (with appropriate heatsink)
•+85ºC to 110ºC derated current
Heat dissipation Heat dissipation is affected mainly by the phase current (see
below)
Maximum humidity 5% - 85% (non-condensing)
Horizontal dimensions 43 mm x 45 mm
Maximum height 23.5 mm
Weight (exc. mating connectors) 34 g 42 g
TRITON-969
OPEN
Errata
First version of the datasheet indicates a maximum phase peak current of 13 ARMS (2 s) which is
incorrect. Also the TRI-4/48-y-C was underrated. Find the latest datasheet available here10.

Triton Go Product Manual|Product Description
INGENIA |05/29/2017 16
11 http://doc.ingeniamc.com/display/EMCL/0x20C2+-+Drive+temperature
4.3 Hardware revisions
Hardware
revision
Individual board
references
Description and changes
1.0.0
August 2016
i039-01H1-1.0.0
i039-01H2-1.0.0
i039-01H3-1.0.0
First product release.
1.1.0
November 2016
i039-01H1-1.1.0
i039-01H2-1.0.0
i039-01H3-1.1.0
Changed product current range naming (current
resolution and range is exactly the same as before)
•TRI-0.5/48 becomes TRI-1/48
•TRI-2/48 becomes TRI-4/48
•TRI-8/48 becomes TRI-7/48
Improved robustness of CAN / EtherCAT connectors.
Features added:
•Analog Halls feedback
•Analog (Sin-Cos) encoder feedback
•RS-485 communications
4.4 Power and current ratings
TRI-4/48-x-P andTRI-7/48-x-P variants of Triton goare capable of providing the nominal current from -25 ºC to
85 ºC (temperature measured in the coldplate) with a 1.2 ºC/W heatsink attached by means of a low thermal
resistance interface material. Above 85 ºC a current derating is required.TRI-1/48-x-P, on the other hand, does
not require a heatsink attached to reach its nominal current.
In case of excessive power losses over-temperature will be detected, causing the drive to turn off.The system
temperature is available inE-Core registers11and is measured near the power stage.This temperature
parameter can be accessed from USB 2.0, EtherCAT, CAN or RS485 serial interface and does not indicate the air
temperature, but the temperature of the PCB.Above 110 ºC the Triton Go automatically turns off the power
stage and stay in fault state avoiding any damage to the drive. The Fault LED will be activated and latched until
temperature decreases below this threshold.
Identifying the hardware revision
Hardware revision is screen printed on the board.

Triton Go Product Manual|Product Description
INGENIA |05/29/2017 17
Following figure shows the basic power flow and losses in a servo drive system.
4.4.1 Power losses calculation (heat dissipation)
Current flowing through Triton Servo Drive causes power losses that, ultimately, are converted in heat. This
heat must be transferred to itssurrounding environment efficiently, so that the temperature of the drive does
not reach dangerous levels. The greater the power losses, the more effective the heat dissipation must be.
Power losses mainly depend mainly on 3 parameters:
•Motor RMS current: thisis the cause of what are called
static
or
conduction
power losses, which
typically are the main source of power losses, havingthat they show a positive correlation in a squared
ratio.
•DC bus voltage: this, along with the motor RMS current and PWM switching frequency, is the cause of
what are called
dynamic
or
commutation
losses, and show positive correlation in a proportional ratio.
•PWM switching frequency:similar to DC bus voltage, the PWM switching frequency directly affects the
commutation losses. Typically, 20 kHz is the default value, but it can be increased up to 80 kHz.
Other less relevant parameters affect also the power losses but are not considered in the following graphs:
• Air temperature: higher power semiconductor temperatures reduce their efficiency.
•Motor speed: faster motor speeds result in higher overall power losses since the input DC bus current is
greater, and this increases conduction losses on the reverse polarity protection circuitry.
Drive safety is always ensured by its protections. However, by means of it, power losses and
temperature will limit the allowable motor current.
Some parts of the Triton Go can exceed 110 ºC during operation, especially at high load levels.
Do not touch the Triton Go during operation and wait at least 5 minutes after turn off to allow a safe
cool down.
PWM switching frequency and nominal specifications
All nominal specifications in this manual are measured under a PWM switching frequency of 20 kHz.

Triton Go Product Manual|Product Description
INGENIA |05/29/2017 18
4.4.2 Current ratings
Power losses cause the drive to increase its temperature according to:
As power losses have a positive correlation with the motor RMS current, when the ambient temperature rises,
the output current must be limited to avoid an excessive drive temperature (TP< 110 ºC). The threshold
temperature where the current derating should start mainly depends on the DC bus voltage. Then, although a
1.2 ºC/W heatsink is required to reach the nominal current at the nominal DC bus voltage (48 V), the same
nominal current can be reached with a less restrictive heatsink when DC bus voltage is lower. Also, other
environmental parameters can relax the required heatsink thermal resistance to reach nominal current,
typically:
•Air flow around the drive.
•Position (vertical allows natural convection).
Parameter Val
ue
Unit
s
Notes
Maximum power stage
temperature
110 ºC Measured on the PCB (not the heatsink) and accessible
via register.
Thermal resistance
from
power stage to heatsink
3.6 ºC/
W
Does not consider the thermal resistance of the heatsink,
but assumes
the coldplate is a thermal conductor, not the thermal
dissipator.
Thermal resistance
from
power stage to air
13 ºC/
W
Considering the coldplate acting as the thermal dissipator
(no heatsink
attached).

Triton Go Product Manual|Product Description
INGENIA |05/29/2017 19
Temperature
stabilization
time
>
60
s With 1.2 ºC/W heatsink attached. Considering 90 % of
maximum
temperature.
This graphic shows the maximum current with respect to coldplate temperature, assuming a 1.2 ºC/W heatsink
attached.
This graphic shows the maximum current with respect to ambient temperature, also assuming a 1.2 ºC/W
heatsink attached.

Triton Go Product Manual|Product Description
INGENIA |05/29/2017 20
4.4.3 System temperature
Triton power stage integrates power MOSFET transistors. Switching them means charging and discharging
thethose capacitors, and this is done thousands of times per second which results in power losses and a
temperature increase even at 0 current. Therefore, a PCB temperature of 60 ºC or more might be measured,
even while no current is passing through the motor, specially of the drive is not ventilated at all.
Recommendation: when motor is off, exit motor enable mode, as this will switch off the power stage.
4.4.4 Improving heat dissipation with a heatsink
A heatsink is required to reach the nominal current at any ambient temperatures (except for TRI-1/48-x-
C).When using high efficiency heatsinks or in enclosed spaces the equation can be simplified as follows.
Current derating
The current derating graph is only indicative and is based on thermal tests performed in a climatic
chamber where there was enough room for natural air convection. Each application may reach
different ratings depending on the installation, ventilation and/or housing.
Current derating is only a recommendation and is not performed automatically by the drive.
Table of contents
Other INGENIA Servo Drive manuals

INGENIA
INGENIA Everest CORE User manual

INGENIA
INGENIA Everest XCR User manual

INGENIA
INGENIA Titan GO User manual

INGENIA
INGENIA Titan GO User manual

INGENIA
INGENIA Pluto User manual

INGENIA
INGENIA Nix series User manual

INGENIA
INGENIA Triton Core User manual

INGENIA
INGENIA Earth EAR-3/40-C-P User manual

INGENIA
INGENIA Everest XCR User manual

INGENIA
INGENIA Neptune User manual