OPTIKA MICROSCOPES B-500DK User manual

OPTIKA MICROSCOPES - ITALY
Ver. 3.0.0
B-500DK
B-500DK-R
OPERATION MANUAL
MANUAL DE INSTRUCCIONES

Page 2
INDEX
1.0 B-500DK DARKFIELD MICROSCOPE page 3
2.0 PRINCIPLES OF IMMERSION MICROSCOPY page 3
3.0 PRINCIPLES OF DARKFIELD ILLUMINATION page 6
3.1DarkeldMicroscopyatHighMagnications
4.0 B-500DK DARKFIELD MICROSCOPE CONFIGURATION page 10
4.1Troubleshooting
5.0 TECHNICAL TIPS FOR OIL IMMERSION MICROSCOPY page 20
6.0 ELECTRICS page 21
7.0 USING THE RECHARGEABLE BATTERIES page 22
8.0 RECYCLING AND RECOVERY page 26

Page 3
1.0 B-500DK DARKFIELD MICROSCOPE
B-500DKisadarkeldsystemspecicforbloodanalysiswitha1.36-1.25N.A.specialextraef-
cientdarkeldcondenseranda100Xplan-achromaticobjectivewithadjustableirisdiaphragm.
TheX-LEDilluminationensuresthehighleveloflightintensitytypicallyneededinhighmagnication
darkeldtechniques.
Inordertocorrectlyusethismicroscope,onehastogainsomefamiliaritywitha)oilimmersionte-
chniqueandb)darkeldtechnique.
Inthefollowingmanualwepresentthebasicsofthesemethods(chapters2and3)andthenwegive
astep-by-stepguidetocongurationofB-500DK(chapter4).Generaltipsforimmersionmicroscopy
arealsogiven(chapter5).
Theabilityofamicroscopeobjectivetocapturedeviatedlightraysfromaspecimenisdependent
uponboththenumericalapertureandthemediumthroughwhichthelighttravels.
Anobjective’snumericalapertureisdirectlyproportionaltotherefractiveindexoftheimagingme-
diumbetweenthecoverslipandthefrontlens,andalsotothesinofone-halftheangularaperture
oftheobjective.Becausesincannotbegreaterthan90degrees,themaximumpossiblenumerical
apertureisdeterminedbytherefractiveindexoftheimmersionmedium.Mostmicroscopeobjectives
useairasthemediumthroughwhichlightraysmustpassbetweenthecoverslipprotectingthesam-
pleandfrontlensoftheobjective.Objectivesofthistypearereferredtoasdryobjectivesbecause
theyareusedwithoutliquidimagingmedia.Airhasarefractiveindexof1.0003,veryclosetothatof
avacuumandconsiderablylowerthanmostliquids,includingwater(n=1.33),glycerin(n=1.470)
andcommonmicroscopeimmersionoils(averagen=1.515).Inpractice,
themaximumnumericalapertureofadryobjectivesystemislimitedto0.95,andgreatervaluescan
onlybeachievedusingopticsdesignedforimmersionmedia.
2.0 PRINCIPLES OF IMMERSION MICROSCOPY

Page 4
Figure 1 Oil immersion and numerical aperture
TheprincipleofoilimmersionisdemonstratedinFigure1whereindividuallightraysaretraced
throughthespecimenandeitherpassintotheobjectiveorarerefractedinotherdirections.Figure1
(a)illustratesthecaseofadryobjectivewithverays(labeled1through5)shownpassingthrough
asamplethatiscoveredwithacoverslip.Theseraysarerefractedatthecoverslip-airinterfaceand
onlythetworaysclosesttotheopticalaxis(rays1and2)ofthemicroscopehavetheappropriate
angletoentertheobjectivefrontlens.Thethirdrayisrefractedatanangleofabout30degreesto
thecoverslipanddoesnotentertheobjective.Thelasttworays(4and5)areinternallyreected
backthroughthecoverslipand,alongwiththethirdray,contributetointernalreectionsoflightat
glasssurfacesthattenddegradeimageresolution.Whenairisreplacedbyoilofthesamerefractive
indexasglass,showninFigure1(b),thelightraysnowpassstraightthroughtheglass-oilinterface
withoutdeviationduetorefraction.Thenumericalapertureisthusincreasedbythefactorofn,the
refractiveindexofoil.
Microscopeobjectivesdesignedforusewithimmersionoilhaveanumberofadvantagesoverthose
thatareuseddry.Immersionobjectivesaretypicallyofhighercorrection(eitheruoriteorapochro-
matic)andcanhaveworkingnumericalaperturesupto1.40whenusedwithimmersionoilhaving
theproperdispersionandviscosity.Theseobjectivesallowthesubstagecondenserdiaphragmto
beopenedtoagreaterdegree,thusextendingtheilluminationofthespecimenandtakingadvanta-
geoftheincreasednumericalaperture.
Afactorthatiscommonlyoverlookedwhenusingoilimmersionobjectivesofincreasednumerical
apertureislimitationsplacedonthesystembythesubstagecondenser.Inasituationwhereanoil
objectiveofNA=1.40isbeingusedtoimageaspecimenwithasubstagecondenserofsmaller
numericalaperture(1.0forexample),thelowernumericalapertureofthecondenseroverridesthat
oftheobjectiveandthetotalNAofthesystemislimitedto1.0,thenumericalapertureofthecon-
denser.
2.0 PRINCIPLES OF IMMERSION MICROSCOPY

Page 5
2.0 PRINCIPLES OF IMMERSION MICROSCOPY
Modernsubstagecondensersoftenhaveahighdegreeofcorrectionwithnumericalaperturevalues
rangingbetween1.0and1.40.Inordertoeffectivelyutilizeallthebenetsofoilimmersion,thein-
terfacebetweenthesubstagecondenserfrontlensandtheundersideofthemicroscopeslidecon-
tainingthespecimenshouldbealsobeimmersedinoil.Anidealsystemisschematicallydiagramed
inFigure2,whereimmersionoilhasbeenplacedattheinterfacesbetweentheobjectivefrontlens
andthespecimenslideandalsobetweenthefrontlensofthecondenserandtheundersideofthe
specimenslide.
ThissystemhasbeentermedaHomogeneousImmersionSystemanditistheidealsituationto
achievemaximumnumericalapertureandresolutioninanopticalmicroscope.
Figure 2 Homogeneous immersion system
Inthiscase,therefractiveindexanddispersionoftheobjectivefrontlens,immersionoil,substage
condenserfrontlens,andthemountingmediumareequalorverynearequal.
Inthisidealsystem,anobliquelightraycanpassthroughthecondenserlensandcompletelythrou-
ghthemicroscopeslide,immersionoil,andmountingmediumundeviatedbyrefractionatoil-glass
ormountingmedium-glassinterfaces.
Whenusinghigh-powerachromatoilimmersionobjectives,itissometimespermissibletoomitthe
stepofoilingthecondensertoplens.Thisisbecausethecondenseraperturediaphragmmustoften
bereducedwithlesser-correctedobjectivestoeliminateartifactsandprovideoptimumimaging.The
reductionindiaphragmsizereducesthepotentialincreaseinnumericalaperture(providedbyoiling
thecondenserlens)sothelossinimagequalityundertheseconditionsisusuallynegligible.

Page6
3.0 PRINCIPLES OF DARKFIELD ILLUMINATION
Darkeldmicroscopyisaspecializedilluminationtechniquethatcapitalizesonobliqueillumination
toenhancecontrastinspecimensthatarenotimagedwellundernormalbrighteldilluminationcon-
ditions.
Allofusarequitefamiliarwiththeappearanceandvisibilityofstarsonadarknight,thisdespitetheir
enormousdistancesfromtheearth.Starscanbeseenbecauseofthestarkcontrastbetweentheir
faintlightandtheblacksky.
This principle is applied in darkeld (also called darkground) microscopy, a simple and popular
methodformakingunstainedobjectsclearlyvisible.Suchobjectsareoftenhaverefractiveindices
verycloseinvaluetothatoftheirsurroundingsandaredifculttoimageinconventionalbrighteld
microscopy.Forinstance,manysmallaquaticorganismshavearefractiveindexrangingfrom1.2
to1.4,resultinginanegligibleopticaldifferencefromthesurroundingaqueousmedium.Theseare
idealcandidatesfordarkeldillumination.
Darkeldilluminationrequiresblockingoutofthecentrallightwhichordinarilypassesthroughand
around(surrounding)thespecimen,allowingonlyobliqueraysfromeveryazimuthto“strike”the
specimenmountedonthemicroscopeslide.ThetoplensofasimpleAbbedarkeldcondenseris
sphericallyconcave,allowinglightraysemergingfromthesurfaceinallazimuthstoformaninverted
hollowconeoflightwithanapexcenteredinthespecimenplane.Ifnospecimenispresentandthe
numericalapertureofthecondenserisgreaterthanthatoftheobjective,theobliquerayscrossand
allsuchrayswillmissenteringtheobjectivebecauseoftheirobliquity.Theeldofviewwillappear
dark.
Thedarkeldcondenser/objective pairillustrated in Figure3is ahigh-numericalaperture arran-
gementthatrepresentsdarkeldmicroscopyinitsmostsophisticatedconguration,whichwillbe
discussedindetailbelow.Theobjectivecontainsaninternalirisdiaphragmthatservestoreducethe
numericalapertureoftheobjectivetoavaluebelowthatoftheinvertedhollowlightconeemittedby
thecondenser.Thecardioidcondenserisareectingdarkelddesignthatreliesoninternalmirrors
toprojectanaberration-freeconeoflightontothespecimenplane.
Whenaspecimenisplacedontheslide,especiallyanunstained,non-lightabsorbingspecimen,the
obliquerayscrossthespecimenandarediffracted,reected,and/orrefractedbyopticaldiscontinui-
ties(suchasthecellmembrane,nucleus,andinternalorganelles)allowingthesefaintraystoenter
theobjective.Thespecimencanthenbeseenbrightonanotherwiseblackbackground.Intermsof
Fourieroptics,darkeldilluminationremovesthezerothorder(unscatteredlight)fromthediffraction
patternformedattherearfocalplaneoftheobjective.Thisresultsinanimageformedexclusively
fromhigherorderdiffractionintensitiesscatteredbythespecimen.

Page7
Figure 3 Cardiod darkeld condenser
Idealcandidatesfordarkeldilluminationincludeminutelivingaquaticorganisms,diatoms,smallin-
sects,bone,bers,hair,unstainedbacteria,yeast,andprotozoa.Non-biologicalspecimensinclude
mineralandchemicalcrystals,colloidalparticles,dust-countspecimens,andthinsectionsofpoly-
mersandceramicscontainingsmallinclusions,porositydifferences,orrefractiveindexgradients.
Careshouldbetakenwhenpreparingspecimensfordarkeldmicroscopybecausefeaturesthat
lieaboveandbelowtheplaneoffocuscanalsoscatterlightandcontributetoimagedegradation.
Specimenthicknessandmicroscopeslidethicknessarealsoveryimportantand,ingeneral,athin
specimenisdesirabletoeliminatethepossibilityofdiffractionartifactsthatcaninterferewithimage
formation.
3.0 PRINCIPLES OF DARKFIELD ILLUMINATION

Page 8
Formorepreciseworkandblackerbackgrounds,youmaychooseacondenserdesignedespecially
fordarkeld,i.e.totransmitonlyobliquerays.Thereareseveralvarieties:“dry”darkeldcondensers
withairbetweenthetopofthecondenserandtheundersideoftheslide–andimmersiondarkeld
condenserswhichrequiretheuseofadropofimmersionoil(somearedesignedtousewaterin-
stead)establishingcontactbetweenthetopofthecondenserandtheundersideofthespecimen
slide.Theimmersiondarkeldcondenserhasinternalmirroredsurfacesandpassesraysofgreat
obliquityandfreeofchromaticaberration,producingthebestresultsandblackestbackground.
Perhapsthemostwidelyuseddarkeldcondenseristheparaboloid,consistingofasolidpieceof
glassgroundveryaccuratelyintotheshapeofaparaboloid.
Asdiscussedabove,thedrydarkeldcondenserisusefulforobjectiveswithnumericalapertures
below0.75,whiletheparaboloidandcardioidimmersioncondensers(Figure3)canbeusedwith
objectivesofveryhighnumericalaperture(upto1.4).Objectiveswithanumericalapertureabove
1.2willrequiresomereductionoftheirworkingaperturesincetheirmaximumnumericalaperture
mayexceedthenumericalapertureofthecondenser,thusallowingdirectlighttoentertheobjecti-
ve.
Forthisreason,manyhighnumericalapertureobjectivesdesignedforusewithdarkeldaswellas
brighteldilluminationaremadewithabuilt-inadjustableirisdiaphragmthatactsasanaperture
stop.
Thisreductioninnumericalaperturealsolimitstheresolvingpoweroftheobjectiveaswellasthe
intensityoflightin theimage.Specializedobjectivesdesigned exclusivelyfordarkeldwork are
producedwithamaximumnumericalapertureclosetothelowerlimitofthenumericalapertureof
thedarkeldcondenser.Theydonothaveinternalirisdiaphragms,howeverthelensmountdiame-
tersareadjustedsoatleastoneinternallenshastheoptimumdiametertoperformasanaperture
stop.
The cardioid condenser is very sensitive to alignment and must be carefully positioned to take
advantageoftheverysharpconeofillumination,makingitthemostdifcultdarkeldcondenserto
use.Inaddition,thecondenserproducesasignicantamountofglare,evenfromthemostminute
dustparticles,andtheshortfocallengthmayresultinpoorilluminationonobjectsthatexceedafew
micronsinsizeorthickness.Whenchoosingmicroscopeslidesforquantitativehigh-magnication
darkeldmicroscopy,makecertaintoselectslidesmadefromaglassmixturethatisfreeofuore-
scentimpurities.
3.1 DARKFIELD MICROSCOPY AT HIGH MAGNIFICATIONS

Page9
3.1 DARKFIELD MICROSCOPY AT HIGH MAGNIFICATIONS
Carefulattentionshouldbepaidtothedetailsofoilingahighnumericalaperturecondensertothe
bottomofthespecimenslide.Itisverydifculttoavoidintroductionoftinyairbubblesintothearea
betweenthecondensertoplensandthebottomofthemicroscopeslide,andthistechniqueshould
bepracticedtoperfection.Airbubbleswillcauseimageareanddistortion,leadingtoalossofcon-
trastandoverallimagedegradation.
Problemsarealsoencounteredwhenusingmicroscopeslidesthatareeithertoothickortoothin.
Manydarkeldcondenserscontaintherangeofusableslidethicknessinscribeddirectlyonthecon-
densermount.Iftheslideistoothick,itisoftendifculttofocusthecondenserwithoutresortingtoa
higherviscosityimmersionoil.Ontheotherhand,slidesthataretoothinhaveatendencytobreak
theoilbondbetweenthecondenserandtheslide.Itisagoodideatopurchaseprecisionmicroscope
slidesofthecorrectthicknesstoavoidanyoftheproblemsmentionedabove.
Highnumericalaperturecondensers,whetherintendedforusedryorwithoil,mustbeaccurately
centeredintheopticalpathofthemicroscopetorealizeoptimumperformance.
Toachievethis,manydarkeldcondensersarebuiltwithasmallcircleengravedontotheuppersur-
facetoaidincenteringthecondenser.Centeringisperformedwithalowpower(10x-20x)objective
byimagingtheengravedcircleandusingthecondensercenteringscrewstoensurethecircle(and
condenser)arecorrectlycenteredintheopticalpath.

Page 10
4.0 B-500DK DARKFIELD MICROSCOPE CONFIGURATION
• Inamannersimilartothatwithlow-powerdarkeldmicroscopeconguration,placeaspeci-
menonthestageandfocusitusingthe10xobjective(refertoB-500generalmanualforthe
descriptionofthestandardbrighteldtechnique).
• Usethecondenserrackknobtolowerandremovethebrighteldsubstagecondenser.
• Insertthereectedlighthighnumericalaperturecondenserintotheholder,andsecureitwith
thelockscrew.Slowlyraisethecondenseruntilitislessthan2millimetersfromtheunderside
ofthespecimenslide.

Page 11
• Selectadarkeldspecimenandplaceitontothemicroscopestagebetweentheobjective
andthecondenser.Thecondenserwillprojectaspotoflightontothesamplethatcanbe
usedforcenteringtheopticalpath.Usethecondensercenteringscrewstomovetheringof
lightintothecenterofthevieweld.Itcouldbeusefultovarytheheightofthecondenserin
ordertoviewthespot.
Figure 5 Centering darkeld condenser
4.0 B-500DK DARKFIELD MICROSCOPE CONFIGURATION
LED
CENTERING
SCREWS
LOCK SCREW
CONDENSER
CENTERING SCREWS

Page 12
4.0 B-500DK DARKFIELD MICROSCOPE CONFIGURATION
• Itisoftenadvantageoustousealowpower10xobjectivewhencenteringhighnumerical
aperturedarkeldcondensers.Whenviewingaspecimenwiththe10xobjectivewhileslowly
raisingandloweringthecondenser,apointwillbereachedwhereabrightspotwillappearin
theeldofviewasillustratedinFigure5(a).Asthecondenserisslightlyraisedorlowered,
adarkspotsimilartotheoneshowninFigure5(b)willappear,ifthecondenserisproperly
centered.Incaseswherethecondenserisnotproperlyalignedandcentered,atypicaleld
ofviewmightlooklikethatshowninFigure5(c).Theidealandcorrectpositioningofthe
condenserisillustratedinFigure5(a),andthecondensershouldbeadjusteduntiltheeldof
viewappearsinthismanner,withthecondensercenteringscrews.
• Toapplyoiltotheimmersioncondenser,removethemicroscopeslideandslowlyrackthe
condenserdownbelowthemechanical stageandplaceadropofoil directlyonthefront
lens.
• Replacetheslide,thenslowlyraisethecondenseruntilcontactismadebetweentheoildro-
pletandthebottomsurfaceoftheslide.Carefullyobservetheoilcontactareatodetermineif
anyairbubbleshavebeenintroducedintothespacebetweenthecondensertoplensandthe
microscopeslide.Itshouldbenotedthatnomatterwhatthemagnicationoftheobjectiveis,
ifanoilimmersioncondenserisusedwithoutoil,lightwillnotemergefromthecondenser.
Airbubbleswillscatterlightandshouldbeobservablebyremovingtheeyepieceandviewing
thebackfocalplaneoftheobjectivewithacenteringtelescope.
Ifnobubblesarepresent,proceedontothenextstep.Whenbubblesaredetected,remove
alltracesofoilfromboththeslideandthecondensertoplensandrepeattheprocedure.
Makecertainbothsurfacesarecleanandcompletelyfreeofoil,dust,dirtandothercontami-
natingartifactsbeforere-oilingthecondenser.

Page 13
4.0 B-500DK DARKFIELD MICROSCOPE CONFIGURATION
• Swingtheprovidedspecial100Ximmersionobjectivetoapositioninthenosepiecewhereit
willbethenextobjectiverotatedintotheopticalpathwaydirectlyabovethespecimen.
• Positiontheareatobeimagedinthecenterofthemicroscope’sopticalpathusinglower
powerobjective(e.g.10xor40x).Next,theoilimmersionobjective(withoutoil)isplaced
intotheopticalpathandthespecimenareaofinterestisroughlybroughtintocenterofthe
vieweldandfocused.Thispre-positionsallofthecomponentsofthesysteminpreparation
fortheadditionofoil.Swingtheimmersionobjectivetoanadjacentstoponthemicroscope
nosepieceandapplyoilbothtotheobjectivefrontlensandspecimenasdescribedinthenext
point.
• Useapieceoflint-freepaperoraneyedroppertoplaceasmalldropletofoildirectlyonthe
frontlensoftheimmersionobjective.Next,placeanotherdropletofoilonthecoverglass
immediatelyabovetheareatobeimaged.
• Next,quicklyrotatetheoiledobjectiveintopositionabovethespecimenmergingthetwooil
droplets(oneonthesampleandoneontheobjective)intoasinglepool.Abrightashshould
occur(fromscatteredlight)theinstantoilonthefrontlensoftheobjectivecomesintocontact
withthemicroscopeslide.
• Checkforairbubblesbyobservingthebackfocalplaneoftheobjectivewiththeprovided
centeringtelescope.Ifbubblesarepresent,swingtheobjectivetothenextdetentstoponthe
microscopenosepieceandwipeoffexcessoilwithapieceoflint-freelenstissue.Re-apply
oiltotheobjectivefrontlensandtryagain.
• Withthecenteringtelescope,andthe100xobjectiveinserted,checkthatthecondenseris
wellcentered(asymmetricalringoflightmustbeseen).Finelycenterusingthecondenser
centeringscrews.

Page 14
• The100Xobjectivehasaninternalirisdiaphragmdesignedtoallowadjustmentofthenume-
ricalaperture.Itshouldbeadjustedatthistime.
Removetheeyepieceandplacethecenteringtelescopeintotheeyetubetoobservetherear
focalplaneoftheobjective.Ifabrightringoflightisseenaroundacentraldarkregion,the
apertureoftheobjectiveistoogreatandmustbereducedusingtheinternalirisdiaphragm.
4.0 B-500DK DARKFIELD MICROSCOPE CONFIGURATION
OIL
(SLIDE-OBJECTIVE)
OIL
(CONDENSER – SLIDE)
ROTATE THIS TO
ADJUST THE
INTERNAL IRIS

Page 15
4.0 B-500DK DARKFIELD MICROSCOPE CONFIGURATION
Adjusttheobjective’sirisdiaphragmuntiltheringoflightfallsoutofthevieweld.
CENTERING TELESCOPE
VIEW INSIDE THE TELESCOPE
WITH A WELL CENTERED
CONDENSER

Page16
4.0 B-500DK DARKFIELD MICROSCOPE CONFIGURATION
Ifacrescent-shapedarcoflightisobserved,thenthecondenseris not properly alignedincenter
ofthemicroscopeopticalaxis.UsetheLEDcenteringscrewstonealignthecondensersothatthe
arcdisappearsorbecomesacompletecircleoflight.
• Replacetheeyepieceandfocusthespecimen,whichshouldnowappearbrightlyandevenly
illuminateduponadarkbackground.
Carefulattentionshouldalwaysbegiventomicroscopealignment,irrespectiveofwhethertheillumi-
nationmodeisbrighteld,darkeld,phasecontrastorsomeothercontrastenhancementtechnique.
Timespentinthisendeavorwillberepaidinexcellentperformanceofthemicroscopebothforrou-
tineobservationandcriticalphotomicrography.
VIEW INSIDE THE TELESCOPE
WHEN THE LIGHT RING IS DARKE-
NED BY CLOSING THE OBJECTI-
VE’S IRIS

Page17
4.1 TROUBLESHOOTING
Therearenumerouscommonproblemsassociatedwithdarkeldmicroscopyandphotomicrography.
Theserangefrominsufcientilluminationandcondensermisalignmenttousingaeldstopofincor-
rectsize.Mostdarkeldilluminationproblemsareassociatedwiththesubstagecondenser,andthis
shouldbetherstsuspectwhenthingsdonotworkproperly.
Thefollowingproblemsandsolutionsshouldbeusedasaguidewhenimagingspecimensusing
thistechnique.
ProblemThereisinsufcientilluminationtomakethespecimenvisible,orthespecimenisvisible
butveryfaint.
SolutionCheckthesubstagecondensertoensurethatitispositionedcorrectly.Also,checktheli-
ghtpathforcolorand/orneutraldensitylters,polarizers,retardationplates,oranyother
componentsthatmightreduceilluminationintensity.
Checktomakecertainthatthecondensertoplensiscorrectlyoiledtothebottomofthe
microscopeslide.Iftheimmersioncontacthasbeenbroken,re-applytheoilandrack
upthecondenseruntilthetoplensiscompletelyimmersedinoilandincontactwiththe
bottomoftheslide.
ProblemThevieweldhasadarkspotinthecenterreducingilluminationintensity,butobjectsinthe
peripheryarewell-illuminatedandappearnormal.
SolutionThesubstagecondenserisincorrectlypositioned.Carefullyrackthecondenserupand
downwhileobservingthespecimeninthevieweld.Checktomakecertainthatboththe
condenserapertureandelddiaphragmsaresettothewideopenposition.
Occasionallythisproblemariseswhenmicroscopeslidesofexcessivethickness(greater
thanthestandardonemillimeter)areused.Useamicrometerorasetofdialcalipersto
determinethethicknessoftheslideandtheslide/coverslipcombination.
ProblemTheimagehasabrighteldperipherywithorwithoutdarkregionsinthecenter.
SolutionThisproblemistypicalwhenthesubstagecondenserisincorrectlycentered.
Reverttobrighteldandre-establishtheconditionsofKöhlerillumination,thenrepeatthe
darkeldprocedure,makingsurethecondenseriscentered.
Ifthereisaninternalirisdiaphragmintheobjective,reducetheirisopeningsizetodeter-
mineiftoomuchobliqueilluminationisenteringthefrontlensoftheobjective.

Page 18
ProblemTheperipheryofthevieweldisbrightononesideonly.
SolutionCheckthenosepiecetoensuretheobjectiveiscorrectlypositionedintheopticalaxisof
themicroscope.Thereisadetentstopthatshouldproduceapositive“click”when the
objectiveisproperlypositioned.
ProblemImagesofthespecimenarenotclearandlackinginsufcientcontrastanddetail.
SolutionThespecimenmightnotbesuitablefordarkeldmicroscopy.Manystainedspecimensdo
notscatterenoughlighttobeclearlyimagedunderdarkeldconditions.
Specimenthicknessmayalsobeaproblem,becauseverythinspecimensareoftennot
imagedwellwiththeobliquelightraysemittedfromdarkeldcondensers.Changetobri-
ghteldorphasecontrasttodetermineifthisimprovesspecimencontrast.
ProblemBrightareasthatareoutoffocusobstructviewingand/orphotomicrographyofdarkeld
specimens.
Solution Thisisprobablyduetodust,hair,bers,and/ordirtcontaminationofanopticalsurface
somewhereabovethecondenser.Thoroughlycleanthespecimenslidewithoptical-grade
tissueorcotton.Occasionally,thisproblemarisesduetocontaminationontheobjective
frontlens.Carefullyloosentheobjectivefromitsseatinthenosepieceandslowlyturn
whileobservingthespecimenthroughtheeyepieces.Iftheobstructionrotatesalongwith
theobjective,thenitisprobablyduetodustonthefrontlens.Removetheobjectiveand
moistenthefrontlensbygentlyexhalingonit,thencleanwithlenstissueoracottonswab
wrappedonalongwoodenrod.
Replacethe objective andcheck to makecertain the obstruction has beencompletely
removed.
ProblemTheimageofthelampcondenserpartiallyllsthevieweld,obscuringdetailsofthespe-
cimen.
SolutionTheslidemaybetoothinorthecondensermaybeadjustedtoohigh.Measurethethi-
cknessofthemicroscopeslideandchecktomakecertaintheoilcontactisnotbroken.If
difcultyisencounteredkeepingthebottomoftheslideoiled,tryusingathickerslide.
4.1 TROUBLESHOOTING

Page19
4.1 TROUBLESHOOTING
ProblemWhenviewingaquaticorganismsinaaqueousmount,specimensdriftconstantlyinasin-
gledirection,makingobservationandphotomicrographydifcult.
SolutionConvectioncurrentsarebeingcreatedduetoslowevaporationattheedgesofthecover-
slip.PlaceabeadofpetroleumjellyorCytosealmountingmediumaroundtheperipheryof
thecoversliptosealitrmlyontothemicroscopeslide.Commercialproductsareavailable
thatcanbeaddedtothewatertoslowthemovementoftheseminuteorganisms,making
themeasiertophotograph.
ProblemWhenviewingthespecimenthrougha10xobjective,thereisaoblongspotoflightinthe
centerofthevieweld.
SolutionThelampcondensermaybeincorrectlyfocused.Re-focusthecondenser.
ProblemThevieweldhasbrightspotsandthereareproblemswithachievingsharpfocusofthe
specimen.
SolutionSmallairbubblesmaybetrappedintheoilbetweenthetopofthecondenserandthe
bottomofthemicroscopeslide.Removetheeyepiecetoobservethebackfocalplaneof
theobjective,wherethebubbleswillbevisible.Toremedy,breaktheoilcontactandremo-
veanyresidualbubbleswithacottonswab.Cleanexcessoilfromthecondenserfrontlens
andthemicroscopeslide,thenapplyacleandropofoiltothelens.Iftheproblempersists,
thoroughlycleanallopticalsurfacesbeforere-applyingtheoil.
ProblemAthighmagnications,colloidalparticlesdisplayincompleteNewtonringsandappearto
beunevenlyilluminated.
SolutionThecondenserisprobablyoff-center.Changetoalowerpowerobjectiveandre-center
thecondenser.

Page 20
5.0 TECHNICAL TIPS FOR OIL IMMERSION MICROSCOPY
Therstruleinmicroscopyistokeeptheopticalelementscompletelyfreeofdust,dirt,oil,
solvents,andanyothercontaminants.Themicroscopeshouldbekeptinalowvibration
smoke-freeroomthatiscleanaspossibleandhasminimaldisturbanceofthecirculatedair.
Useadustcoveronthemicroscopewhennotinuseandkeepallaccessoriesinair-tight
containers.Avoidusingcorrosivesolventstocleananypartofthemicroscope,anduseonly
dilutedsoapywatertocleannon-opticalsurfaces.Oilshouldbeusedkeepingthefollowing
techniquesandprecautionsinmind:
• Therststepistolocatethesamplewithalow-powerobjectiveandpositionthemicroscope
slidesothattheareaofinterestissquarelyinthecentralportionofthestageopening.Itis
oftendesirabletorotatetheimmersionobjective(withoutoil)intoplacetoensurethecorrect
locationofthespecimen.Toachieveoptimumresultswhenusingtheoilimmersiontechni-
queitisimportanttoalsoapplyoiltotheundersideofthemicroscopeslideandtothetop
lensofthesubstagecondensertoformanoilbeadbetweenthetwo,asdescribedbelow.
Forapplyingoiltothefrontlensofthesubstagecondenser,usethefollowingconsiderations:
• Makecertainthatthemechanicalstageofthemicroscopehasanopeningofsufcientsize
toallowscanningoftheoiledspecimenwithoutspillingoilontothebottomofthestage.
Manyadvancedresearchmicroscopeshaveastageinsertthatisremovableforusewithoil.
Removethespecimenslidefromthemicroscopestagebeforeapplyingoiltothecondenser
toplens.
• Inamannersimilartooilinganobjective,placeadropofoilonthebottomofthemicrosco-
peslideandapplyasimilardroptothefrontlensofthesubstagecondenser.
Makesurethatthecondenserisslightlyloweredinitsrackbeforereplacingthemicroscope
slideonthestage.Aftertheslidehasbeenplacedonthestage,rackthecondenserback
totheproperpositionwhilecarefullyobservingtheoildropletsonthecondenserlensand
microscopeslide.Thesedropletsshouldmergeintooneasthecondenserisbroughtinto
properposition.
• Swingtheimmersionobjectivetoapositioninthenosepiecewhereitwillbethenextobjec-
tiverotatedintotheopticalpathwaydirectlyabovethespecimen.
• Positiontheareatobeimagedinthecenterofthemicroscope’sopticalpathusinglower
powerobjectives.Next,theoilimmersionobjective(withoutoil)isplacedintotheoptical
pathandthespecimenareaofinterestisroughlybroughtintocenterofthevieweldandfo-
cused.Thispre-positionsallofthecomponentsofthesysteminpreparationfortheaddition
ofoil.Swingtheimmersionobjectivetoanadjacentstoponthemicroscopenosepieceand
applyoilbothtotheobjectivefrontlensandspecimenasdescribedinthenextpoint.
This manual suits for next models
2
Table of contents
Languages:
Other OPTIKA MICROSCOPES Microscope manuals

OPTIKA MICROSCOPES
OPTIKA MICROSCOPES XZ-2 User manual

OPTIKA MICROSCOPES
OPTIKA MICROSCOPES SZP User manual

OPTIKA MICROSCOPES
OPTIKA MICROSCOPES MS-1 User manual

OPTIKA MICROSCOPES
OPTIKA MICROSCOPES XZ-1 User manual

OPTIKA MICROSCOPES
OPTIKA MICROSCOPES B-190 Series User manual

OPTIKA MICROSCOPES
OPTIKA MICROSCOPES B-150D User manual

OPTIKA MICROSCOPES
OPTIKA MICROSCOPES B-500POL-I User manual

OPTIKA MICROSCOPES
OPTIKA MICROSCOPES XDS-3 MET User manual

OPTIKA MICROSCOPES
OPTIKA MICROSCOPES SZM Series User manual

OPTIKA MICROSCOPES
OPTIKA MICROSCOPES B-290 Series User manual