RF-Star RF-SM-1277B1 CC1312R User manual

RF-SM-1277B1 and RF-SM-1277B2 CC1312R
Ultra-Low-Power Sub-1 GHz Wireless Module
Version 1.1
Shenzhen RF-star Technology Co., Ltd.
Oct. 17th, 2022
All rights reserved. Those responsible for unauthorized reproduction will be prosecuted.

RF-SM-1277B1/B2
www.szrfstar.com V1.1 - Oct, 2022
Shenzhen RF-star Technology Co., Ltd. Page 1 of 22
TI CC13XX Sub-1 GHz Module List
Chipset
Core
FLASH
(KB)
RAM
(KB)
Model
Antenna
Freq.
(MHz)
Dimension
(mm)
TX Power
(dBm)
Photo
CC1310
F128RGZ
M3
128
8
RF-SM-1077B1
IPEX/Half-
Hole
868
915
18 26
14
RF-SM-1077B2
IPEX/Half-
Hole
433
470
18 26
15
CC1310
F128RSM
M3
128
8
RF-SM-1044B1
PCB
868
915
14 22
14
RF-SM-1044B2
Half-hole
868
915
9 12.5
14
RF-SM-1044B4
PCB
868
915
14 22
14
CC1312
R1F3RGZ
M4F
352
88
RF-SM-1277B1
IPEX/Half-
Hole
868
915
18 26
14
RF-SM-1277B2
IPEX/Half-
Hole
433
470
18 26
13
CC1352R
M4F
352
88
RF-TI1352B1
IPEX
868
915
16.8 26.5
5@BLE
14@Sub-1G
CC1352P
M4F
352
88
RF-TI1352P1
Half-hole
868
915
16.4 25
20
CC1352P7
M4F
704
152
RF-TI1352P2
Half-hole
868
915
16.4 25
20

RF-SM-1277B1/B2
www.szrfstar.com V1.1 - Oct, 2022
Shenzhen RF-star Technology Co., Ltd. Page 2 of 22
1 Device Overview
1.1 Description
RF-SM-1277B1 and RF-SM-1277B2 are RF modules based on TI CC1312R, which combines a flexible low-power radio
controller ARM® Cortex®-M0 and a powerful 48 MHz ARM® Cortex®-M4F microcontroller supporting multiple physical
layers and RF standards including IEEE 802.15.4g, IPv6-enabled smart objects (6LoWPAN), MIOTY®, Wi-SUN®,
proprietary systems, and the TI 15.4-Stack (Sub-1 GHz). RF-SM-1277B1/B2 integrates a 48.0 MHz crystal, a 32.768
kHz crystal, a balun, a band pass filter, an antenna matching and an option for RF output mode (IPEX antenna connector
and a half-hole interface), which makes the module low cost, low power consumption and long wireless communication
in Sub-1 GHz, also makes it an advanced available in sensing in building security systems, HVAC, smart meters, medical,
wired networking, portable electronics, home theater & entertainment, and connected peripherals markets. For the
working frequency, RF-SM-1277B1 supports 433 MHz and 470 MHz; RF-SM-1277B2 supports 868 MHz and 915 MHz.
1.2 Key Features
•RF Features
- IEEE 802.15.4g
- IPv6-enabled smart objects (6LoWPAN)
- MIOTY®
- Wi-SUN®
- Wireless M-Bus
- KNX RF
- Amazon Sidewalk
- Proprietary systems, including the TI 15.4-Stack
(Sub-1 GHz)
•TX power: up to +14 dBm
•Sensitivity
- Excellent receiver sensitivity: –124 dBm @ long-
range mode, –110 dBm @ 50 kbps
- Excellent selectivity (±100 kHz): 56 dB
- Excellent blocking performance (±10 MHz): 90 dB
•Microcontroller
- Powerful 48 MHz ARM® Cortex®-M4F processor
- EEMBC CoreMark® Score: 142
- EEMBC ULPBench™ score: 158
•Memory
- 352 KB of in-system programmable flash
- 256 KB of ROM for protocols and library
- 8 KB of SRAM for Cache (or as general-purpose
RAM)
- 20 KB of ultra-low-leakage SRAM
•Wide Operation Range
- Power supply: 2.2 V to 3.8 V
- Operating temperature: -40 °C to +85 °C
- Storage temperature: -40 °C to +125 °C
•On-Chip Internal DC/DC Converter
•Ultra-Low-Power Sensor Controller
•Wide Operation Range
- 2-pin cJTAG and JTAG debugging
- Supports over-the-air (OTA) update
- Can run autonomously from the rest of the System
- 16-bit architecture
- 2 KB of ultra-low-leakage SRAM for code and data
•Peripherals
- All digital peripheral pins can be routed to any
GPIO
- Four general-purpose timer modules (eight 16-bit
or four 32-bit timers, PWM each)
- 12-bit ADC, 200 ksamples/s, 8-channel analog
MUX
- Continuous time comparator

RF-SM-1277B1/B2
www.szrfstar.com V1.1 - Oct, 2022
Shenzhen RF-star Technology Co., Ltd. Page 3 of 22
- Ultra-low-power clocked comparator
- Programmable current source
- UART
- 2× SSI (SPI, MICROWIRE, TI)
- I2C, I2S
- Real-time clock (RTC)
- AES-128 security module
- True random number generator (TRNG)
- Support for eight capacitive sensing buttons
- Integrated temperature sensor
•Low Power
- Wide supply voltage range: 1.8 V to 3.8 V
- RX: 5.4 mA
- TX at +10 dBm: 13.4 mA
- Active-mode MCU 48 MHz running Coremark: 2.5
mA (51 μA/MHz)
- Active-mode MCU: 48.5 CoreMark/mA
- Active-mode sensor controller at 24 MHz: 0.4 mA
+ 8.2 μA/MHz
- Sensor controller, one wake-up every second
performing one 12-bit ADC sampling: 0.95 μA
- Standby: 0.7 μA (RTC running and RAM and CPU
retention)
- Shutdown: 185 nA (wakeup on external events)
1.3 Applications
•868-, 915-MHz ISM and SRD systems
•Low-power wireless systems with 50-kHz to 5-MHz
channel spacing
•Home and building automation
•Wireless alarm and security systems
•Industrial Monitoring and Control
•Smart grid and automatic meter reading
•Wireless healthcare applications
•Wireless sensor networks
•Active RFID
•IEEE 802.15.4g, IP-enabled smart objects
(6LoWPAN), wireless M-Bus, KNX systems,
Wi-SUN™, and proprietary systems
•Energy-harvesting applications
•Electronic shelf label (ESL)
•Long-range sensor applications
•Heat-cost allocators
1.4 Functional Block Diagram
Figure 1. Functional Block Diagram of RF-SM-1277B1/B2
CC1312R
GPIOs
Reset
IPEX Connector
Low Power
Filter
Power Supply
1.8 V ~ 3.8 V
48.0 MHz
Balun
Filter
32.768 kHz
Half-Hole ANT Pin
Antenna
Switch

RF-SM-1277B1/B2
www.szrfstar.com V1.1 - Oct, 2022
Shenzhen RF-star Technology Co., Ltd. Page 4 of 22
1.6 Part Number Conventions
The part numbers are of the form of RF-SM-1277B1/B2 where the fields are defined as follows:
Figure 2. Part Number Conventions of RF-SM-1277B1/B2
RF
SM
1277
Company Name
RF-STAR
Wireless Type
Sub-1 GHz Module
Chipset Manufacturer
TI CC1312R1F128RGZ
-
-
B1
Module Version
B1: 779 MHz ~ 930 MHz
B2: 431 MHz ~ 527 MHz

RF-SM-1277B1/B2
www.szrfstar.com V1.1 - Oct, 2022
Shenzhen RF-star Technology Co., Ltd. Page 5 of 22
Table of Contents
TI CC13XX Sub-1 GHz Module List............................................................................................................................ 1
1 Device Overview............................................................................................................................................................. 2
1.1 Description............................................................................................................................................................ 2
1.2 Key Features ....................................................................................................................................................... 2
1.3 Applications.......................................................................................................................................................... 3
1.4 Functional Block Diagram .............................................................................................................................. 3
1.6 Part Number Conventions.............................................................................................................................. 4
Table of Contents................................................................................................................................................................ 5
Table of Figures................................................................................................................................................................... 6
Table of Tables..................................................................................................................................................................... 6
2 Module Configuration and Functions ...................................................................................................................... 7
2.1 Module Parameters........................................................................................................................................... 7
2.2 Module Pin Diagram ......................................................................................................................................... 8
2.3 Pin Functions....................................................................................................................................................... 8
3 Specifications .................................................................................................................................................................10
3.1 Recommended Operating Conditions .....................................................................................................10
3.2 Handling Ratings..............................................................................................................................................10
4 Application, Implementation, and Layout.............................................................................................................11
4.1 Module Photos..................................................................................................................................................11
4.2 Recommended PCB Footprint....................................................................................................................11
4.3 Schematic Diagram.........................................................................................................................................12
5.4 Antenna................................................................................................................................................................12
5.4.1 Antenna Design Recommendation ..............................................................................................12
5.4.2 Antenna Output Mode Modification..............................................................................................12
5.4.3 External Antenna Design Recommendation of the Half-Hole ANT Pin..........................13
5.4.4 IPEX Connector Specification........................................................................................................14
5.5 Basic Operation of Hardware Design ......................................................................................................15
5.6 Trouble Shooting..............................................................................................................................................16
5.6.1 Unsatisfactory Transmission Distance........................................................................................16
5.6.2 Vulnerable Module..............................................................................................................................16
5.6.3 High Bit Error Rate .............................................................................................................................16
5.7 Electrostatics Discharge Warnings ...........................................................................................................17

RF-SM-1277B1/B2
www.szrfstar.com V1.1 - Oct, 2022
Shenzhen RF-star Technology Co., Ltd. Page 6 of 22
5.8 Soldering and Reflow Condition.................................................................................................................17
5 Optional Package Specification ..............................................................................................................................19
6 Revision History ............................................................................................................................................................21
7 Contact Us.......................................................................................................................................................................21
Table of Figures
Figure 1. Functional Block Diagram of RF-SM-1277B1/B2 ...................................................................... 3
Figure 2. Part Number Conventions of RF-SM-1277B1/B2...................................................................... 4
Figure 3. Pin Diagram of RF-SM-1277B1/B2................................................................................................. 8
Figure 4. Photos of RF-SM-1277B1/B2..........................................................................................................11
Figure 5. Recommended PCB Footprint of RF-SM-1277B1/B2 (mm) ...............................................11
Figure 6. Schematic Diagram of RF-SM-1277B1/B2 ................................................................................12
Figure 7. Antenna Output Mode Change of RF-SM-1277B1/B2...........................................................13
Figure 8. Reference Design of the External Antenna................................................................................13
Figure 9. Reference Design of the External Antenna Traces.................................................................13
Figure 10. SI9000 Impedance Calculation Diagram..................................................................................14
Figure 11. Specification of Antenna Seat .......................................................................................................14
Figure 12. Specification of IPEX Wire .............................................................................................................15
Figure 13. Recommended Reflow for Lead-Free Solder.........................................................................18
Figure 14. Default Package by Tray.................................................................................................................19
Figure 15. Package by Tape & Reel ................................................................................................................20
Table of Tables
Table 1. Parameters of RF-SM-1277B1/B2 .................................................................................................... 7
Table 2. Pin Functions of RF-SM-1277B1/B2 ................................................................................................ 8
Table 3. Recommended Operating Conditions of RF-SM-1277B1/B2 ...............................................10
Table 4. Handling Ratings of RF-SM-1277B1/B2 .......................................................................................10
Table 5. Temperature Table of Soldering and Reflow................................................................................17

RF-SM-1277B1/B2
www.szrfstar.com V1.1 - Oct, 2022
Shenzhen RF-star Technology Co., Ltd. Page 7 of 22
2 Module Configuration and Functions
2.1 Module Parameters
Table 1. Parameters of RF-SM-1277B1/B2
Chipset
CC1312R1F3RGZ
Supply Power Voltage
1.8 V ~ 3.8 V, recommended to 3.3 V
Protocol
IEEE 802.15.4g, IPv6-enabled smart objects(6LoWPAN), MIOTY®, Wireless M-
Bus(T, S, C mode), Wi-SUN®, KNX RF, Amazon Sidewalk, proprietary systems,
SimpleLink™ TI 15.4 stack (Sub-1 GHz)
Frequency
RF-SM-1277B1: 790 MHz ~ 930 MHz
RF-SM-1277B2: 431 MHz ~ 527 MHz
Maximum Transmit Power
RF-SM-1277B1: +14 dBm
RF-SM-1277B2: +13 dBm
Receiving Sensitivity
–121 dBm @ Sub-1 GHz (Long-Range Mode)
–110 dBm @ Sub-1 GHz (50 kbps)
GPIO
30
Crystal
48 MHz, 32.768 kHz
RAM
88 KB
Flash
352 KB
Package
SMT Packaging
Frequency Error
±20 kHz
Dimension
26.0 mm x 18.0 mm x 2.3 mm
Type of Antenna
IPEX connector / half-hole interface
Operating Temperature
-40 ℃ ~ +85 ℃
Storage Temperature
-40 ℃ ~ +125 ℃

RF-SM-1277B1/B2
www.szrfstar.com V1.1 - Oct, 2022
Shenzhen RF-star Technology Co., Ltd. Page 8 of 22
2.2 Module Pin Diagram
Figure 3. Pin Diagram of RF-SM-1277B1/B2
2.3 Pin Functions
Table 2. Pin Functions of RF-SM-1277B1/B2
Pin
Name
Chip Pin
Pin Type
Description
1
P01
DIO_1
Digital I/O
GPIO
2
P02
DIO_2
Digital I/O
GPIO
3
P03
DIO_3
Digital I/O
GPIO
4
P04
DIO_4
Digital I/O
GPIO
5
P05
DIO_5
Digital I/O
GPIO, Sensor Controller
6
P06
DIO_6
Digital I/O
GPIO, Sensor Controller
7
P07
DIO_7
Digital I/O
GPIO, Sensor Controller
8
P08
DIO_8
Digital I/O
GPIO
9
P09
DIO_9
Digital I/O
GPIO

RF-SM-1277B1/B2
www.szrfstar.com V1.1 - Oct, 2022
Shenzhen RF-star Technology Co., Ltd. Page 9 of 22
10
P10
DIO_10
Digital I/O
GPIO
11
P11
DIO_11
Digital I/O
GPIO
12
P12
DIO_12
Digital I/O
GPIO
13
P13
DIO_13
Digital I/O
GPIO
14
P14
DIO_14
Digital I/O
GPIO
15
P15
DIO_15
Digital I/O
GPIO
16
TMS
JTAG_TMSC
-
JTAG TMSC, high-drive capability
17
TCK
JTAG_TCKC
-
JTAG TCK
18
P16
DIO_16
Digital I/O
GPIO, JTAG_TDO, high-drive capability
19
P17
DIO_17
Digital I/O
GPIO, JTAG_TDI, high-drive capability
20
P18
DIO_18
Digital I/O
GPIO
21
P19
DIO_19
Digital I/O
GPIO
22
P20
DIO_20
Digital I/O
GPIO
23
P21
DIO_21
Digital I/O
GPIO
24
P22
DIO_22
Digital I/O
GPIO
25
RST
RESET_N
-
Reset, active low.
26
P23
DIO_23
Digital or analog I/O
GPIO, Sensor Controller, analog
27
P24
DIO_24
Digital or analog I/O
GPIO, Sensor Controller, analog
28
P25
DIO_25
Digital or analog I/O
GPIO, Sensor Controller, analog
29
P26
DIO_26
Digital or analog I/O
GPIO, Sensor Controller, analog
30
P27
DIO_27
Digital or analog I/O
GPIO, Sensor Controller, analog
31
P28
DIO_28
Digital or analog I/O
GPIO, Sensor Controller, analog
32
P29
DIO_29
Digital or analog I/O
GPIO, Sensor Controller, analog
33
P30
DIO_30
Digital or analog I/O
GPIO, Sensor Controller, analog
34
VCC
VCC
-
1.8 V ~ 3.8 V, recommended to 3.3 V
35
ANT
-
-
External antenna pin
36
GND
GND
-
Ground

RF-SM-1277B1/B2
www.szrfstar.com V1.1 - Oct, 2022
Shenzhen RF-star Technology Co., Ltd. Page 10 of 22
3 Specifications
3.1 Recommended Operating Conditions
Functional operation does not guarantee performance beyond the limits of the conditional parameter values in the table
below. Long-term work beyond this limit will affect the reliability of the module more or less.
Table 3. Recommended Operating Conditions of RF-SM-1277B1/B2
Items
Condition
Min.
Typ.
Max.
Unit
Operating Supply Voltage
Battery Mode
1.8
3.3
3.8
V
Operating Temperature
/
-40
+25
+85
℃
Environmental Hot Pendulum
/
-20
+20
℃/min
3.2 Handling Ratings
Table 4. Handling Ratings of RF-SM-1277B1/B2
Items
Condition
Min.
Typ.
Max.
Unit
Storage Temperature
Tstg
-40
+25
+125
℃
Human Body Model
HBM
±2000
V
Moisture Sensitivity Level
2
Charged Device Model
±500
V

RF-SM-1277B1/B2
www.szrfstar.com V1.1 - Oct, 2022
Shenzhen RF-star Technology Co., Ltd. Page 11 of 22
4 Application, Implementation, and Layout
4.1 Module Photos
RF-SM-1277B1 RF-SM-1277B2
Figure 4. Photos of RF-SM-1277B1/B2
4.2 Recommended PCB Footprint
Figure 5. Recommended PCB Footprint of RF-SM-1277B1/B2 (mm)

RF-SM-1277B1/B2
www.szrfstar.com V1.1 - Oct, 2022
Shenzhen RF-star Technology Co., Ltd. Page 12 of 22
4.3 Schematic Diagram
Figure 6. Schematic Diagram of RF-SM-1277B1/B2
5.4 Antenna
5.4.1 Antenna Design Recommendation
1. The antenna installation structure has a great influence on the module performance. It is necessary to ensure the
antenna is exposed and preferably vertically upward. When the module is installed inside of the case, a high-quality
antenna extension wire can be used to extend the antenna to the outside of the case.
2. The antenna must not be installed inside the metal case, which will cause the transmission distance to be greatly
weakened.
5.4.2 Antenna Output Mode Modification
1. RF-SM-1277B1/B2 has two antenna output modes. The one is IPEX connector and the other is a stamp half-hole
output (ANT pin, see pin function table for details).
The default delivery is the IPEX connector, and the capacitor connected to the IPEX is welded. If you want to use
the external antenna by the ANT pin, the capacitor position should be removed to the right solder joint to have the access
to the ANT pin. The location of the capacitor is shown in the figure below.

RF-SM-1277B1/B2
www.szrfstar.com V1.1 - Oct, 2022
Shenzhen RF-star Technology Co., Ltd. Page 13 of 22
Figure 7. Antenna Output Mode Change of RF-SM-1277B1/B2
5.4.3 External Antenna Design Recommendation of the Half-Hole ANT Pin
1. A Π-type matching circuit is reserved for the antenna, and 50 Ω impedance control is performed on the RF traces.
The traces are as short as possible, and 135° or arc traces are used as much as possible. No vias are used to
change layers. More GND vias are placed around the RF traces.
Figure 8. Reference Design of the External Antenna
Figure 9. Reference Design of the External Antenna Traces

RF-SM-1277B1/B2
www.szrfstar.com V1.1 - Oct, 2022
Shenzhen RF-star Technology Co., Ltd. Page 14 of 22
2. The RF trace width and copper-clad spacing can be calculated by SI9000 software, and the impedance is controlled
to 50 Ω according to the actual board thickness, number of layers, plate, dielectric thickness, dielectric constant,
copper thickness, line width, line spacing, and solder mask thickness.
Example: FR4 is a double-layer board with a thickness of 1.0 mm. Through calculation, the width of the trace is
0.8254 mm, and the spacing between traces and copper is 0.22 mm.
Figure 10. SI9000 Impedance Calculation Diagram
5.4.4 IPEX Connector Specification
RF-SM-1277B1/B2 module is integrated the IPEX version 1 antenna seat, the specification of the antenna seat is as
follows:
Figure 11. Specification of Antenna Seat

RF-SM-1277B1/B2
www.szrfstar.com V1.1 - Oct, 2022
Shenzhen RF-star Technology Co., Ltd. Page 15 of 22
The specification of the IPEX wire end is as follows:
Figure 12. Specification of IPEX Wire
5.5 Basic Operation of Hardware Design
1. It is recommended to offer the module a DC stabilized power supply, a tiny power supply ripple coefficient, and
reliable ground. Please pay attention to the correct connection between the positive and negative poles of the power
supply. Otherwise, the reverse connection may cause permanent damage to the module;
2. Please ensure the supply voltage is between the recommended values. The module will be permanently damaged
if the voltage exceeds the maximum value. Please ensure a stable power supply and no frequently fluctuating
voltage.
3. When designing the power supply circuit for the module, it is recommended to reserve more than 30% of the margin,
which is beneficial to the long-term stable operation of the whole machine. The module should be far away from the
power electromagnetic, transformer, high-frequency wiring, and other parts with large electromagnetic interference.
4. The bottom of the module should avoid high-frequency digital routing, high-frequency analog routing, and power
routing. If it has to route the wire on the bottom of the module, for example, it is assumed that the module is soldered
to the Top Layer, the copper must be spread on the connection part of the top layer and the module, and be close
to the digital part of the module and routed in the Bottom Layer (all copper is well-grounded).
5. Assuming that the module is soldered or placed in the Top Layer, it is also wrong to randomly route the Bottom Layer
or other layers, which will affect the spurs and receiving sensitivity of the module to some degree;
6. Assuming that there are devices with large electromagnetic interference around the module, which will greatly affect
the module performance. It is recommended to stay away from the module according to the strength of the
interference. If circumstances permit, appropriate isolation and shielding can be done.

RF-SM-1277B1/B2
www.szrfstar.com V1.1 - Oct, 2022
Shenzhen RF-star Technology Co., Ltd. Page 16 of 22
7. Assuming that there are routings of large electromagnetic interference around the module (high-frequency digital,
high-frequency analog, power routings), which will also greatly affect the module performance. It is recommended
to stay away from the module according to the strength of the interference. If circumstances permit, appropriate
isolation and shielding can be done.
8. It is recommended to stay away from the devices whose TTL protocol is the same 2.4 GHz physical layer, for
example, USB 3.0.
5.6 Trouble Shooting
5.6.1 Unsatisfactory Transmission Distance
1. When there is a linear communication obstacle, the communication distance will be correspondingly weakened.
Temperature, humidity, and co-channel interference will lead to an increase in the communication packet loss rate.
The performances of ground absorption and reflection of radio waves will be poor when the module is tested close
to the ground.
2. Seawater has a strong ability to absorb radio waves, so the test results by the seaside are poor.
3. The signal attenuation will be very obvious if there is metal near the antenna or if the module is placed inside the
metal shell.
4. The incorrect power register set or the high data rate in the open air may shorten the communication distance. The
higher the data rate, the closer the distance.
5. The low voltage of the power supply is lower than the recommended value at ambient temperature, and the lower
the voltage, the smaller the power is.
6. The unmatchable antennas and modules or the poor quality of antenna will affect the communication distance.
5.6.2 Vulnerable Module
1. Please ensure the supply voltage is between the recommended values. The module will be permanently damaged
if the voltage exceeds the maximum value. Please ensure a stable power supply and no frequently fluctuating
voltage.
2. Please ensure the anti-static installation and the electrostatic sensitivity of high-frequency devices.
3. Due to some humidity-sensitive components, please ensure the suitable humidity during installation and application.
If there is no special demand, it is not recommended to use at too high or too low temperature.
5.6.3 High Bit Error Rate
1. There are co-channel signal interferences nearby. It is recommended to be away from the interference sources or
modify the frequency and channel to avoid interferences.
2. The unsatisfactory power supply may also cause garbled. It is necessary to ensure the power supply's reliability.

RF-SM-1277B1/B2
www.szrfstar.com V1.1 - Oct, 2022
Shenzhen RF-star Technology Co., Ltd. Page 17 of 22
3. If the extension wire or feeder wire is of poor quality or too long, the bit error rate will be high.
5.7 Electrostatics Discharge Warnings
The module will be damaged by the discharge of static. RF-star suggests that all modules should follow the 3 precautions
below:
1. According to the anti-static measures, bare hands are not allowed to touch modules.
2. Modules must be placed in anti-static areas.
3. Take the anti-static circuitry (when inputting HV or VHF) into consideration in product design.
Static may result in the degradation in performance of the module, even causing failure.
5.8 Soldering and Reflow Condition
1. Heating method: Conventional Convection or IR/convection.
2. Solder paste composition: Sn96.5/Ag3.0/Cu0.5
3. Allowable reflow soldering times: 2 times based on the following reflow soldering profile.
4. Temperature profile: Reflow soldering shall be done according to the following temperature profile.
5. Peak temperature: 245 ℃.
Table 5. Temperature Table of Soldering and Reflow
Profile Feature
Sn-Pb Assembly
Pb-Free Assembly
Solder Paste
Sn63 / Pb37
Sn96.5 / Ag3.0 / Cu0.5
Min. Preheating Temperature (Tmin)
100 ℃
150 ℃
Max. Preheating Temperature (Tmax)
150 ℃
200 ℃
Preheating Time (Tmin to Tmax) (t1)
60 s ~ 120 s
60 s ~ 120 s
Average Ascend Rate (Tmax to Tp)
Max. 3 ℃/s
Max. 3 ℃/s
Liquid Temperature (TL)
183 ℃
217 ℃
Time above Liquidus (tL)
60 s ~ 90 s
30 s ~ 90 s
Peak Temperature (Tp)
220 ℃ ~ 235 ℃
230 ℃ ~ 250 ℃
Average Descend Rate (Tpto Tmax)
Max. 6 ℃/s
Max. 6 ℃/s
Time from 25 ℃ to Peak Temperature (t2)
Max. 6 minutes
Max. 8 minutes
Time of Soldering Zone (tP)
20±10 s
20±10 s
This manual suits for next models
1
Table of contents
Other RF-Star Wireless Module manuals

RF-Star
RF-Star RF-BM-BG22Ax Series User manual

RF-Star
RF-Star RF-BM-2652P2 User manual

RF-Star
RF-Star RF-CC2540A1 User manual

RF-Star
RF-Star RF-BM-S02 User manual

RF-Star
RF-Star RF-BM-ND08CI User manual

RF-Star
RF-Star RF-BM-ND09 User manual

RF-Star
RF-Star RF-BM-ND04 User manual

RF-Star
RF-Star RF-BM-ND09A User manual

RF-Star
RF-Star SimpleLink RF-BM-2652P4 CC2652P7 User manual

RF-Star
RF-Star SimpleLink RF-BM-2652P1 CC2652P User manual