Cosel CHS60 User manual

CHS-20
Basic Characteristics Data
*1Refer to Specification.
*2Refer to Instruction Manual.
Basic Characteristics Data
Model Circuit method
Switching
frequency
[kHz]
Input
current
Rated
input fuse
Inrush
current
protection
PCB/Pattern
Series/Redundancy
operation availability
Material
Single
sided Double
sided Series
operation
Redundancy
operation
CHS60 Foward converter 440 *1
- -
glass fabric base, epoxy resin
Multilayer
Ye s *2
CHS80 Half-bridge converter 250 *1
- -
glass fabric base, epoxy resin
Multilayer
Ye s *2
CHS120 Half-bridge converter 200 *1
- -
glass fabric base, epoxy resin
Multilayer
Ye s *2
CHS200 Full-bridge converter 150 *1
- -
glass fabric base, epoxy resin
Multilayer
Ye s *2
CHS300 Full-bridge converter 170 *1
- -
glass fabric base, epoxy resin
Multilayer
Ye s *2
CHS400 Full-bridge converter 150 *1
- -
glass fabric base, epoxy resin
Multilayer
Ye s *2
CHS500 Full-bridge converter 150 *1
- -
glass fabric base, epoxy resin
Multilayer
Ye s *2

1 Pin Connection CHS-22
4 Function CHS-24
4.1 Overcurrent protection
4.2 Overvoltage protection
4.3 Thermal protection
4.4 Remote ON/OFF
4.5 Remote sensing
4.6 Adjustable voltage range
4.7 Isolation
4.8 PMBus interface
5 Series and Parallel Operation CHS-26
6 Implementation-Mounting Method CHS-27
CHS-24
CHS-24
CHS-24
CHS-24
CHS-24
CHS-25
CHS-26
CHS-26
2 Connection for Standard Use CHS-22
3 Wiring Input/Output Pin CHS-23
3.1 Wiring input pin
3.2 Wiring output pin
CHS-23
CHS-23
5.1 Series operation
5.2 Parallel operation
5.3 Redundancy operation
CHS-26
CHS-26
CHS-27
6.1 Mounting method
6.2 Automatic Mounting (CHS series:option S)
6.3 Soldering
6.4 Stress onto the pins
6.5 Cleaning
6.6 Storage method (CHS series:option S)
6.7 Stress to the product
CHS-27
CHS-28
CHS-28
CHS-28
CHS-29
CHS-29
CHS-29
7 Safety Considerations CHS-29
8Derating CHS-29
8.1 CHS Derating CHS-29
9SMD type(optionS) package information CHS-34
CHS-21
DC-DC Converters Bus Converter.Power Module Type
Instruction Manual

¿CHS60
8-VOUT
7-S
5+S
4+VOUT
3
2
1
6TRM
-VIN
RC
+VIN
¿CHS80
8-VOUT
7-S
5+S
4+VOUT
3
2
1
6TRM
-VIN
RC
+VIN
¿CHS120
+VOUT
+S
TRM
-S
-VOUT
+VIN
RC
-VIN
1
3
2
8
7
5
4
6
¿CHS200
8-VOUT
7-S
5+S
4+VOUT
6TRM
3
2
1
-VIN
RC
+VIN
¿CHS300
8-VOUT
7-S
5+S
4+VOUT
6TRM
3
2
1
-VIN
RC
+VIN
¿CHS400/CHS500
8-VOUT
7-S
5+S
4+VOUT
6TRM
3
2
1
-VIN
RC
+VIN
Fig.1.1 Pin Connection (bottom view)
1 Pin Connection
2
Connection for Standard Use
¡In order to use the power supply, it is necessary to wire as shown
in Fig.2.1.
Reference : 3 ”Wiring Input/Output Pin”
8 ”Derating”
¡Short the following pins to turn on the power supply.
-VIN RC, +VOUT +S, -VOUT -S
Reference : 4.4 ”Remote ON/OFF”
4.5 ”Remote sensing”
¡The CHS series handle only the DC input.
Avoid applying AC input directly.
It will damage the power supply.
CHS-22
DC-DC Converters Bus Converter.Power Module Type
Instruction Manual
Fig.2.1 Connection for standard use
Table 1.1 Pin Connection and function
No. Pin Connection Function
1+VIN +DC input
2RC Remote ON/OFF
3-VIN -DC input
4+VOUT +DC output
5+S +Remote sensing
6TRM Adjustment of output voltage
7-S -Remote sensing
8-VOUT -DC output
No. Pin Connection Reference
1+VIN 3.1 ”Wiring input pin ”
2RC 4.4 ”Remote ON/OFF ”
3-VIN 3.1 ”Wiring input pin ”
4+VOUT 3.2 ”Wiring output pin ”
5+S 4.5 ”Remote sensing ”
6TRM 4.6 ”Adjustable voltage range ”
7-S 4.5 ”Remote sensing ”
8-VOUT 3.2 ”Wiring output pin ”
Cin : External capacitor on the input side
Load
+VIN
Fuse
DC
input
Cin +RC
-VIN
+VOUT
-VOUT
+S
-S

It is possible to protect the unit from the reverse input voltage by
installing an external diode as shown in Fig.3.2.
+VIN
-VIN
DC IN
Fig.3.2 Reverse input voltage protection
3.2 Wiring output pin
¡When the CHS series supplies the pulse current for the pulse
load, please install a capacitor Co between +VOUT and -VOUT
pins.
Recommended capacitance of Co is shown in Table 3.2, 3.3.
¡If output current decreases rapidly, output voltage rises transiently
and the overvoltage protection circuit may operate.
In this case, please install a capacitor Co.
¡Select a high frequency type capacitor. Output ripple and startup
waveform may be inuenced by ESR-ESL of the capacitor and the
wiring impedance.
¡Make sure that ripple current of Co is than its rating.
Table 3.2 Recommended capacitance Co (CHS60, CHS80, CHS120)
No.
Output voltage
CHS60 CHS80 CHS120
1 3.3V 0 - 20,000 F 0 - 20,000 F 0 - 20,000 F
2 5V 0 - 10,000 F 0 - 10,000 F 0 - 10,000 F
3 12V 0 - 2,200 F 0 - 1,000 F 0 - 2,200 F
Table 3.3 Recommended capacitance Co (CHS200, CHS300, CHS400, CHS500)
No.
Output voltage
CHS200 CHS300
CHS400/CHS500
1 3.3V 0 - 40,000 F
- -
2 5V 0 - 20,000 F 0 - 20,000 F
-
3 10V
-
0 - 2,200 F 0 - 4,000 F
4 12V 0 - 2,200 F 0 - 2,200 F 0 - 4,000 F
5 15V
-
0 - 2,200 F
-
¡Ripple and Ripple Noise are measured, as shown in the Fig.3.3.
Cin is shown in Table 2.1.
Oscilloscope
BW:100MHz
1.5m 50W
Coaxial cable
R
C
R=50W
F
Load
50mm
+VIN
-VIN
DC
Input
+
Measuring
board
RC
+VOUT
-VOUT
-S
+S
C=0.01
Cin Co
22 F
Fig.3.3 Measuring method of Ripple and Ripple Noise
3
Wiring Input/Output Pin
3.1 Wiring input pin
(1) External fuse
¡Fuse is not built-in on input side. In order to protect the unit, install
the normal-blow type fuse on input side.
¡When the input voltage from a front end unit is supplied to multiple
units, install the normal-blow type fuse in each unit.
Table 3.1 Recommended fuse (Normal-blow type)
Model CHS30024
Rated current 20A
Model CHS6048 CHS8048 CHS12048
Rated current 5A 7A 10A
Model
CHS20048/CHS30048
CHS40048 CHS50048
Rated current 15A 20A 30A
(2) External capacitor on the input side
¡Install an external capacitor Cin, between +VIN and -VIN input
pins for low line-noise and for stable operation of the power sup-
ply.
Capacitance Refer to Table 2.1
Ta = -20 to +85CElectrolytic or Ceramic capacitor
Ta = -40 to +85CCeramic capacitor
¡Cin is within 50mm for pins. Make sure that ripple current of Cin
is less than its rating.
(3) Recommendation for noise-lter
¡Install an external input lter as shown in Fig.3.1 in order to re-
duce conducted noise. Cin is shown in Table 2.1.
+
Load
+VIN
-VIN
RC
+
FG
10 F
2. 2F
1mH
DC
input
0.068 F0.068 F0.033 F0.033 F
+VOUT
-VOUT
+S
-S
Cin
Fig.3.1 Recommended external input lter
(4) Reverse input voltage protection
¡Avoid the reverse polarity input voltage. It will damage the power
supply.
CHS-23
DC-DC Converters Bus Converter.Power Module Type
Instruction Manual
Model CHS30024
Cin 660 F or more
Model CHS6048 CHS8048 CHS12048 CHS20048
Cin
66 F or more 33 F or more 47 F or more 100 F or more
Model CHS30048/CHS40048/CHS50048
Cin 200 F or more
Table 2.1 Recommended External capacitor on the input side

Table 4.1.2 Specication of Remote ON/OFF(CHS60,CHS120,CHS300,CHS400,CHS500)
ON/OFF
logic Between RC and -VIN Output
voltage
Standard Negative L level(0 - 0.8V) or short ON
H level(4.0 - 7.0V) or open OFF
Optional -R
Positive L level(0 - 0.8V) or short OFF
H level(4.0 - 7.0V) or open ON
When RC is ”Low” level, fan out current is 0.1mA typ. When Vcc is applied,
use 4.0[Vcc[7.0V.
¡When remote ON/OFF function is not used, please short between RC and
-VIN (-R: open between RC and -VIN).
(2.0
[
Vcc
[
7.0V)
IC Relay
TransistorPhoto coupler
RC
-VIN
RC
-VIN
RC
-VIN
RC
-VIN
Vcc
Fig.4.1 RC connection example
4.5 Remote sensing
(1) When the remote sensing function is not in use
+S
+VOUT
-S
Load
-VOUT
Short at pin root
Fig.4.2 Connection when the remote sensing is not in use
¡When the remote sensing function is not in use, it is necessary to conrm
that pins are shorted between +S & +VOUT and between -S & -VOUT.
¡Wire between +S & +VOUT and between -S & -VOUT as short as pos-
sible.
Loop wiring should be avoided.
This power supply might become unstable by the noise coming from poor
wiring.
(2)When the remote sensing function is in use
+S
Load
-S
+VOUT
-VOUT
Wire as close as possible
Fig.4.3 Connection when the remote sensing is in use
¡Twisted-pair wire or shield wire should be used for sensing wire.
¡Thick wire should be used for wiring between the power supply
and a load.
Line drop should be less than 0.3V.
4 Function
4.1 Overcurrent protection
¡Over Current Protection (OCP) is built-in and works at 105% of
the rated current or higher. However, use in an overcurrent situa-
tion must be avoided whenever possible.
The output voltage of the power module will recover automatically
when the fault causing overcurrent is corrected.
When the output voltage drops after OCP works, the power mod-
ule enters a ”hiccup mode” where it repeatedly turns on and off at
a certain frequency.
4.2 Overvoltage protection
¡The overvoltage protection circuit is built-in. The DC input will be
shut down if overvoltage protection is in operation.
The output voltage of the power module will recover automatically
when the fault causing over voltage is corrected.
Remarks :
Please note that devices inside the power supply might fail when
voltage more than rated output voltage is applied to output pin of
the power supply. This could happen when the customer tests the
overvoltage performance of the unit.
4.3 Thermal protection
¡When the power supply temperature is kept above 120C, the
thermal protection will be activated and simultaneously shut down
the output.
The output voltage of the power supply will recover automatically
when the unit is cool down.
¿-U
¡Option ”-U” means output is shut down when the abovementioned
protection circuit is activated.
If this happens, protection circuit can be inactivated by cycling
the DC input power off for at least 1 second or toggling Remote
ON/OFF signal.
4.4 Remote ON/OFF
¡Remote ON/OFF circuit is built-in on the input side (RC).
The ground pin of input side remote ON/OFF circuit is ”-VIN” pin.
Table 4.1.1 Specication of Remote ON/OFF(CHS80,CHS200)
ON/OFF
logic Between RC and -VIN Output
voltage
Standard Negative L level(0 - 0.8V) or short ON
H level(2.0 - 7.0V) or open OFF
Optional -R
Positive L level(0 - 0.8V) or short OFF
H level(2.0 - 7.0V) or open ON
When RC is ”Low” level, fan out current is 0.1mA typ. When Vcc is applied,
use 2.0[Vcc[7.0V.
CHS-24
DC-DC Converters Bus Converter.Power Module Type
Instruction Manual

Voltage between +VOUT and -VOUT should remain within the
output voltage adjustment range.
¡If the sensing patterns are short, heavy-current is drawn and the
pattern may be damaged.
The pattern disconnection can be prevented by installing the pro-
tection parts as close as possible to a load.
¡Output voltage might become unstable because of impedance of
wiring and load condition when length of wire exceeds 40cm.
4.6 Adjustable voltage range
(1) To adjust output voltage
¡Output voltage is adjustable by the external potentiometer.
¡When the output voltage adjustment is used, note that the over
voltage protection circuit operates when the output voltage is set
too high.
¡If the output voltage drops under the output voltage adjustment
range, the Low voltage protection operates.
¡By connecting the external potentiometer (VR1) and resistors (R1,
R2), output voltage becomes adjustable, as shown in Fig.4.4.
Recommended external parts are shown in Table 4.2.
¡The wiring to the potentiometer should be as short as possible.
The temperature coefcient could become worse, depending on
the type of a resistor and potentiometer. Following parts are rec-
ommended for the power supply.
Resistor.............
Metal lm type, coefcient of less than
±
100ppm/C
Potentiometer....Cermet type, coefcient of less than ±300ppm/C
¡When the output voltage adjustment is not used, open the TRM
pin respectively.
¡The change speed of the TRM voltage should be less than 0.15V/
ms, when changing output voltage to less than 90% of the rated.
VR1
5kW
+
+S
+VOUT
TRM
-S
-VOUT
1.225V
R1
RA
5.11kW
RC
5.11kW
R2
Control Amp.
of rated
voltage
Fig.4.4 Output voltage control circuit
Table 4.2 Recommended value of external potentiometer & resistor
No. VOUT
Output adjustable range
VOUT ±5% VOUT ±10%
R1 R2 VR1 R1 R2 VR1
1 3.3V 2.2kW68kW
5kW
2.2kW33kW
5kW
2 5V 4.7kW68kW5.6kW33kW
3 10V 15kW68kW15kW33kW
4 12V 18kW68kW18kW33kW
5 15V 22kW68kW22kW33kW
(2) To decrease output voltage
¡By connecting the external resistor (RD), output voltage becomes
adjustable to decrease.
The external resistor (RD) is calculated by the following equation.
RD= -10.22 [kW]
Δ= VOR-VOD
VOR
5.11
Δ
VOR : Rated output voltage [V]
VOD : Output voltage needed to set up [V]
RD
+VOUT
-VOUT
+S
-S
TRM
Fig.4.5 Connection to decrease output voltage
(3) To increase output voltage
¡By connecting the external resistor (RU), output voltage becomes
adjustable to increase.
The external resistor (RU) is calculated by the following equation.
Δ= VOU-VOR
VOR
RU= - - 10.22 [kW]
5.11XVORX(1+Δ)
1.225XΔ
5.11
Δ
VOR : Rated output voltage [V]
VOU : Output voltage needed to set up [V]
+S
-S
TRM
RU
+VOUT
-VOUT
Fig.4.6 Connection to increase output voltage
CHS-25
DC-DC Converters Bus Converter.Power Module Type
Instruction Manual

(4) Input voltage derating
¡When input voltage is 18-21.5V DC or 36-44VDC, the output
voltage adjustment range becomes as shown in Fig.4.7.
36
100
105
110
115
120
40 760
0
95
90
3.3V
5V
10V,12V
4812H
44
36
100
105
110
115
120
40 760
0
90
80
95
3.3V
5V
12V
3.3V,5V
12V
CHS6048
CHS8048/CHS20048/CHS30048/
CHS40048/CHS50048
80
ADJUSTMENT RANGE [%]
ADJUSTMENT RANGE [%]
INPUT VOLTAGE [V]
36
100
105
110
115
120
43 760
0
90
80
95
3.3V
5V
12V
CHS12048
INPUT VOLTAGE [V] INPUT VOLTAGE [V]
CHS30024
ADJUSTMENT RANGE [%]ADJUSTMENT RANGE [%]
INPUT VOLTAGE [V]
18
100
105
110
115
120
21.5 360
0
80
5V
12V
15V
20
Fig.4.7 CHS Output Voltage Adjustment Range
4.7 Isolation
¡For a receiving inspection, such as Hi-Pot test, gradually increase
(decrease) the voltage to start (shut down). Avoid using Hi-Pot
tester with timer because it may generate voltage a few times
higher than the applied voltage at ON/OFF of a timer.
4.8 PMBus interface
¿-I (CHS300/CHS400)
¡This option is equipped with a digital PMBus interface.
Please contact us about for details.
5
Series and Parallel Operation
5.1 Series operation
¡Series operation is available by connecting the outputs of two or
more power supplies, as shown below. Output current in series
connection should be lower than the lowest rated current in each
unit.
Power
Supply
+
-
Power
Supply
+
-
Load
Power
Supply
+
-
Power
Supply
+
-
(a)(b)
LoadLoad
Fig.5.1 Examples of series operation
5.2 Parallel operation
¿-P (CHS400/CHS500)
¡This option is for parallel operation.
¡Sensing and adjustment of the output voltage are not possible at
the time of the use with this option.
¡As variance of output current drew from each power supply is
maximum 10%, the total output current must not exceed the value
determined by the following equation.
(Output current in parallel operation)
=(the rated current per unit) x (number of unit) x0.9
When the number of units in parallel operation increases, input
current increase at the same time. Adequate wiring design for in-
put circuitry is required, such as circuit pattern, wiring and current
capacity for equipment.
¡Total number of units should be no more than 3 pieces.
¡Thick wire should be used for wiring between the power supply
and load, and line drop should be less than 0.3V.
¡Connect each input pin for the lowest possible impedance.
¡When the number of the units in parallel operation increases,
inputcurrent increases. Adequate wiring design for input circuitry
such as circuit pattern, wiring and current for equipment is re-
quired.
+Vin
RC
-Vin
+Vout
-Vout
SW
+Vin
RC
-Vin
+Vout
-Vout
DC
INPUT LOAD
Fuse
Fuse
Fig.5.2 Examples of parallel operation
CHS-26
DC-DC Converters Bus Converter.Power Module Type
Instruction Manual

5.3 Redundancy operation
¡Parallel operation is not possible.
¡Redundancy operation is available by wiring as shown below.
Power
Supply
Load
I
1
I
3
I2
+
+
-
-
Power
Supply
Fig.5.3 Redundancy operation
¡Even a slight difference in output voltage can affect the balance
between the values of I1and I2.
Please make sure that the value of I3does not exceed the rated
current of the power supply.
I3[the rated current value
6
Implementation-Mounting Method
6.1 Mounting method
¡The unit can be mounted in any direction. When two or more pow-
er supplies are used side by side, position them with proper inter-
vals to allow enough air ventilation. The temperature around each
power supply should not exceed the temperature range shown in
derating curve.
¡Avoid placing the DC input line pattern layout underneath the unit.
It will increase the line conducted noise. Make sure to leave an
ample distance between the line pattern layout and the unit. Also
avoid placing the DC output line pattern underneath the unit be-
cause it may increase the output noise. Lay out the pattern away
from the unit.
¡Avoid placing the signal line pattern layout underneath the unit be-
cause the power supply might become unstable.
Lay out the pattern away from the unit.
¡Avoid placing pattern layout in hatched area shown in Fig.6.1 to
insulate between pattern and power supply.
57
102
1
13
+VOUT
+S
-VOUT
+VIN
RC
-VIN
TRM
-S
(a) CHS60
+VOUT
+S
-VOUT
+VIN
RC
-VIN
TRM
-S
514
(b) CHS80
-VIN
RC
+VIN
-VOUT
-S
TRM
+S
+VOUT
26.2
7
(C) CHS120
+VOUT
+S
-VOUT
+VIN
RC
-VIN
TRM
-S
37 8
524
(d) CHS200
48
1.5
+VOUT
+S
-VOUT
+VIN
RC
-VIN
TRM
-S
(e) CHS300
4
18
+VOU
T
+S
-VOUT
+VIN
RC
-VIN
TRM
-S
(f) CHS400
Dimensions in mm
Fig.6.1 Prohibition area of pattern layout (top view)
CHS-27
DC-DC Converters Bus Converter.Power Module Type
Instruction Manual

6.2
Automatic Mounting (CHS series:option S)
¡To mount CHS series automatically, use the inductor area near the
output pin as an adsorption point. Please see the External View
for details of the adsorption point.
If the bottom dead point of a suction nozzle is too low when
mounting excessive force is applied to the inductor, it could cause
damage. Please mount carefully.
6.3 Soldering
(1)Flow Soldering :260C 15 seconds or less
(2)Soldering Iron :maximum 450C 5 seconds or less
(3)Reow Soldering (option “-S”)
¡Fig.6.2 shows conditions for the reflow soldering for option “-S”
of CHS series. Please make sure that the temperatures of pin
terminals +VIN and -VOUT shown in Fig.6.2 do not exceed the
temperatures shown in Fig.6.3.
¡If time or temperature of the reflow soldering goes beyond the
conditions, reliability of internal components may be compromised.
Please use the unit under the recommended reow conditions.
+VIN
-VOUT
(a) CHS60
+VIN
-VOUT
(b) CHS80
+VIN
-VOUT
(c) CHS120
Fig.6.2 Temperature Measuring Points when Setting
Reow Soldering Conditions
C
time(s)
Ty1
Ty2
Tp
Tx
A’A B B' C
A 1.0 - 5.0C/s
A' Ty1:160±10C
Ty2:180±10C
Ty1 - Ty2:120s max
B 1.0 - 5.0C/s
B' Tp:Max245C10s max
Tx:220Cor more:70s max
C 1.0 - 5.0C/s
Fig.6.3 Recommend Reow Soldering Conditions
¿Notes to use option “-S”
¡Solder iron or other similar methods are not recommended solder-
ing method for option “-S” because it may not be able to retain
connection reliability between the PCB and the Pins. Solder reow
is the acceptable mounting system for the option.
¡Option “-S” is not reusable product after soldered on any applica-
tion PCB.
6.4 Stress to the pins
¡When too much stress is applied to the pins of the power supply,
the internal connection may be weakened.
As shown in Fig.6.4, avoid applying stress of more than 19.6N
(2kgf) to the pins horizontally and more than 39.2N (4kgf) verti-
cally.
¡The pins are soldered on PWB internally. Therefore, do not pull or
bend them with strong force.
¡Fix the unit on PCB (using silicone rubber or xing ttings) to re-
duce the stress to the pins.
39.2N
Less than
19.6N
Less than
19.6N
Less than
39.2N
Less than
19.6N
Less than
19.6N
Less than
(option S)
Fig.6.4 Stress to the pins
CHS-28
DC-DC Converters Bus Converter.Power Module Type
Instruction Manual

6.5 Cleaning
¡When cleaning is necessary, clean under the following conditions.
Method : Varnishing, ultrasonic wave and vapor
Cleaning agents : IPA (Solvent type)
Total time : 2 minutes or less
¡Do not apply pressure to the lead and name plate with a brush or
scratch it during the cleaning.
¡After cleaning, dry them enough.
6.6 Storage method (CHS series:option S)
¡To stock unpacked products in your inventory, it is recommended
to keep them under controlled condition, 5-30C, 60%RH and use
them within a year.
¡24-hour baking is recommended at 125C, if unpacked products
were kept under uncontrolled condition, which is 30C, 60%RH or
higher.
Original trays are not heat-resistant. Please move them to heat-
resistant trays in preparation to bake.
To check moisture condition in the pack. Silica gel packet has
some moisture condition indicator particles.
Indicated blue means good. Pink means alarm to bake it.
¡Notication. The tray will be deformed and the power supply might
be damaged, if the vacuum pressure is too much to reseal.
6.7 Stress to the product
¡CHS series transformer core and choke coil core are attached by
glue.
There is a possibility that the core will be removed and power sup-
ply will be damaged when they receive stress by the fall or some
kind of stress.
7 Safety Considerations
¡To apply for safety standard approval using this power supply, the
following conditions must be met.
¿
This unit must be used as a component of the end-use equipment.
¿
The equipment must contain basic insulation between input and
output. If double or reinforced insulation is required, it has to be
provided by the end-use equipment in accordance with the nal
build-in condition.
¿Safety approved fuse must be externally installed on input side.
8 Derating
¡It is necessary to note thermal fatigue life by power cycle.
Please reduce the temperature uctuation range as much as pos-
sible when the up and down of temperature are frequently gener-
ated.
8.1 CHS Derating
¡Use with the convection cooling or the forced air cooling.
Make sure the temperatures at temperature measurement loca-
tions shown from Fig.8.2.1 to Fig.8.2.10 below are on or under the
derating curve in Fig.8.1.
Ambient temperature must be kept at 85Cor under.
Load factor[%]
100
80
60
40
Temperature of measurement location[C]
-40
20
0
-20 0 20 40 60 120100
(95)
80
3
1Option “B”
2Option “BC”
3Others 1
2
(a) CHS60, CHS80, CHS200, CHS300, CHS400, CHS500
Load factor[%]
100
80
60
40
Temperature of measurement location[C]
-40
20
0
-20 0 20 40 60 12010080
2
1
3
1Option “B” (Vin:36-60V)
2Option “B” (Vin:60-76V)
3Others
(115)(105)
(b) CHS120
Fig.8.1 Derating curve
Temperature measurement location
Fig.8.2.1 Temperature measurement location (CHS60)
CHS-29
DC-DC Converters Bus Converter.Power Module Type
Instruction Manual

Temperature measurement location
Fig.8.2.2 Temperature measurement location (CHS80)
Temperature measurement location
Fig.8.2.3 Temperature measurement location (CHS120)
Temperature measurement location
Fig.8.2.4 Temperature measurement location (CHS200)
Temperature measurement location
Fig.8.2.5 Temperature measurement location (CHS300)
Temperature measurement location
Fig.8.2.6 Temperature measurement location (CHS400)
Temperature measurement location
Fig.8.2.7 Temperature measurement location (CHS500)
¡For option “B” which is used with the convection cooling, forced
air cooling or conduction cooling, use the temperature measure-
ment location as shown in Fig.8.2.8 to Fig.8.2.10.
Measurement point
Aluminum base plate
Fig.8.2.8 Measurement point (CHS120 option “B”)
Measurement point
Aluminum base plate
Fig.8.2.9 Measurement point (CHS200/CHS300 option “B” and “BC”)
Measurement point
Aluminum base plate
Fig.8.2.10 Measurement point (CHS400/CHS500 option “B”)
¡Shown the thermal curve with measuring as shown in Fig.8.3.
Verify nal design by actual temperature measurement.
Use the temperature measurement location as shown in Fig.8.2.1
to Fig.8.2.7 at 120Cor less.
CHS-30
DC-DC Converters Bus Converter.Power Module Type
Instruction Manual

PWB
12.7mm
Measurement point for
ambient temperature
and airflow
Airflow Airflow
Output side
Input side
25.4mm
76mm
Top
CHS
CHS
Fig.8.3 Measuring method
CHS-31
DC-DC Converters Bus Converter.Power Module Type
Instruction Manual
Fig.8.7 Load current vs. ambient temperature(CHS80483R3 Vin=48V)
0
5
10
15
20
25
30
-40-30 -20-10 0102030405060708090
1
2
3
1convection cooling(0.2m/s)
21m/s
32m/s
Load current[A]
Ambient temperature[C]
Fig.8.6 Load current vs. ambient temperature(CHS604812 Vin=48V)
Fig.8.5 Load current vs. ambient temperature(CHS604805 Vin=48V)
Fig.8.4 Load current vs. ambient temperature(CHS60483R3 Vin=48V)
0
2
4
6
8
10
14
12
18
16
20
-40-30 -20-10 0102030405060708090
1
2
3
1convection cooling(0.2m/s)
21m/s
32m/s
Load current[A]
Ambient temperature[C]
0
2
4
6
8
10
14
12
-40-30 -20-10 0102030405060708090
1
23
1convection cooling(0.2m/s)
21m/s
32m/s
Load current[A]
Ambient temperature[C]
0
1
2
3
4
5
7
6
-40-30 -20-10 0102030405060708090
1
2
3
1convection cooling(0.2m/s)
21m/s
32m/s
Load current[A]
Ambient temperature[C]

CHS-32
DC-DC Converters Bus Converter.Power Module Type
Instruction Manual
Fig.8.14 Load current vs. ambient temperature(CHS2004805 Vin=48V)
-40-30 -20-10 0102030405060708090
123
0
5
10
15
20
25
30
35
40
45
1convection cooling(0.2m/s)
21m/s
32m/s
Load current[A]
Ambient temperature[C]
Fig.8.15 Load current vs. ambient temperature(CHS2004812 Vin=48V)
-40-30 -20-10 0102030405060708090
12
3
0
2
4
6
8
10
12
14
16
18
1convection cooling(0.2m/s)
21m/s
32m/s
Load current[A]
Ambient temperature[C]
Fig.8.13 Load current vs. ambient temperature(CHS200483R3 Vin=48V)
Fig.8.9 Load current vs. ambient temperature(CHS804812 Vin=48V)
Fig.8.8 Load current vs. ambient temperature(CHS804805 Vin=48V)
-40-30 -20-10 0102030405060708090
123
0
10
20
30
40
50
60
1convection cooling(0.2m/s)
21m/s
32m/s
Load current[A]
Ambient temperature[C]
0
1
2
3
4
5
6
7
8
-40-30 -20-10 0102030405060708090
1
2
3
1convection cooling(0.2m/s)
21m/s
32m/s
Load current[A
Ambient temperature[C]
]
0
2
4
6
8
10
12
14
16
18
-40-30 -20-10 0102030405060708090
1
2
3
1convection cooling(0.2m/s)
21m/s
32m/s
Load current[A
Ambient temperature[C]
]
Fig.8.12 Load current vs. ambient temperature(CHS1204812 Vin=48V)
Fig.8.11 Load current vs. ambient temperature(CHS1204805 Vin=48V)
Fig.8.10 Load current vs. ambient temperature(CHS120483R3 Vin=48V)
-40 -30 -20 -10 0 10 20 30 40 50 60 70 80 9
0
Ambient temperature[C]
0
5
10
15
20
25
30
35
1convection cooling(0.2m/s)
21m/s
32m/s
123
Load current[A]
-40 -30 -20 -10 0 10 20 30 40 50 60 70 80 9
0
12
3
0
5
10
15
20
25
30
1convection cooling(0.2m/s)
21m/s
32m/s
Load current[A]
Ambient temperature[C]
-40 -30 -20 -10 0 10 20 30 40 50 60 70 80 9
0
123
0
2
4
6
8
10
12
1convection cooling(0.2m/s)
21m/s
32m/s
Load current[A]
Ambient temperature[C]

0
2
6
4
8
10
12
14
18
16
-40 -30-20 -10010 20 30 40 50 60 70 80 90
Load current[A]
Ambient temperature[C]
1convection cooling(0.2m/s)
21m/s
32m/s
12
3
0
2
6
4
8
10
12
14
-40 -30-20 -10010 20 30 40 50 60 70 80 90
Load current[A]
Ambient temperature[C]
)
1
23
1
21m/s
32m/s
convection cooling(0.2m/s)
-40-30 -20-10 0102030405060708090
Ambient temperature[C]
0
5
10
15
20
25
30
35
40
45
1convection cooling(0.2m/s)
21m/s
32m/s
1
23
Load current[A]
0
4
8
12
16
20
24
28
32
-40-30 -20-10 0102030405060708090
1convection cooling(0.2m/s)
21m/s
32m/s
12
3
Load current[A]
Ambient temperature[C]
-40-30 -20-10 0102030405060708090
Ambient temperature[C]
0
4
8
12
16
20
24
28
1convection cooling(0.2m/s)
21m/s
32m/s
12
3
Load current[A]
-40-30 -20-10 0102030405060708090
Ambient temperature[C]
0
4
8
12
16
20
24
28
1convection cooling(0.2m/s)
21m/s
32m/s
1
2
3
Load current[A]
Fig.8.21 Load current vs. ambient temperature(CHS3004812H Vin=48V)
Fig.8.20 Load current vs. ambient temperature(CHS3004812 Vin=48V)
Fig.8.19 Load current vs. ambient temperature(CHS3004810 Vin=48V)
CHS-33
DC-DC Converters Bus Converter.Power Module Type
Instruction Manual
Fig.8.18 Load current vs. ambient temperature(CHS3002415 Vin=24V)
Fig.8.17 Load current vs. ambient temperature(CHS3002412 Vin=24V)
Fig.8.16 Load current vs. ambient temperature(CHS3002405 Vin=24V)
0
5
15
10
20
25
30
35
45
40
-40 -30-20 -10010 20 30 40 50 60 70 80 90
Load current[A]
Ambient temperature[C]
1convection cooling(0.2m/s)
21m/s
32m/s
12
3
Fig.8.22 Load current vs. ambient temperature(CHS4004810 Vin=48V)
Fig.8.23 Load current vs. ambient temperature(CHS4004812 Vin=48V)
-40 -30 -20 -10010 20 30 40 50 60 70 80 90
Ambient temperature[C]
0
5
10
15
20
25
30
35
1convection cooling(0.2m/s)
21m/s
32m/s
1
23
Load current[A]

9
SMDtype(optionS)package information
¡These are packed in a tray (Fig.9.1 to Fig.9.3).
Please order “CHS60□□-S”, “CHS80□□-S”, “CHS120□□-S” for
tray type packaging.
Capacity of the tray is 15max.
In case of fractions, the units are stored in numerical order.
Fig.9.1 Delivery package information (CHS60)
Dimensions in mm
Material : Conductive PS
-40-30 -20-10 0102030405060708090
Ambient temperature[C]
0
5
10
15
20
25
30
35
1convection cooling(0.2m/s)
21m/s
32m/s
1
2
3
Load current[A]
-40-30 -20-10 0102030405060708090
Ambient temperature[C]
0
5
10
15
20
25
30
45
35
40
12
3
Load current[A]
1convection cooling(0.2m/s)
21m/s
32m/s
CHS-34
DC-DC Converters Bus Converter.Power Module Type
Instruction Manual
46.8
59×4=236
136
323
23
3724.6 37
Fig.8.24 Load current vs. ambient temperature(CHS4004812H Vin=48V)
Fig.8.25 Load current vs. ambient temperature(CHS5004812 Vin=48V)

Fig.9.3 Delivery package information (CHS120)Fig.9.2 Delivery package information (CHS80)
Dimensions in mm
Material : Conductive PS
Dimensions in mm
Material : Conductive PS
CHS-35
DC-DC Converters Bus Converter.Power Module Type
Instruction Manual
48.55
62X4=248
136
323
23
3834.1 38 38
33.2 38
323
136
23
37.5
62×4=248
3833.2 38
323
136
23
37.5
62×4=248
This manual suits for next models
6
Table of contents
Other Cosel Media Converter manuals

Cosel
Cosel MG15 User manual

Cosel
Cosel PCA Series Operator's manual

Cosel
Cosel SNDPF1000 User manual

Cosel
Cosel BRDS series User manual

Cosel
Cosel ZUS1R5 User manual

Cosel
Cosel DHS50A User manual

Cosel
Cosel MH3 User manual

Cosel
Cosel TUHS Series Instructions for use

Cosel
Cosel TUNS50F User manual

Cosel
Cosel CBS50 User manual