IBM B48Y User manual

IBM Ethernet Switch B48Y 1
®
IBM Ethernet Switch B48Y
IBM System x at-a-glance guide
The IBM Ethernet Switch B48Y is a high-performance, feature-rich, easy-to-manage 1 GbE solution for
network device access. Purpose-built for the data center with a wire-speed, non-blocking architecture,
high-availability features including optional redundant and hot-swappable power supplies and fans, and
rack-friendly airflow, the B48Y enables organizations to scale easily in virtualized and non-virtualized data
center environments.
The switch comes fully featured with Layer 2 and Layer 3 capabilities, giving organizations ultimate
flexibility in deployment options. With the optional 4-port 10 GbE interface module, a row of up to eight
switches can be unified into a single logical chassis with 384 ports using IronStack technology, greatly
simplifying management and increasing virtual machine mobility.
The switch runs a feature-rich and mature IronWare operating system with an industry-standard
command-line interface (CLI), minimizing re-training and operational costs. Supporting a full range of RFC
and IEEE standards for interoperability, along with compatibility for vendor-specific protocols such as
Cisco Discovery Protocol (CDP) and Per-VLAN Rapid Spanning Tree Plus (PVRST+), the B48Y
integrates seamlessly into existing network infrastructures.
Figure 1. IBM Ethernet Switch B48Y with optional 4-port 10 GbE SFP+ interface module (front view)
Figure 2. IBM Ethernet Switch B48Y (back view)
Did you know
As server utilization increases due to virtualization on more powerful hardware such as the IBM innovative
eX5 architecture, so does the average and burst bandwidth utilization on the switches in the network. To
alleviate these performance bottlenecks, the B48Y is capable of supporting four 10 GbE uplinks, double
the bandwidth of most standard 1 GbE switches, to enable near 1:1 subscription during periods of heavy
traffic flows with extremely low port-to-port latencies. Even with its outstanding performance, the B48Y is
highly power efficient, using up to 36% less power than competing switches.

IBM Ethernet Switch B48Y 2
To ease manageability, up to eight switches can be stacked together to create a single logical chassis of
384 ports. All switches in the same stack share a single configuration file, IP address, and interface
addressing scheme. This solution can be a cost-effective alternative to a design using an end-of-row,
modular chassis. The IBM B48Y is complemented by a full Ethernet and IP product portfolio, allowing an
organization to standardize on a network infrastructure running on the proven IronWare operating system.
Part number information
Table 1 lists the orderable part numbers for the B48Y and associated options through System x.
Table 1. IBM part numbers and feature codes for ordering
Description IBM part number IBM feature code
IBM Ethernet Switch B48Y 0563-022 0563-HCF
4-port 10 GbE Interface Module (SFP+) (enables stacking) 81Y1455 6687
210 W AC Power Supply (for 1+1 redundancy) 81Y1451 6685
10 GbE 300 m, SFP+, 10GBASE-SR (duplex LC, MMF, 850
nm, OM) 69Y0389 6416
The IBM Ethernet Switch B48Y (0563-022/0563-HCF) ships with the following:
One IBM Ethernet Switch B48Y, which includes:
z
Fourty-eight 10/100/1000 MbE RJ-45 ports
z
One open interface module slot for an optional 4-port 10 GbE (SFP+) module
z
One out-of-band 10/100/1000 MbE RJ-45 management port
z
One DB9 male serial console port
z
One hot-swappable quad-fan fan tray
z
One (of two) 210 W AC hot-swappable power supplys
z
One 1.5 m DB9 female-to-DB9 female straight-through serial console cable
z
Rack mount brackets for mounting into an EIA-310D compliant rack
z
IBM Ethernet Switch y-series Installation and User Guide
z
Statement of limited warranty
z
Brocade end user license agreement
z
Safety and regulatory notices
z
CD-ROM with manuals and environmental notices
z
Note: Qualified SFP+ transceivers are required for each SFP+ port on the optional module and are not
included.

IBM Ethernet Switch B48Y 3
Power cords are not included and must be specified at the time of order. The B48Y has a C14 inlet to
receive a C13 power plug. Table 2 lists the available power cable options.
Table 2. Power cord options
Description IBM part number
Line cord – 2.8 m, 10A/230V, C13 to CEE7-VII (Europe) 39Y7917
Line cord – 2.8 m, 10A/250V, C13 to DK2-5a (Denmark) 39Y7918
Line cord – 2.8 m, 10A/250V, C13 to SEV 1011-S24507 (Swiss) 39Y7919
Line cord – 2.8 m, 10A/250V, C13 to SI 32 (Israel) 39Y7920
Line cord – 2.8 m, 10A/250V, C13 to SABS 164 (S. Africa) 39Y7922
Line cord – 2.8 m, 10A/250V, C13 to BS 1363/A (UK) 39Y7923
Line cord – 2.8 m, 10A/250V, C13 to AS/NZ 3112 (Australia/NZ) 39Y7924
Line cord – 2.8 m, 220-240V, C13 to KETI (S. Korea) 39Y7925
Line cord – 2.8 m, 10A/250V, C13 to (2P+Gnd) (India) 39Y7927
Line cord – 2.8 m, 220-240V, C13 to GB 2099.1 (China) 39Y7928
Line cord – 2.8 m, 125V, C13 to NBR 6147 (Brazil) 39Y7929
Line cord – 2.8 m, 10A/250V, C13 to IRAM 2073 (Australia) 39Y7930
Line cord – 4.3 m, 10A/125V, C13 to NEMA 5-15P (US) 39Y7931
Line cord – 4.3 m, 10A/100-250V, C13 to IEC 320-C14 39Y7932
Line cord – 1.5 m, 10A/100-250V, C13 to IEC 320-C14 39Y7937
Each SFP+ optical transceiver, such as the 10GBASE-SR SFP+, requires fiber optic cabling with duplex
LC connectors to connect to another optical transceiver. See the “Network cabling requirements” section
for additional details.
Each 10/100/1000 MbE RJ-45 port requires copper CAT 5e or higher cabling for connectivity. Table 3 lists
the available copper cable options.
Table 3. Ethernet copper cable (RJ-45) options
Description IBM part number
0.6 m Ethernet cable (blue) 40K5679
1.5 m Ethernet cable (blue) 40K8785
3 m Ethernet cable (blue) 40K5581
10 m Ethernet cable (blue) 40K8927
25 m Ethernet cable (blue) 40K8930

IBM Ethernet Switch B48Y 4
Table 4 lists the orderable part numbers for additional options available through IBM System Networking
HVEC channels.
Table 4. IBM part numbers and feature codes for ordering (System Networking HVEC)
Description IBM part number IBM feature code
4-port 100/1000 MbE Interface Module (SFP, works as
combination ports) 45W5943 1002
10 GbE 10 km, SFP+, 10GBASE-LR (duplex LC, SMF, 1310
nm, OM) 45W4264 2131
10 GbE Direct Attach SFP+, 1 m, Active TwinAx copper
cable 45W2398 2711
10 GbE Direct Attach SFP+, 3 m, Active TwinAx copper
cable 45W2408 2731
10 GbE Direct Attach SFP+, 5 m, Active TwinAx copper
cable 45W3039 2751
1 GbE 550 m SFP, 1000BASE-SX (duplex LC, MMF, 850
nm, OM) 45W2815 2211
1 GbE 10 km SFP, 1000BASE-LX (duplex LC, SMF, 1310
nm, OM) 45W2816 2212
1 GbE 70 km SFP, 1000BASE-LHA (duplex LC, SMF, 1550
nm, OM) 45W2817 2213
100 MbE 2 km SFP, 100BASE-FX (duplex LC, MMF, 1310
nm, OM) 45W2817 2216
100 MbE 40 km SFP, 100BASE-FX-LR (duplex LC, SMF,
1310 nm, OM) 45W7552 2218
Note: OM = optical monitoring supported. SMF = single-mode fiber. MMF = multi-mode fiber. The MMF
distance supported depends on the cabling type. Use OM3 50
ì
m (2000 MHz*km) MMF to support the
farthest distances.
No transceivers are required unless an optional interface module is ordered.
The optional 4-port 10 GbE SFP+ Interface Module (81Y1455) requires 10 GbE SFP+ transceivers for
connectivity. While these higher-bandwidth ports are typically used for uplinks to an Aggregation or Core
switch, they can also be connected to end devices such as servers. IronStack is supported over two of
these 10 Gbps ports. Cee the “IronStack technology” section for additional details.
Note: The default configuration on the switch sets the first two ports on the optional 4-port 10 GbE SFP+
Interface Module as stack ports. To use all ports on the switch as regular Ethernet ports, the global CLI
command stack disable can be configured to disable stacking. See the
FastIron Configuration Guide
for
additional configuration details.

IBM Ethernet Switch B48Y 5
10 GbE SFP+ optical –SR (10GBASE-SR) transceivers support distances up to 300 m, ideal for
connectivity within a data center. 10 GbE SFP+ optical –LR (10GBASE-LR) transceivers support extended
distances up to 10 km.
Figure 3. SFP+/SFP optical transceiver, receives duplex LC connectors
For cost-effective server connectivity within a rack, 10 GbE copper direct-attach SFP+ active TwinAx
cables are available. These cables have two 10 GbE SFP+ transceivers attached on either end of the
cable and have been tested for compatibility with the Brocade 10Gb CNA, QLogic 10Gb CNA, and
Emulex 10Gb Virtual Fabric Adapter for IBM System x. Compatibility with other 10 GbE server adapters
and network devices is up to the user to determine.
Figure 4. 10 GbE Direct Attach SFP+ TwinAx Cable

IBM Ethernet Switch B48Y 6
IronStack technology
Table 5 lists several technology options available for the access layer of the network.
Table 5. Technology options available for the access layer of the network
Fixed port switches
Pros: low acquisition costs
z
Cons: switches need to be
z
managed individually
Fi xed port, stackable switches
Pros: flexible, pay as you
z
go, cost-effective
management
Cons: performance
z
compared with modular
chassis
Modular switch chassis
Pros: high performance,
z
port density, availability
Cons: initial acquisition
z
cost, price per port
Organizations need a flexible network architecture that can be reconfigured easily as they grow, while
keeping management complexity down. Stacking allows multiple, discrete switches to be aggregated into
a single logical device, simplifying deployment and ongoing management. Fixed port, stackable switches
provide chassis-like operations such as single IP management, cross-switch link aggregation, local
switching of data within a stack, and port mirroring at near the economies of fixed port switches.
IronStack technology found on the IBM Ethernet Switch B48Y and matured over several product
generations provides such capabilities along with resilient operations including automatic switch failover,
hot switch insertion and removal, and automatic detection of shortest path when the network changes.

IBM Ethernet Switch B48Y 7
The optional 4-port 10 GbE SFP+ Interface Module (81Y1455) is required to build a stack. No additional
licenses are required. Stacking can be done over one or two of the 10 Gbps ports on the switch, providing
20 Gbps of bandwidth between stack members. The remaining two or three 10 Gbps ports can be used to
carry regular data traffic. Stacking is supported in both ring and linear topologies (Figure 5).
Figure 5. IronStack technology found on the B48Y enables a logical chassis of up to 384 ports
Consider using a ring or closed-loop topology to ensure un-interrupted stack operation in the event of a
switch or link failure. Within the stack is an Active Controller, which handles stack management and
configures all system and interface-level features, and a Standby Controller, which takes over if the Active
Controller fails. Feature configuration in a stacked setup similar to a chassis whereby interfaces are
identified in a <stack unit #>/<port region>/<port number> manner.
Regular 10GBASE-SR transceivers (69Y0389) and multi-mode fiber cable can be used to connect two
stack members over distances of up to 300 meters. This enables splitting a stack across multiple rooms
or floors for flexibility. In stacks of more than two switches, the distance between the other stacked units
can be up to 100 meters, allowing for a total ringed cable loop of 1,000 meters between eight stacked
units, ideal for most stack deployments.
More common within the data center is stacking across a row of servers, which can be done using
lower-cost SFP+ TwinAx cables (Table 4) if the switches are less than 5 meters apart. To stay within the
cabling distances of these Direct Attach Cables, a cabling method such as that illustrated in Figure 6 can
be used.
Figure 6. Using IronStack to unify the network layer across a row of servers into a single logical device

IBM Ethernet Switch B48Y 8
Any standards-based network device can connect to the switch stack. To these network devices, the
multiple discrete switches in a stack look like a single switch. Network devices can utilize
standards-based 802.3ad Link Aggregation Control Protocol (LACP) or static link aggregation connected
across multiple switch stack members to support multi-device hardware redundancy. No special setup is
required.
You can also support multi-device hardware redundancy within a rack using IronStack between the two
access switches in the same rack. This allows servers to connect to the two access switches in an
active-active configuration using standards-based link aggregation protocols, maximizing bandwidth while
also simplifying configuration. Figure 7 illustrates this topology.
Figure 7. Using IronStack within the rack enables multi-device redundancy while increasing bandwidth
utilization
Features and benefits
Features and benefits are:
Comprehensive standards support: Supporting a wide range of open IEEE and RFC standards, the
z
B48Y is fully interoperable with existing network environments. In addition, the B48Y supports
vendor-specific protocols such as Cisco Discovery Protocol (CDP), native support for Per-VLAN
Rapid Spanning Tree Plus (PVRST+), and static trunks to EtherChannel for further supportability.
IronStack technology: IronStack enables multiple discrete switches to be unified together into a single
z
logical chassis, enabling multi-device hardware redundancy, speeding up infrastructure rollouts, and
simplifying management operations. Unifying the access layer can reduce the need for spanning tree
protocol, which increases bandwidth utilization and helps flatten the network.
Double the uplink bandwidth: Supports up to four 10 Gbps uplinks, double the uplink bandwidth of
z
common 1 Gbps switches. With full-line rate traffic on all ports, 1:1 internal subscription, and up to
176 Gbps of internal forwarding performance, the B48Y ensures that your network devices have the
bandwidth that they require.
Built for the data center: The B48Y features back-to-front airflow, allowing installation into racks with a
z
hot-cold aisle design without the need for complicated air baffles. All ports are found on the front side
of the switch for easy serviceability.
Fully featured L2/L3 switch: Dynamic Layer 3 routing, advanced Layer 2 features such as Q-in-Q,
z
protected links, and advanced quality of service (QoS) are all included in the base, eliminating
complicated licensing schemes.

IBM Ethernet Switch B48Y 9
High availability: Hot-swappable and redundant power supplies and fan trays reduce downtime and
z
allow you to meet your service level agreements by increasing switch availability.
Best-in-class power efficiency: At only 112 W, the low power consumption reduces operational costs
z
tied to power and cooling and allows data centers running out of power to deploy more assets.
Industry-standard CLI: Minimize re-training and personnel costs while increasing operational
z
efficiencies by utilizing a management interface that the network team is already familiar with.
Mature operating system: The feature-rich and time-tested IronWare operating system running on the
z
B48Y and all IBM b-type system networking devices provide a consistent experience across the
network.
Granular network visibility: Hardware-based sFlow v5 provides packet sampling for analysis, trending,
z
and application of automated policies based on thresholds using industry applications such as
Brocade Ironview Network Manager.
Cost competitive: The B48Y includes all software capabilities and a 3-year warranty on the base
z
product, simplifying ordering while being priced extremely competitively compared with other vendors.
Specifications
The IBM Ethernet Switch B48Y supports the following when running IronWare R07.2.x and later (code
download and documentation can be found on the IBM Systems support site in the Related links section):
Form-factor
z
One RU; 44.0 cm (17.3 in.) width x 4.4 cm (1.7 in.) height x 43.5 cm (17.2 in.) depth
z
Rack-mount into 19” EIA-310D compliant rack, Telco rack, or table-top
z
Ports (data)
z
Forty-eight 10/100/1000 MbE RJ-45 ports with auto-MDI/MDIX detection and auto-negotiation
z
One open interface module slot
z
Interface module options
z
4-port 10 GbE SFP+ interface module (81Y1455)
z
Ports (management, out-of-band)
z
One 10/100/1000 MbE RJ-45 port
z
One DB9 male serial console port
z
Power supplies, fans, and airflow
z
Two 210 W AC hot-swappable power supplies supported for 1+1 redundancy (base switch
z
comes with 1)
One hot-swappable fan tray with four 3+1 redundant fans
z
Back-to-front airflow supports data center hot-cold aisle deployments
z
Performance
z
176 Gbps line speed full-duplex throughput
z
132 Mpps forwarding capacity
z
Jumbo frames
z
Supported, up to 10,232-byte Ethernet frame sizes
z
Media (transceivers)
z
On 4-port 10 GbE SFP+ module (81Y1455)
z
10 GbE SFP+ -SR transceivers and Direct Attach copper TwinAx cables available
z

IBM Ethernet Switch B48Y 10
VLANs
z
Up to 4096 maximum VLANs
z
802.1Q tagging
z
802.1Q-in-Q tagging
z
Dual-mode VLANs (tagged and untagged traffic across same port)
z
Port-based, protocol-based (AppleTalk, IPv4, IPv6, and IPX), and subnet-based VLANs
z
GARP VLAN Registration Protocol (GVRP) for distributed VLAN configuration
z
VLAN groups
z
Private VLANs
z
Link aggregation
z
Up to eight links per group, 32 link groups per switch
z
Static trunks compatible with Cisco EtherChannel
z
802.3ad Link Aggregation Control Protocol (LACP) for dynamic trunk groups
z
Cross-device link aggregation for switches in the same stack
z
Quality of service and rate shaping
z
Eight queues per port with strict priority (SP), weighted round robin (WRR), and combined
z
SP/WRR schedulers
802.1p class of service (CoS)
z
IP DSCP/DiffServ (type of service) to priority mapping
z
ACL, port, and static MAC address to priority mapping
z
Layer 2 CoS and Layer 3 DSCP re-marking
z
Fixed and adaptive inbound rate limiting
z
Outbound rate shaping
z
Symmetric flow control supports 802.1x transmission and receipt of 802.1x PAUSE frames
z
Layer 2
z
Up to 32,000 MAC addresses.
z
Per-VLAN Rapid Spanning Tree Protocol Plus (PVST/PVST+/PVRST+) compatibility in
z
default configuration supports smooth implementation into Cisco Layer 2 environments.
802.1d Spanning Tree Protocol (STP).
z
802.1w Rapid Spanning Tree Protocol (RSTP).
z
802.1s Multiple Spanning Tree Protocol (MSTP) enables multiple STP instances and
z
forwarding paths for more efficient traffic distribution.
Virtual Switch Redundancy Protocol (VSRP) is an alternative to STP and includes
z
sub-second convergence and Layer 2 redundancy based on the VRRPE protocol.
Metro Ring Protocol (MRP) v1/v2 enables fast, sub-second convergence in ring topologies.
z
IGMPv1/v2/v3, PIM-SM, and MLDv1/v2 Snooping reduces multicast flooding in a Layer 2
z
network.
Root Guard prevents rogue devices from hijacking STP root.
z
BPDU Guard prevents rogue devices from participating in STP.
z
DHCP Assist helps DHCP servers respond correctly to devices in a different subnet than the
z
DHCP server.

IBM Ethernet Switch B48Y 11
Layer 3
z
Up to 16,000 IPv4 routes
z
Routing Information Protocol (RIP) v1/v2
z
Open Shortest Path First (OSPF) v2
z
Internet Group Management Protocol (IGMP) v1/v2/v3
z
Protocol Independent Multicast Dense Mode (PIM-DM) v1/v2 and Sparse Mode (PIM-SM) v2
z
Equal Cost Multi Path (ECMP) for load balancing across up to eight paths
z
Virtual Router Redundancy Protocol (VRRP) and VRRP-E (Enhanced)
z
Policy-based routing (PBR) enables ACLs to be applied to routing decisions
z
Security
z
802.1x authentication, accounting, port security, and dynamic assignment for ACLs, MAC
z
filtering, and VLANs
Up to 1,534 inbound, rule-based (hardware-based) access control list (ACL) entries
z
Standard ACLs based on source IP address
z
Extended ACLs based on source and destination IP addresses or IP protocol information
z
Authorization, authentication, and accounting (AAA) support on RADIUS, TACACS, and
z
TACACS+
Multi-device authentication validates and applies security policies based on MAC address
z
information from a RADIUS server
AES encryption for SSHv2 and SNMPv3
z
Denial of service protection against Smurf (ICMP) and TCP SYN attacks
z
IP Source Guard permits traffic only after a valid IP address is learned on a port
z
DHCP Snooping prevents man-in-the-middle attacks against untrusted DHCP sources
z
Dynamic ARP inspection prevents man-in-the-middle attacks against invalid ARP bindings
z
Management
z
Industry-standard CLI via Telnet and SSHv2
z
Easy-to-use web-based GUI for device management over HTTP/HTTPS
z
Fault management integration with IBM Systems Director v6.2
z
Network-wide management of all IBM b-type system networking switches using Brocade
z
IronView Network Manager (INM)
Simple Network Management Protocol (SNMP) v1/v2/v3
z
DHCP client-based auto-configuration for automatic retrieval of configuration files and
z
firmware images
sFlow v5 for hardware-based packet sampling
z
Ties into industry tools such as Brocade INM and InMon products for trend analysis
z
and automated policy application
Remote Monitoring (RMON) protocol
z
Link Layer Discovery Protocol (LLDP), LLDP-MED (Media Endpoint Detection), Cisco
z
Discovery Protocol (CDP), and Foundry Discovery Protocol (FDP)
Simple Network Time Protocol (SNTP)
z
Firmware image update via TFTP and SCP
z

IBM Ethernet Switch B48Y 12
Monitoring
z
Syslog support of up to six Syslog servers for centralized log collection and analysis.
z
Port mirroring of inbound and outbound traffic.
z
Digital Optical Monitoring monitors power levels and temperatures of optical transceivers and
z
sends an alert if operating out of specification.
Temperature monitoring sends alerts if the temperature exceeds a certain threshold and
z
shuts down the device after an extended period of time.
Port flap dampening increases network resiliency by limiting the number of port state
z
transitions on an interface.
Link Fault Signaling (LFS) detects and reports fault conditions on 10 GbE ports.
z
Uni-Directional Link Detection (UDLD) monitors the link between two devices and brings the
z
port down if the link goes down on either end.
Connectivity options
The B48Y supports a wide variety of industry IEEE and RFC standards and should interoperate with any
network device that supports industry standard Ethernet connectivity. This includes servers, other
Ethernet switches, iSCSI Storage Area Network (SAN) arrays, Network-Attached Storage (NAS) arrays,
and other network devices.
Figure 8. IBM Ethernet Switch B48Y (front view with port labeling)

IBM Ethernet Switch B48Y 13
Table 6 lists the methods that the B48Y can use to connect to another device.
Table 6. Connectivity options
On the B48Y On the device to be connected
10/100/1000 MbE RJ-45 port
Auto-sensing, auto-negotiating,
z
auto-MDI/MDIX
Connect to any RJ-45 port or TX adapter supporting 10,
100, or 1000 Mbps Ethernet over CAT5 or higher cabling
up to 100 meters.
On optional 4-port 10 GbE SFP+ interface
module (81Y1455): SFP+ port using 10
GbE SFP+ optical transceiver:
69Y0389: 10GBASE-SR
z
The above optical transceiver receives a
duplex LC connector.
The optic on the device being connected can be another
form-factor (that is, XFP transceiver, X2 module, or
integrated into NIC), but it must have a matching optical
transmission type.
For example, a 10GBASE-SR XFP optical transceiver on
the device being connected must match a 10GBASE-SR
SFP+ optical transceiver on the B48Y within the proper
wavelength and power specifications.
Multi-mode or single-mode fiber as specified required for
connectivity. See the "Network cabling requirements"
section.
On optional 4-port 10 GbE SFP+ interface
module (81Y1455): SFP+ port using 10
GbE Direct Attach SFP+ Active TwinAx
cable:
45W2398: 1 meter
z
45W2408: 3 meter
z
45W3039: 5 meter
z
Direct Attach Cables (DACs) are copper
cables with two SFP+ transceivers attached
to either end of the cable.
It is up to the user to decide whether the interface on the
device being connected supports the IBM DAC used with
the B48Y.
Below is a list of IBM devices that have been tested for
compatibility with the part numbers in the left-hand
column. If a product is not listed, it does not necessarily
mean that it is incompatible. It simply has not been tested.
IBM server adapters:
42C1820: Brocade 10Gb Converged Network Adapter
z
for IBM System x
49Y4250: Emulex 10Gb Virtual Fabric Adapter for IBM
z
System x
42C1800: QLogic 10 Gb CNA for IBM System x
z
IBM switches (SFP+ ports on the following):
4003-B04R, 4003-B08R, 4003-B16R: IBM r-series
z
Ethernet switches
4002CY2: IBM y-series Ethernet switches
z
4002AX2, 0563-012: IBM x-series Ethernet switches
z
3758-L32: IBM Converged Switch B32
z
3722-S51, 3722-S52: Cisco Nexus 5000 series
z
Connectivity to IBM System servers
The B48Y can be deployed as a Top of Rack (ToR) access switch to provide connectivity to servers within
a rack. This includes servers from IBM System x, System p, and System i.
IBM System x servers typically come with on-board 1 Gbps Ethernet RJ-45 ports. Typical cabling on the 1
Gbps ports between the switch and the server NIC use Category 5 or higher copper cables with RJ-45
connectors supporting distances of up to 100 meters.

IBM Ethernet Switch B48Y 14
The 10 Gbps ports on the optional 4-port 10 GbE Interface Module (81Y1455) are typically used for
uplinks to the rest of the Ethernet/IP network. These ports can be connected to servers as needed. 10
Gbps Ethernet connectivity is not standard in most System x servers, and a 10 GbE NIC or 10 GbE CNA
must be installed. Only the IBM System x3850/3950 X5 series (except for the ARx model) come standard
with a customized Emulex Virtual Fabric Adapter. Table 7 lists the 10 GbE adapters that are available for
IBM System x servers.
Table 7. 10 Gbps adapters for IBM System x servers
System x
rack and
tower
server
adapter
models
Brocade
10Gb CNA
(42C1820)
N N Y N Y N Y Y Y Y N Y Y Y Y Y Y
QLogic
10Gb CNA
(42C1800)
Y Y Y N Y N Y Y Y Y N Y Y Y Y Y Y
Emulex
Virtual
Fabric
Adapter
(49Y4250)
Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
NetXtreme
II 10 GigE
Express
Fiber SR
Adapter
(42C1790)
N N Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
The Brocade 10Gb CNA [42C1820], QLogic 10Gb CNA [42C1800], and Emulex Virtual Fabric Adapter
[49Y4250] each have two SFP+ ports and can be connected to the B48Y using:
The adapter’s supported 10GBASE-SR SFP+ transceiver connected to the B48Y 10GBASE-SR
z
SFP+ transceiver [69Y0389] over multi-mode fiber cable
The Direct Attach SFP+ Active TwinAx copper cables listed in Table 4
z
The NetXtreme II 10 GigE Express Fiber SR Adapter [42C1790] has a single integrated 10GBASE-SR
optic. This port can be connected to the B48Y 10GBASE-SR SFP+ transceiver [69Y0389] over
multi-mode fiber cable.
Connectivity to IBM BladeCenter
IBM BladeCenter Ethernet Switch Modules are available with 1 Gbps and 10 Gbps Ethernet uplinks. The
B48Y can be deployed as an aggregation switch to provide connectivity between down-stream 1 Gbps
Ethernet Switch Module,s but would not typically be used to aggregate connections from 10 Gbps
Ethernet Switch Modules.

IBM Ethernet Switch B48Y 15
Table 8 lists the various IBM BladeCenter Ethernet Switch Modules that can be used to connect to the
B48Y.
Table 8. IBM BladeCenter Ethernet Switch Modules (ESM)
BladeCenter
Ethernet Switch
Module models
Part # Ext. 1
GbE
ports
Ext. 10
GbE
ports
BC H BC HT BC E BC T BC S
BNT Virtual Fabric
10Gb ESM 46C7191 10 dual-speed
SFP+ Y Y N N N
Cisco Nexus 4001I
ESM 46M6071 6 dual-speed SFP+ Y Y N N N
Cisco Catalyst
3110X ESM 41Y8522 01 X21Y Y Y Y N
10Gb Ethernet
Pass-Thru Module 46M6181 014
SFP+ Y Y N N N
BNT 1/10Gb Uplink
ESM 44W4404 6 RJ-45 3 SFP+ Y Y Y Y Y
BNT Layer 2/3
Copper ESM 32R1860 6 RJ-45 0 Y Y Y Y Y
BNT Layer 2/3 Fiber
ESM 32R1861 6 SFP 0 Y Y Y Y Y
BNT Layer 2-7
Gigabit ESM 32R1859 4 RJ-45 0 Y Y Y Y Y
Cisco Catalyst 3012
ESM 43W4395 4 RJ-45 0 Y Y Y Y Y
Cisco Catalyst
3110G ESM 41Y8523 4 RJ-45 0 Y Y Y Y N
Server Connectivity
Module 39Y9324 6 RJ-45 0 Y Y Y Y Y
Intelligent Copper
Pass-Thru Module 44W4483 14
RJ-45 0 Y Y Y Y Y
Note 1: X2 modules have duplex SC connectors. An SC-to-LC fiber cable is required to connect to a SFP+
transceiver with duplex LC connectors.
For Ethernet Switch Modules with SFP+ or X2 ports see their respective IBM Redbooks at-a-glance
guides to locate the transceivers supported. Review Table 6 for guidance on how to connect the Ethernet
Switch Module to the B48Y.
For optimal BladeCenter performance, the Intelligent Copper Pass-Thru Module (44W4483) can be used
to directly connect the internal blade server NIC mezzanine cards to the B48Y, providing maximum,
non-oversubscribed performance while eliminating a hop in the network and reducing latency.
Popular configurations
This section illustrates how the IBM Ethernet Switch B48Y can be used in various configurations.

IBM Ethernet Switch B48Y 16
Top of Rack switch
An access or edge switch is a switch that connects directly to the end devices requiring network
connectivity, most commonly servers and storage arrays in the data center. A switch that is 1 or 2 RU in
height that acts as the access switch for devices within a rack is commonly called a Top of Rack (ToR)
switch.
The B48Y is ideal for deployment as an all-purpose Top of Rack switch in demanding network
environments due to its high performance, resilient hardware characteristics, easy manageability, and
comprehensive network features support. The B48Y can also be used to support NAS or iSCSI SAN
storage in a shared or dedicated network environment (Figure 9).
Figure 9. IBM Ethernet Switch B48Y as Top of Rack switch with server and storage connections

IBM Ethernet Switch B48Y 17
Table 9 outlines the components used in Figure 9.
Table 9. Components used in reference to Figure 9
Diagram
reference
Part number/
machine type Description Quantity
0563-022 IBM Ethernet Switch B48Y, with optional
4-port 10 GbE Interface Module (SFP+) (FC
6687).
2
Varies IBM System x server with 1 GbE NICs.
Other vendor servers can be used.
Twenty 1 RU
Four 2 RU
Varies NAS array. Varies
Varies
Existing network infrastructure that can
include IBM Systems Networking devices and
other standards-compliant Ethernet/IP
switches and routers.
-
0563-022
IBM Ethernet Switch B48Y, with optional
4-port 10 GbE Interface Module (SFP+) (FC
6687).
2
Varies iSCSI SAN array. Varies
Solution details:
Thirty-four rack units
z
1:1 subscription ratio within rack
z
Up to 1.2:1 subscription ratio to rest of network
z
Connectivity to NAS and/or iSCSI SAN for mid-range scalable storage
z
In the solution shown in Figure 9 we have two IBM Ethernet Switch B48Ys providing connectivity to all
devices within a single rack. The B48Ys can be in a stacked or non-stacked configuration:
In a stacked configuration, two of the four 10 GbE ports are used for stacking to provide a
z
high-bandwidth backplane between the switches. Stacking simplifies manageability and allows
servers to utilize Active-Active NIC teaming with standards-based link aggregation to each of the two
switches in the rack. The remaining four 10 GbE ports in the dual-stacked switches connect to the
rest of the network, providing 40 Gbps of bandwidth to the rest of the network. See Figure 7 for an
example.
In a non-stacked configuration, up to four 10 GbE uplinks per switch can be used to connect to the
z
rest of the network, allowing organizations to deploy highly utilized networks while avoiding
congestion during peak usage.
The B48Y can also be used to connect to NAS arrays for scale-out file sharing and also to a separate
iSCSI SAN for dedicated storage access as bandwidth and security needs require.

IBM Ethernet Switch B48Y 18
Network device connections
Figure 10 shows an example of the type of options that can be used to connect devices to the IBM
Ethernet Switch B48Y.
Figure 10. IBM Ethernet Switch B48Y device connections

IBM Ethernet Switch B48Y 19
Table 10 outlines the components shown in Figure 10.
Table 10. Components shown in Figure 10
Diagram
reference
Part number/
machine type Description Quantity
0563-022 IBM Ethernet Switch B48Y 2
Varies
IBM x3850/x3960 X5 (except ARx model)
Comes with 2-port 10 GbE (SFP+) Emulex
z
Virtual Fabric Adapter.
Connections to 10 GbE ports require
z
optional 4-port 10 GbE Interface Module
(81Y1455).
Use a single Direct Attach Cable (TwinAx)
z
to connect to B48Y, available in 1, 3, or 5
meters. (See Table 4.)
-
Varies NAS or iSCSI storage array. Varies
41Y8522
Cisco Catalyst 3012 Ethernet Switch Module.
Connect to 1 GbE RJ-45 ports on controller
using Category 5 or higher copper cabling.
2
Varies
IBM System x server.
Connect to on-board 1 GbE RJ-45 ports using
Category 5 or higher copper cabling.
-
Varies
Other servers with 1 GbE NIC.
Connect to on-board 1 GbE RJ-45 ports using
Category 5 or higher copper cabling.
-

IBM Ethernet Switch B48Y 20
Interoperating in existing network environments
The IBM Ethernet Switch B48Y interoperates seamlessly in existing network environments utilizing
standards-based protocols. Figure 11 shows the B48Y used as an access and aggregation switch.
Figure 11. IBM Ethernet Switch B48Y connecting to the network infrastructure
Table of contents
Other IBM Network Router manuals

IBM
IBM BladeCenter 1/10 Gb Uplink Ethernet... User manual

IBM
IBM m-series User manual

IBM
IBM SAN04M-R Manual

IBM
IBM J02M User manual

IBM
IBM E12 User manual

IBM
IBM 2220 Nways 300 User manual

IBM
IBM RackSwitch G8264T User manual

IBM
IBM 8364 E series User manual

IBM
IBM IBM 9077 Specification sheet

IBM
IBM Ethernet Switch r-series User manual