ST STDES-50W2CWBC Specification sheet

Introduction
The STDES-50W2CWBC dual-coil reference design is based on the STWBC2-HP Qi-compliant, inductive wireless charger
transmitter. It supports two coils, which could work alternatively to increase the Rx positioning freedom. The solution supports
Qi EPP-compliant mode up to 15 W, featuring an ST proprietary protocol. It can also support 50 W or an even higher wireless
power transfer.
The embedded STWBC2-HP integrates the following main components:
• three pairs of half-bridge gate drivers
• a dedicated DC-DC controller that supports buck, boost, and buck-boost topologies
• high-performance Q-factor detection hardware
• a high-resolution main PWM controller
• a dedicated Qi communication modulator and demodulator
• a USB-PD controller
• a buck DC-DC
• a charge-pump
The STDES-50W2CWBC is a fully assembled reference design developed for performance evaluation only, not available for
sale.
To achieve the best performance, carry out some procedures before finalizing the application.
This document summarizes the following fundamental steps:
• power supply test
• firmware downloading test
• power-on LED status check
• parameter setting test
• presence detection test
• power transfer switching test
• ST super charger (STSC) protocol test
• ASK demodulation test
• Q-factor accuracy test
STDES-50W2CWBC test report
TN1399
Technical note
TN1399 - Rev 1 - March 2022
For further information contact your local STMicroelectronics sales office.
www.st.com

1Overview
Wireless power transfer is a fast-growing technology in many application fields. The wireless power can be from
several mW (for example, in the medical field) to tens of kW (for example, an electronic vehicle).
There are multiple physical mechanisms to address the wireless power, such as magnetic inductance, magnetic
resonance, capacitive coupling, radio frequency, laser charging, etc.
The most popular mechanism is the magnetic inductive that follows the Qi standard defined by the Wireless
Power Consortium (WPC).
The STDES-50W2CWBC dual-coil reference design follows the WPC MP-A2 topology.
Figure 1. STDES-50W2CWBC reference design
Fully assembled board developed for
performance evaluation only,
not available for sale
Figure 2. Block diagram of a typical power transfer system
TN1399
Overview
TN1399 - Rev 1 page 2/26

2Specifications
The STDES-50W2CWBC specifications can be summarized as follows (refer to the figure below for the related
blocks):
• the boost DC-DC supports 60 W (20 V/3 A) input and 30 V+ output
• the full bridge converter supports an AC voltage ≤ ±100 V
• the coil switcher alternatively switches the two LC tanks for coils alternatively into high voltage
• the STLINK-V3MINI interface with SWD for firmware debug and UART for demo GUI
• the I²C interface supports external daughter boards through I²C (for example, STSAFE-A110 for
authentication)
Figure 3. STDES-50W2CWBC main blocks
TN1399
Specifications
TN1399 - Rev 1 page 3/26

3Test setup
3.1 Test conditions and equipment
The following tables list the equipment and tools used to test the STDES-50W2CWBC.
Table 1. Test equipment
Item Type Features/Description Reference
I1 STDES-50W2CWBC Evaluation board x1
I2 34401A 6 ½ digit multimeter by Agilent x1
I3 6403E PC oscilloscope by Pico x1
I4 E4980A LCR meter by Keysight x1
Table 2. Test tools
Item Type Description Order code/Reference Provided by
ST
C1 STLINK-V3MINI STLINK-V3 compact in-circuit debugger and
programmer for STM32 STLINK-V3MINI Yes
C2 STM32Cube STM32 programmer tool used to download
the firmware into the evaluation board STM32Cube Yes
C3 STWBC2 GUI Tool to check the board behavior, perform
the tuning, and collect logs in case of failure - Yes
C4 Firmware Firmware binary stdes-50w2cwbc_FW_v1.0.0.0.hex Yes
C5 STWLC88 or
STWLC98
Qi-compliant inductive wireless charger
power receiver for 50 W applications or 70
W applications
STWLC88 or STWLC98 Yes
C6 Wall adapter USB PD wall adapter - No
C7 USB Type-C™ cable 4 A or 5 A cable - No
3.2 Procedure
To achieve the best performance, follow the procedure below.
Step 1. Test the power supply.
The on-board DC-DC buck converter provides a supply voltage VDD starting from an external VIN DC
source. The VDD voltage is available on an external pin. It supplies the internal voltage regulators LDO
3V3 and LDO 1V8. These regulator outputs are available on an external pin. The STWBC2-HP should
generate its own power supplies directly from the VIN.
The aim of this test is to ensure that the STWBC2-HP is correctly powered. The table below shows the
reference range.
Table 3. Internal voltage range
Item Min. (V) Typ. (V) Max. (V)
VBUCK 3.42 3.6 3.78
LDO 3V3 3.1 3.3 3.5
LDO 1V8 1.7 1.8 1.9
Step 2. Download the firmware.
The firmware offers all the standard functionalities. It also supports the STWBC2-HP embedded USB-
PD.
TN1399
Test setup
TN1399 - Rev 1 page 4/26

Step 3. Check the status of the power-on LEDs to ensure that the STWBC2-HP is correctly working.
There are three LEDs on the board that indicate the STWBC2-HP power-on status when the firmware
is available.
The table below shows the correct LED status.
Table 4. Power-on LED status
Item Color Behavior
D209 Green Always on
D202 Red Long blink once plus short blink once
D203 Green Long blink once
Step 4. Set the STWBC2-HP parameters for the board initialization.
Important: Disable the FOD and protection features in the STWBC2_GUI.
Step 5. Test the presence detection alternatively on the two coils.
The table below shows the level, duration, and cycle of the presence detection.
Table 5. Presence detection specifications
Item Level (V) Duration (ms) Cycle (ms)
RING_NODE1 ~6 ~80 ~1900
RING_NODE2 ~6 ~80 ~1900
Step 6. Test the power transfer switching.
The oscillation waveform appears in the activated RING_NODE, while the switching waveform appears
in another inactive RING_NODE. The switching waveform should be off in the half bridge mode and
square-waved in the full bridge mode.
Step 7. Test the ST super charger (STSC) protocol.
The STSC can support a higher power transfer than the Qi EPP. The table below shows its basic
behavior.
Table 6. Level of the STSC power supplies
Mode VIN VDCDC
Presence detection 5 V 12 V
Digital ping 9 V 12 V
STSC 5 V 9 V 12 V
STSC 9 V 9 V 9 V
STSC 12 V 12 V 12 V
STSC 15 V 15 V 15 V
STSC 18 V 15 V 16.5~18 V
STSC 20 V 20 V 20 V
Step 8. Test the ASK demodulation.
The firmware can route the demodulation result (V, I) to a GPIO, which should be close to the Rx
modulation waveform.
Step 9. Test the Q-factor accuracy.
Comparing the Q-factor measurement accuracy with the LCR meter, the Q-factor measurement
accuracy should be close to the LCR meter.
TN1399
Procedure
TN1399 - Rev 1 page 5/26

4Measurements/waveforms/test data
4.1 STWBC2-HP startup waveform
Once the board is supplied, you can check each voltage during the startup as described below:
1. the board is supplied by the USB PD adapter and the voltage is ready and stable at about 5 V
2. the internal DC-DC buck converter and LDOs are starting
3. the internal 1.8 V LDO is ready and the output is stable at 1.8 V
4. the internal 3.3V LDO is ready and the output is stable at 3.3 V
5. the internal DC-DC buck converter is ready and the output is stable at 3.6 V
Figure 4. Typical startup waveform: power-on sequence
4.2 Presence detection waveform
Once the STWBC2-HP power-up is ready, you can check the presence detection waveform at RING_NODE1
triggered by TANK1_SEL and RING_NODE2 triggered by TANK2_SEL as described below:
1. the RING_NODE1 starts oscillating about 75 ms in the end of TANK1_SEL active high and the
RING_NODE2 is off
2. the RING_NODE2 starts oscillating about 75ms in the end of TANK2_SEL active high and the
RING_NODE1 is off
3. the RING_NODE1 starts oscillating again in the end of TANK1_SEL active high and the RING_NODE2 is off
4. the RING_NODE1 and RING_NODE2 repeat the above process in a period of about 900 ms
TN1399
Measurements/waveforms/test data
TN1399 - Rev 1 page 6/26

Figure 5. Presence detection waveform
4.3 Power transfer switching waveform
Once the STWBC2-HP presence detection is working correctly, you can check the power transfer switching
waveform at RING_NODE1 reference to TANK1_SEL and RING_NODE2 reference to TANK2_SEL as described
below.
1. Put the Rx coil on the Tx coil 1 and set the Rx output to 5 V. The RING_NODE1 appears sine-waved while
the RING_NODE2 is off (see Figure 6).
2. Put the Rx coil on Tx coil 2 and set the Rx output to 5 V. The RING_NODE2 appears sine-waved while the
RING_NODE1 is off (see Figure 7).
3. Put the Rx coil on the Tx coil 1 and set the Rx output to 9 V. The RING_NODE1 appears sine plus
square-waved while the RING_NODE2 is square-waved (see Figure 8).
4. Put the Rx coil on the Tx coil 2 and set the Rx output to 5 V. The RING_NODE2 appears sine plus
square-waved while the RING_NODE1 is square-waved (see Figure 9).
TN1399
Power transfer switching waveform
TN1399 - Rev 1 page 7/26

Figure 6. Coil 1 in half-bridge mode
Figure 7. Coil 2 in half-bridge mode
TN1399
Power transfer switching waveform
TN1399 - Rev 1 page 8/26

Figure 8. Coil 1 in full-bridge mode
Figure 9. Coil 2 in full-bridge mode
4.4 STSC waveform
The STSC protocol supports a higher power transfer. The figure below shows the typical waveform.
TN1399
STSC waveform
TN1399 - Rev 1 page 9/26

Figure 10. Power automatic boost (5-20 V)
4.5 ASK demodulation waveform
The firmware can route the demodulation result (V, I) to a GPIO, which should be close to the Rx modulation
waveform. The figure below shows the typical waveform.
Figure 11. ASK demodulation frame
TN1399
ASK demodulation waveform
TN1399 - Rev 1 page 10/26

4.6 Q-factor accuracy test
The Q-factor measurement accuracy of the STDES-50W2CWBC dual-coil reference design should be close to
the LCR meter. The table below shows the test results.
Table 7. Q-factor accuracy test with RMB coins
DTU One Yuan 50 cents 10 cents
LCR 11.7 18.1 29.4
Coil 1 11.3 18.4 31.5
Coil 2 11.4 18.3 31.1
TN1399
Q-factor accuracy test
TN1399 - Rev 1 page 11/26

5Schematic diagrams
Figure 12. STDES-50W2CWBC circuit schematic (1 of 4)
FAN CONTROL
STLINK V3
ESDESD
ESDESD
1
DP1
2
DM 1
3
G ND
6DP2
5DM 2
4NC
D102
ECM F02-2 AM X6
R102 10 R
R100 NP
D100
ESDA25P35-1U1 M
R101 10 R
B12
G ND B11
RX+1 B10
RX-1 B9
VBUS B8
SBU2 B7
B5
B4
A12
B3
SBU1
VBUS
RX-2
RX+2
G ND
B2
B1
A1 G ND
A2
D-2
D+2
CC2
VBUS
TX-2
TX+2
G ND
TX+1
A3 TX-1
A4 VBUS
A5 CC1
A6 D+1
A7 D-1
A8
A9
A10
A11
G ND 1 G ND
G ND 2 G ND
G ND 3 G ND
B6
G ND 4 G ND
SH1
G ND SH2
G ND SH3
G ND SH4
G ND
J100
632723300011
R107
0 R
R106
0 R
R103 NP
C100
X7R
50V
100NF
D104
BAT30KFILM
NTR4003NT1G
3
D
1G
2S
Q 100
N-M O S
R108
0 R
C101
X7S
50V
10UF C102
X7S
50V
10UF
TP101
TP100
TP102
TP103
2
1
3
D103
ESDALC6V1M 3
C104
X7R
50V
33NF
2
4
8
10
1
3
5
7
9
11
6
13
12
14
J101
FTSH-107-01-L-DV-K-A
VIN
USB_DP
USB_DM
USB_D+
USB_D-
UART_TX
UART_RX
USB_D+
USB_D-
USB_CC2
USB_CC1
VBUCK
FAN
3V3
SW DIO
SW CLK
UART_RX
UART_TX
NRESET
TN1399 - Rev 1 page 12/26
TN1399
Schematic diagrams

Figure 13. STDES-50W2CWBC circuit schematic (2 of 4)
Truth Table
IN
Switch S1
L
H
Voltage doubler
Additional NTC
RING_SNS Switch
QF_DRV Switch
C211
50 V X7R
330NF
C213
50 V X7R
330NF
R219
10 R
1X1 3
X2
2
COVER2COVER1
4
Y 20 0
16 M HZ -1 0P PM - 8P F
R205 NP
C206
35V
X5R
10 UF
TP 200
R204 1 0 K
R200 0R 1
C203
X7R
50V
100NF
NTC
R206
47 K
R202
10 K
C212
50 V X7R
330NF
R218
3. 3 K 1%
R201
10 R
R203
150 K
R217
470 K
D206
S O D5 23
BAT54 KFI LM
R208
10 K
D204
S O D5 23
BAT54 KFI LM
R209 10 K
/I2C
driver
gat e
Boostrap
driver
gate
Boostrap
Main PWM
driver
gate
Boostrap
Analog
Demod
Q- F dri ver
Controller
DCDC
Mai n PWM
PD/QC
Buck
USB
ISns
6
VDD
2
LD O _ 3V 3
3
VRE F_A
4
M C U_3 V3
8M C U_V SS 1
60 USB _DM
59 USB _DP
11 X T AL _O UT
10 X TAL _IN
12 NRS T
5
LD O _ 1V 8
46 L ED1
47 L ED2
27
VDD _DR
23 S P I_ M IS O
24 S P I_ M O SI
21 UAR T_T X 28
HS1_ BT
29
HS 1_ G D 30
HS1_ SW
31
LS 1 _G D
36
HS2_ BT
35
HS 2_ G D 34
HS2_ SW
32
LS 2 _G D
41 G N D_ DR
9
BUCK _FB
14
BUCK _SW
15
BUCK _BT
16
VIN
22 UAR T_R X
43
G P IO _ DR 1
42
G P IO _ DR 0
48 S W D IO
49 S W C LK
25 S PI_ NS S
1IR Q
68 A G ND
54
B RG _ VR EF
20 S PI_ CLK
19 T E M PS NS
53
B RG _ IS NS_ P 52
B RG _ IS NS_ M
50
B RG _ VS NS
62 I 2C_ SDA
6
STWBC2-HP
3I2 C_S CL
13 P G ND
55
B RG _ ID EM
56
B RG _ FT _S
57
B RG _ FT _R
7M C U_V SS
64
R ING _ FT _S
65
R ING _ FT _R
66
Q F_ D RV
69 EPAD
33
DCD C_S NS
17 V IN_ISNS_P
18 V IN_ISNS_N
26
V DO UB _S W
37
HS3_ BT
38
HS 3_ G D 39
HS3_ SW
40
LS 3 _G D
44
G P IO _ DR 2 45
G P IO _ DR 3
58 CC1
61 CC2
67
R ING _ SNS
51
DCDC_FB
U200
R207
1%
47 K
D205
S O D5 23
BAT54 KFI LM
C200
NP
L200
10 uH
D200
R B5 41 VM - 40
D201
VDD _DRVDD _DR
R B5 41 VM - 40
C216
X7R
50V
10 NF
C221
C0G
50V
8. 2PF
C222
C0G
50V
8. 2PF
C227
X7R
50V
10 NF
C208
C0G
50V
1NF
C202
X5R
50V
470NF
C215
X7R
25V
100NF
C217
X7R
25V
100NF
C218
X7R
25V
100NF
C223
X7R
25V
100NF
C224
X7R
25V
100NF
C228
C0G
50V
33 PF
C220 X7 R
100V
1NF
R220
0 R
NTC
R211
47 K
R210
150 K
R213
470 K
C225
X7R
50V
10 NF
1IN
2VCC
3G ND
6
S2
5
D
4
S1
U202
S TG 7 19 ST R
C226
X7R
25V
100NF R222
3. 3 K 1%
R223
1%
47 K
C229
C0G
50V
33 PF
C230 X7 R
100V
1NF
D3
1G
2S
Q 20 2
N- M O S
2N7002
D3
1G
2S
Q 20 1
N- M O S
2N7002
R228
4. 7 K
R227
4. 7 K
C204
16V
10 UF
X5R C23 6
X7R
25V
100NF
C201
X5R
6. 3V
4. 7UF
C234
NP
C235
X5R
6. 3V
4. 7UF
C233
NP
R212 2. 2R
R225 2. 2R
R226 2. 2R
C209
X7R100V
5. 6NF
3D
1G
S2
Q 20 0
N-M O S
1IN
2VCC
3G ND
6
S2
5
D
4
S1
U201
S TG 7 19 ST R
C237
X7R
25V
100NF
C231
X7R100V
5. 6NF
D3
1G
2S
203
BAT54 KFI LM
Q
N-M O S
D208
BAT54 KFI LM
C214
X7R
50V
10 NF
C207
X7R
25V
100NF
C238
X7R
6. 3V
1UF
C239
NP
C210
X7R
50V
100NF
4O UT
5VCC
3
IN-
1
IN+
2G ND
U203
LMV321ILT
R229 10 K R230
0. 1%
330 K
C240
C O G 50 V
1NF
R231
0. 1%
1. 2KR232
0. 1%
9. 1K
C241
X7R
50V
100NF
C242
X7R
50V
100NF
R233
0. 1%
5. 6K
R234
0. 1%
330 K
C243
X7R
50V
100NF
J2 01
1
2
3
4
D203
G R EE N
D202
RED
D207
R235 100 R
R236 100 R
D209
G R EE N
R237
4. 7 K
VBUC K
3V 3
3V 3
3V 3
VBUC K
VIN
VDCDC
USB_ DP
USB_ DM
S W DI O
S W CL K
UART _TX
UART _RX
S W _HS 2
G D _L S2
NRES ET
USB_ CC2
USB_ CC1
G D _HS 1
S W _HS 1
G D _L S1
G D _HS 2
G D _HS 3
S W _HS 3
G D _L S3
B RI DG E _I SNS _ P
R ING _ NO DE 1
I2 C_S CL
I2 C_S DA
VIN_ IS NS _N
VIN_ IS NS _P
S W _HS 1
FA N
LE D1
LE D2
3V 3
TE M P
TE M P
TA NK 1_S EL
TA NK 2_S EL
TA NK 1_S EL
R ING _ SNS
R ING _ NO DE 2
R ING _ SNS
TA NK 1_S EL
TA NK 2_S EL
Q F_ S HO RT
Q F_ D RV
VBUC K
B RI DG E _I SNS _ N
3V 3 3V3
I2 C_S CLI 2C _SD A
1V 8
1V 8
R ING _ NO DE 1
TA NK 1_S EL
R ING _ NO DE 2
Q F_ D RV
Q F_ S HO RT
VBUC K
VRE FVRE F
VRE F
3V 3 VREF
B RI DG E _I SNS _ P
D CD C_ SH O RT
3V 3
I2C_S CL
I2C_S DA
VBUC KVBUC K
LE D1
LE D2
LE D3
3V 3
LE D3
Switch S2
OFF
OFF
ON
ON
/SPI
GPIO
UART
GPIO
TN1399 - Rev 1 page 13/26
TN1399
Schematic diagrams

Figure 14. STDES-50W2CWBC circuit schematic (3 of 4)
DC-DC BOOST SYNCHRONOUS
DC-DC SHORT
R304
10 K
R302
0 R
R301
0 R
G
S
D
5
4
1
6
7
8
2
3
Q 301
STL20N6F7
C302
X7R
50V
100NF
R303
10 K
R305
10 R
G
S
D
5
4
1
6
7
8
2
3
Q 300
STL20N6F7
R300
0.010R/2W
C312
NP
C313
C0G
50V
1NF
L300
3.3uH
R306
10 R
C315
X7R
50V
10NF
R307
10 R
C309
X7R
50V
100NF
C314
X7R
50V
10NF
C310
50V
CO G
1NF
R410
100 K D400
10V
G
D
S
5
4
1
6
7
8
2
3
Q 404
P-M O S
10K
10K
1
2 3
Q 405
NPN
R411 10 K
C304
X7S
50V
10UF
+
C308
47UF
50V
VIN
G D_HS 1
G D_LS1
VIN_ISNS _ P
VIN_ISNS _ N
SW _HS 1
SW _HS 1
VDCDC
VIN
DCD C_ SHO RT
VBRIDG E
TN1399 - Rev 1 page 14/26
TN1399
Schematic diagrams

Figure 15. STDES-50W2CWBC circuit schematic (4 of 4)
GND POWER
Derating >7uF at 20V
C419-C420-C421-C422
coil Qi-MPA2 10uH
R406
NP
R413
10 K
R402
NP
L400
1uH
R403 0 R
R408
0.010R 0.1% 1W
R404
0 R
C400
X7R
50V
100NF
G
S
D
5
4
1
6
7
8
2
3
Q 400
STL20N6F7
R400
0 R
R401
NP
G
S
D
5
4
1
8
7
6
3
2
Q 401
STL20N6F7
R415
10 K
R412
10 K
R414
10 K
G
S
D
5
4
1
8
7
6
3
2
Q 403
STL20N6F7
R407 0 R
G
S
D
5
4
1
6
7
8
Q 402
2
3
STL20N6F7
C406
0402
NP
C414
NP
C413
NP
G
S
D
5
4
1
6
7
8
2
3
Q 406
STL20N6F7
G
S
D
5
4
1
6
7
8
Q 407
2
3
STL20N6F7
C411
NP
R418
NP
R221 0R
R224 0R
C232
DNP
50V
C0G
G
S
D
5
4
1
8
7
6
3
2
Q 409
STL20N6F7
G
S
D
5
4
1
8
7
6
3
2
Q 408
STL20N6F7
R424
DNP
1206
C404
X7S
100V
DNP
R420
DNP
1206
C401
X7S
100V
DNP
R416 10K R421 10K
C402
C0G
50V
1NF
D401
1N4148WS C418
X7R
50V
10NF R422
47K
R423 10K R425 10K
C423
C0G
50V
1NF
D402
1N4148WS C425
X7R
50V
10NF R428
47K
Q411
BC856B Q412
BC856B
C431
X7R
50V
100NF
C432
X7R
50V
100NF
C433
X7R
50V
100N
1
coil Qi-MPA2 10uH
TP401 TP400
1
C407
C0G 100V
100NF
1
TP403
1
TP404
C408 100NF
C0G 100V
C409 47NF
F
C0G 100V
C410
C0G 100V
100NF
C412
C0G 100V
100NF
C415 47NF
C0G 100V
C419
X7S
50V
10UF
C420
X7S
50V
10UF C421
X7S
50V
10UF
C422
X7S
50V
10UF
10K
10K
1
2 3
Q 410
NPN
10K
10K
1
2 3
Q 413
NPN
VDCDC
G D_HS 3
G D_LS3G D_LS2
G D_HS 2
BRIDG E _I SNS_P
SW _HS 2 SW _HS 3
RING _ NO DE1
BRIDG E _I SNS_N
RING _ NO DE2
TANK 1_ O N
TANK 2_ O N
TANK1_S E L
VDD_DR
TANK 1_ O N
TANK2_S E L
VDD_DR
TANK 2_ O N
VBR ID G E
TANK1_S W
TANK2_S W
TANK1_S W T ANK2_SW
TN1399 - Rev 1 page 15/26
TN1399
Schematic diagrams

6Bill of materials
Item Q.ty Ref. Part/value Description Manufacturer Order code
1 9
C207
C215
C217-218
C223-224
C226
C236-237
100 nF, 0402, 25 V, ±10 %,
X7R. SMD Capacitors Kemet or
generic C0402C104K3RACTU
2 8
C214
C216
C225
C227
C314-315
C418
C425
10 nF, 0402, 50 V, ±10 %,
X7R, SMD Capacitors Kemet or
generic C0402C103K5RACTU
3 6
C208
C240
C310
C313
C402
C423
1 nF, 0402, 50 V, ±5 %, C0G,
SMD Capacitors Kemet or
generic C0402C102J5GACTU
4 2 C220
C230
1 nF, 0402, 100 V, ±10 %,
X7R Capacitors Kemet or
generic GRM155R72A102KA01D
5 1 C238 1 µF, 0402, 6.3 V, ±10 %,
X7R Capacitor Kemet or
generic C0402C105K3RACTU
6 2 C228-229 33 PF, 0402, 50 V, ±5 %,
C0G, SMD Capacitors Kemet or
generic C0402C330J5GACTU
7 2 C201
C235
4.7 µF, 0402, 6.3 V, ±20 %,
X5R, SMD Capacitors Murata or
generic GRM155R60J475ME47
8 1 C202 470 nF, 0402, 35 V, ±10 %,
X5R, SMD Capacitor Kemet or
generic C1005X5R1V474M050BC
9 2 C221-222 8.2 PF, 0402, 50 V, ±5 %,
C0G, SMD Capacitors Kemet or
generic C0402C829J5GACTU
10 10
C101-102
C304-307
C419-422
10 µF, 1210, 50 V, ±10 %,
X7S. SMD Capacitors Murata GCM32EC71H106KA03L
11 4
C407-408
C410
C412
100 nF, 1812, 100 V, ±5 %,
G0G, SMD Capacitors TDK C4532C0G2A104J320KA
12 2 C409
C415
47 nF, 1812, 100 V, ±5 %,
G0G, SMD Capacitors TDK C4532C0G2A473J200KA
13 12
C100
C203
C210
C241-243
C302
C309
C400
C431-433
100 nF, 0603, 50 V, ±10 %,
X7R, SMD Capacitors Kemet or
generic C0603C104K5RACTU
14 1 C204 10 µF, 0603, 16 V, ±20 %,
X7R, SMD Capacitor Murata or
generic GRM188R61C106MA73
15 1 C206 10 µF, 0603, 35 V, ±20 %,
X5R, SMD Capacitor Murata or
generic GRM188R6YA106ME15D
16 3 C211-213 330 nF, 0603, 50 V, ±10 %,
X7R, SMD Capacitors TDK or
generic C1608X7R1H334K080AC
TN1399
Bill of materials
TN1399 - Rev 1 page 16/26

Item Q.ty Ref. Part/value Description Manufacturer Order code
17 2 C209
C231
5.6 nF, 0603, 100 V, ±10 %,
X7R, SMD Capacitors Kemet or
generic C0603C562K5RACTU
18 1 R300
R408
0.010R, 1 W, 2512, 1 W, ±0.1
%, SMD Resistors
Vishay
Precision
Group Foil
Resistors
Y14870R01000B9R
19 12
R106-108
R220-221
R224
R301-302
R400
R403-404
R407
0 R, 0402, 1/16 W, ±5 %,
SMD Resistors Yageo or
generic RC0402JR-070RL
20 1 R200 0R1, 0402, 1/16 W, ±5 %,
SMD Resistor Yageo or
generic RL0402JR-070R1L
21 1 R231 1.2 K, 0402, 1/16 W, ±0.1 %,
SMD Resistor Yageo or
generic RE0402BRE071K2L
22 12
R202
R204
R208-209
R229
R303-304
R411-415
10 K, 0402, 1/16 W, ±5 %,
SMD Resistors Yageo or
generic RC0402JR-0710KL
23 7
R101-102
R201
R219
R305-307
10 R, 0402, 1/16 W, ±5 %,
SMD Resistors Yageo or
generic RC0402JR-0710RL
24 1 R410 100 K, 0402, 1/16 W, ±5 %,
SMD Resistor Yageo or
generic RC0402JR-07100KL
25 4
R416
R421
R423
R425
10K, 0402, 1/16 W, ±5 %,
SMD Resistors Yageo or
generic RC0402JR-0710KL
26 2 R203
R210
150 K, 0402, 1/16 W, ±5 %,
SMD Resistors Yageo or
generic RC0402JR-07150KL
27 3 R212
R225-226
2.2 R, 0402, 1/16 W, ±5 %,
SMD Resistors Yageo or
generic RC0402JR-072R2L
28 2 R218
R222
3.3 K, 0402, 1/16 W, ±1 %,
SMD Resistors Yageo or
generic RC0402FR-073K3L
29 2 R230
R234
330 K, 0402, 1/16 W, ±0.1 %,
SMD Resistors Yageo or
generic RE0402BRE07330KL
30 3 R227-228
R237
4.7 K, 0402, 1/16 W, ±5 %,
SMD Resistors Yageo or
generic RC0402JR-074K7L
31 1 R233 5.6K, 0402, 1/16 W, ±0.1 %,
SMD Resistors Yageo or
generic RE0402BRE075K6L
32 2 R207
R223
47 K, 0402, 1/16 W, ±1 %,
SMD Resistors Yageo or
generic RC0402FR-0747KL
33 2 R213
R217
470 K, 0402, 1/16 W, ±5 %,
SMD
RESISTOR SMD 470
K_5%_0402_1/16W
Yageo or
generic RC0402JR-07470KL
34 2 R422
R428
47 K, 0402, 1/16 W, ±5 %,
SMD Resistors Yageo or
generic RC0402JR-0747KL
35 1 R232 9.1K, 0402, 1/16 W, ±0.1 %,
SMD Resistors Yageo or
generic RE0402BRE079K1L
36 2 R206
R211 47 K, 0402 NTC resistors Murata NCP15WB473F03RC
TN1399
Bill of materials
TN1399 - Rev 1 page 17/26

Item Q.ty Ref. Part/value Description Manufacturer Order code
37 1 L200 10 µH, L2.5_W2.0_H1.2, 1.3
A, DCR max 0.540 ohm ISAT TDK VLS252012HBX-100M-1
38 1 L400 1 µH, IND_L6.8_W6.8, 4.6 A,
RDC = 14 mohm max. ISAT Wurth
Elektronik 744062001
39 1 L300 3.3 µH, L9.2_W8.5, 8.25 A,
±20 %, 0.0149 ohm Power inductor Wurth
Elektronik 74437358033
40 2 Q411-412 BC856B, SOT323, 80 V PNP ONSEMI BC856BMTF
41 3
Q405
Q410
Q413
NPN, SOT323, 50 V, 100 m
A, 205 mW RB = RC = 10 K Transistors NXP PDTC114EU,135
42 1 Q100 N-MOS, SOT23, 30 V, 0.56 A Small signal MOSFET ONSEMI NTR4003NT1G
43 1 D400 10 V, SOD323, 0.2 W Voltage regulator NXP or
generic BZX384-C10,115
44 1 Q404 P-MOS, POWERDI3333-8,
30 V, 11.5 A P-MOS Diodes
Incorporated DMP3017SFGQ-7
45 2 D401-402 1N4148WS-7-F, SOD323, 75
V, 150 m A General purpose diodes Diodes
Incorporated 1N4148WS-7-F
46 2 Q201-202 N-MOS, SOT23 Enhancement mode field
effect N-MOS ONSEMI 2N7002
47 2 Q200
Q203
N-MOS, SOT723-3, 20 V,
0.89 A Small signal MOSFETs ONSEMI NTK3134NT1G
48 1 Y200 16MHZ-10PPM-8PF,
L2.0_W1.6 SMD crystal NDK NX2016SA 16MHz
EXS00A-CS06655
49 1 J100 632723300011,
CON_USB_C_632723300011
USB TYPE
C_632723300011
Wurth
Elektronik 632723300011
50 1 J101
FTSH-107-01-L-DV-K-A,
CON_FTSH-107-01-L-DV-K-
A
SMD_HEADER_2x7_P1.27 Samtec FTSH-107-01-L-DV-K-A
51 1 J201 4PIN, 1X4, 2.54 mm Connector Any -
52 1 D100 ESDA25P35-1U1M, QFN-2L High-power transient
voltage suppressor ST ESDA25P35-1U1M
53 1 D102 ECMF02-2AMX6, QFN-6L
Common-mode filter and
ESD protection for USB 2.0
and MIPI/MDDI interfaces
ST ECMF02-2AMX6
54 1 D103 ESDALC6V1M3, SOT883
Dual low capacitance
Transil array for ESD
protection
ST ESDALC6V1M3
55 1 D104 BAT30KFILM, SOD-523
30 V, 300 mA SMD general
purpose signal Schottky
diode
ST BAT30KFILM
56 5 D204-208 BAT54KFILM, SOD-523
40 V, 300 mA general
purpose signal Schottky
diodes
ST BAT54KFILM
57 2 D200-201 RB541VM-40, SOD-323, 40
V, 200 m A, SMT Schottky diodes Rohm RB541VM-40TE-17
58 10
Q300-301
Q400-403
Q406-409
STL20N6F7, PowerFLAT
3.3x3.3
N-channel 60 V, 0.0046
Ohm typ., 20 A STripFET
F7 Power MOSFETs in
a PowerFLAT 3.3x3.3
package
ST STL20N6F7
59 1 U203 LMV321ILT, SOT23-5L Low power rail-to-rail input/
output op-amp ST LMV321ILT
TN1399
Bill of materials
TN1399 - Rev 1 page 18/26

Item Q.ty Ref. Part/value Description Manufacturer Order code
60 2 U201-202 STG719STR, SOT23-6L Low voltage 4 ohm SPDT
switch ST STG719STR
61 1 U200
STWBC2-HP, VFQFPN
8X8X1.0 68L PITCH 0.4
ROUT A
Digital controller for
wireless battery charger
transmitters
ST STWBC2-HP
62 2 D203
D209 0603 Green LEDs Wurth
Elektronik 150060VS75000
63 1 D202 0603 Red LEDs Wurth
Elektronik 150060RS75000
64 2 R235-236 100 R, 0402, 1/16 W, ±5 %,
SMD Resistors Yageo or
generic RC0402JR-07100RL
65 1 C308 47 µF, D6.3 Aluminum electrolytic
capacitor Panasonic EEEFTH470XAP
66 1 C104 33 nF, 0603, 50 V, ±10 %,
X7R, SMD Capacitor Kemet or
generic C0603C333K5RACTU
TN1399
Bill of materials
TN1399 - Rev 1 page 19/26

7Conclusions
The test results show the STDES-50W2CWBC reference design can automatically detect and charge the PX by
either of the two coils.
• The Rx output could be from 5 V to 20 V by the ST Super Charge proprietary protocol (STSC).
• The ASK demodulation works well.
• The Q-factor estimation by either of the two coils is close to the LCR meter.
The STDES-50W2CWBC reference design achieved the expected performance.
TN1399
Conclusions
TN1399 - Rev 1 page 20/26
Table of contents
Other ST Computer Hardware manuals

ST
ST STEVAL-TTM001V1 User manual

ST
ST X-NUCLEO-IDW04A1 User manual

ST
ST STEVAL-ISQ008V1 User manual

ST
ST STEVAL-ISF001V1 User manual

ST
ST X-NUCLEO-OUT17A1 User manual

ST
ST X-NUCLEO-IHM02A1 User manual

ST
ST STEVAL-CCH002V2 User manual

ST
ST X-NUCLEO-DRP1M1 User manual

ST
ST X-NUCLEO-SRC1M1 User manual

ST
ST STM32U5 User manual