GE GEK-113045B User manual

SPM
SYNCHRONOUS MOTOR PROTECTION
AND CONTROL
Instruction Manual
Software Revision: 210.000
Manual P/N: 1601-0072-A9 (GEK-113045B)
Copyright © 2008 GE Multilin
GE Multilin
215 Anderson Avenue, Markham, Ontario
Canada L6E 1B3
Tel: (905) 294-6222 Fax: (905) 201-2098
Internet: http://www.GEmultilin.com
g
GE Industrial Systems
GE Multilin’s Quality Manage-
ment System is registered to
ISO9001:2000
QMI # 005094
*1601-0072-A9*
Courtesy of store.ips.us

GE Multilin SPM Synchronous Motor Protection and Control i
TABLE OF CONTENTS
1. INTRODUCTION 1.1 OVERVIEW
1.1.1 GENERAL DESCRIPTION ................................................................................ 1-1
1.1.2 FUNCTIONAL OVERVIEW................................................................................ 1-1
1.2 ORDERING
1.2.1 ORDER CODES ................................................................................................ 1-3
1.2.2 ACCESSORIES ................................................................................................. 1-3
1.3 SPECIFICATIONS
1.3.1 TECHNICAL SPECIFICATIONS........................................................................ 1-4
2. INSTALLATION 2.1 OVERVIEW
2.1.1 DESCRIPTION................................................................................................... 2-1
2.1.2 ELEMENTS OF A SYNCHRONOUS MOTOR CONTROLLER ......................... 2-1
2.2 MECHANICAL INSTALLATION
2.2.1 UNPACKING THE SPM ..................................................................................... 2-2
2.2.2 REMOVING THE DRAWOUT RELAY ............................................................... 2-2
2.2.3 INSERTING THE DRAWOUT RELAY ............................................................... 2-2
2.2.4 MOUNTING THE SPM....................................................................................... 2-2
2.2.5 SPM MOUNTING ACCESSORIES.................................................................... 2-2
2.3 ELECTRICAL INSTALLATION
2.3.1 DESCRIPTION................................................................................................... 2-4
2.3.2 GROUNDING..................................................................................................... 2-6
2.3.3 FIELD AND EXCITER VOLTAGE INPUTS........................................................ 2-6
2.3.4 RELAY OUTPUTS ............................................................................................. 2-6
2.3.5 CURRENT TRANSFORMER INPUT ................................................................. 2-6
2.3.6 POWER FACTOR OUTPUT .............................................................................. 2-6
2.3.7 DC FIELD CURRENT INPUT ............................................................................ 2-6
2.3.8 EXCITER VOLTAGE OUTPUT MONITOR........................................................ 2-6
2.3.9 POWER FACTOR REGULATION OUTPUT...................................................... 2-7
2.3.10 CONTROL VOLTAGE........................................................................................ 2-7
2.3.11 EXTERNAL VOLTAGE PF REFERENCE ......................................................... 2-7
2.3.12 RS485 COMMUNICATIONS PORT................................................................... 2-8
3. SYNCHRONOUS MOTOR
APPLICATIONS
3.1 OVERVIEW
3.1.1 GENERAL .......................................................................................................... 3-1
3.2 COLLECTOR-RING MOTORS
3.2.1 STARTING AND SYNCHRONIZING ................................................................. 3-5
3.2.2 RELUCTANCE TORQUE SYNCHRONIZING ................................................... 3-6
3.2.3 STARTING PROTECTION ................................................................................ 3-7
3.2.4 REDUCED VOLTAGE STARTING .................................................................... 3-8
3.2.5 POWER FACTOR (PULL-OUT) PROTECTION .............................................. 3-10
3.2.6 POWER FACTOR OPERATION...................................................................... 3-11
3.2.7 CONTROLLER ACTION DURING PULL-OUT ................................................ 3-12
3.2.8 EFFECT OF VOLTAGE DIPS ON MOTOR POWER FACTOR....................... 3-13
3.2.9 POWER FACTOR DETECTION & INDICATION – OVERHAULING LOAD.... 3-15
3.2.10 POWER FACTOR REGULATION ................................................................... 3-16
3.3 BRUSHLESS CONTROLLER
3.3.1 DESCRIPTION................................................................................................. 3-17
3.3.2 BRUSHLESS MOTOR REVIEW...................................................................... 3-17
3.3.3 STARTING THE BRUSHLESS MOTOR.......................................................... 3-18
3.3.4 STALL PROTECTION...................................................................................... 3-19
3.3.5 POWER FACTOR (PULL-OUT) PROTECTION .............................................. 3-19
3.3.6 POWER FACTOR REGULATION ................................................................... 3-19
4. USER INTERFACE 4.1 SPMPC SOFTWARE
4.1.1 DESCRIPTION................................................................................................... 4-1
Courtesy of store.ips.us

ii SPM Synchronous Motor Protection and Control GE Multilin
TABLE OF CONTENTS
4.1.2 SPMPC INSTALLATION ....................................................................................4-2
4.1.3 CONFIGURATION..............................................................................................4-3
4.1.4 CREATING A NEW SETPOINT FILE.................................................................4-4
4.1.5 EDITING A SETPOINT FILE ..............................................................................4-5
4.1.6 LOADING SETPOINTS FROM A FILE...............................................................4-6
4.1.7 UPGRADING SETPOINT FILES TO A NEW REVISION ...................................4-7
4.1.8 PRINTING SETPOINTS & ACTUAL VALUES....................................................4-8
4.1.9 TRENDING .........................................................................................................4-9
4.2 KEYPAD INTERFACE
4.2.1 DESCRIPTION .................................................................................................4-10
4.2.2 CHANGING SETPOINTS .................................................................................4-11
4.2.3 CHANGING CALIBRATION VALUES ..............................................................4-12
4.2.4 CHANGING CONFIGURATIONS.....................................................................4-13
4.2.5 VIEWING & CHANGING STATUS MODE PARAMETERS..............................4-14
4.2.6 ALTERNATE MENU OPERATION...................................................................4-14
5. SETPOINTS 5.1 OVERVIEW
5.1.1 DESCRIPTION ...................................................................................................5-1
5.2 SETPOINTS MENU
5.2.1 POWER FACTOR TRIP .....................................................................................5-2
5.2.2 POWER FACTOR DELAY..................................................................................5-2
5.2.3 POWER FACTOR SUPRESSION......................................................................5-2
5.2.4 POWER FACTOR MODE...................................................................................5-3
5.2.5 FIELD APPLICATION RELAY DELAY ...............................................................5-3
5.2.6 FIELD CONTACTOR AUXILIARY RELAY DELAY.............................................5-3
5.2.7 AC CT PRIMARY RATING .................................................................................5-4
5.2.8 MOTOR FULL LOAD AMPS...............................................................................5-4
5.2.9 MOTOR LOCKED ROTOR AMPS......................................................................5-4
5.2.10 SYNCHRONOUS SLIP.......................................................................................5-5
5.2.11 STALL TIME .......................................................................................................5-5
5.2.12 RUN TIME ..........................................................................................................5-5
5.2.13 DIRECT CURRENT CT PRIMARY RATING ......................................................5-6
5.2.14 FIELD OVERTEMPERATURE (HIGH FIELD OHMS) PROTECTION ...............5-7
5.2.15 FIELD UNDERCURRENT ..................................................................................5-8
5.2.16 FIELD UNDERCURRENT DELAY......................................................................5-8
5.2.17 FIELD UNDERVOLTAGE ...................................................................................5-8
5.2.18 FIELD UNDERVOLTAGE DELAY ......................................................................5-9
5.2.19 INCOMPLETE SEQUENCE DELAY ..................................................................5-9
5.3 OPTIONAL POWER FACTOR REGULATION SETPOINTS
5.3.1 DESCRIPTION .................................................................................................5-10
5.3.2 POWER FACTOR REGULATOR .....................................................................5-10
5.3.3 REGULATOR GAIN..........................................................................................5-10
5.3.4 STABILITY........................................................................................................5-10
5.3.5 REGULATOR OUTPUT LIMIT .........................................................................5-11
5.3.6 FLOOR VOLTS.................................................................................................5-11
5.4 CONFIGURATIONS MENU
5.4.1 MOTOR TYPE ..................................................................................................5-12
5.4.2 LINE FREQUENCY ..........................................................................................5-12
5.4.3 POWER FACTOR REFERENCE .....................................................................5-12
5.4.4 RTU ADDRESS ................................................................................................5-12
5.4.5 BAUD RATE .....................................................................................................5-12
5.4.6 PARITY.............................................................................................................5-12
5.4.7 TURNAROUND ................................................................................................5-13
5.4.8 STATUS MODE................................................................................................5-13
5.4.9 PASSWORD.....................................................................................................5-13
5.5 CALIBRATION MENU
5.5.1 FULL-SCALE EXCITER DC VOLTAGE ...........................................................5-14
5.5.2 FULL-SCALE EXCITER DC AMPS ..................................................................5-14
5.5.3 FULL-SCALE MOTOR AC AMPS ....................................................................5-14
Courtesy of store.ips.us

GE Multilin SPM Synchronous Motor Protection and Control iii
TABLE OF CONTENTS
6. ACTUAL VALUES 6.1 DISPLAY SCROLLING
6.1.1 DESCRIPTION................................................................................................... 6-1
6.2 STATUS
6.2.1 MOTOR RUNNING HOURS .............................................................................. 6-2
6.2.2 INCOMPLETE SEQUENCE TRIP COUNTER................................................... 6-2
6.2.3 FIELD LOSS TRIP COUNTER .......................................................................... 6-2
6.2.4 PULL-OUT TRIP COUNTER ............................................................................. 6-2
6.2.5 RESYNCRONIZATION ATTEMPTS TRIP COUNTER...................................... 6-2
6.2.6 MISSING EXTERNAL PF VOLTAGE REFERENCE COUNTER ...................... 6-2
6.2.7 CHECK EXCITER TRIP COUNTER .................................................................. 6-3
6.2.8 POWER FACTOR TRIP COUNTER.................................................................. 6-3
6.2.9 SQUIRREL CAGE TRIP COUNTER.................................................................. 6-3
6.2.10 FIELD OVERVOLTAGE TRIP COUNTER......................................................... 6-3
7. TESTING AND
TROUBLESHOOTING
7.1 START-UP PROCEDURE
7.1.1 INSPECTION ..................................................................................................... 7-1
7.1.2 SPM TEST CHECKS ......................................................................................... 7-1
7.1.3 START-UP DESCRIPTION................................................................................ 7-2
7.2 DISPLAY AND MESSAGES
7.2.1 DISPLAY ............................................................................................................ 7-3
7.2.2 SPM MESSAGES .............................................................................................. 7-3
7.3 REGULATOR TUNE-UP
7.3.1 INSTRUCTIONS ................................................................................................ 7-5
7.4 TROUBLESHOOTING
7.4.1 TROUBLESHOOTING GUIDE........................................................................... 7-6
7.5 PROGRAMMING
7.5.1 PROGRAMMING EXAMPLE ............................................................................. 7-8
7.6 DOS AND DON’TS
7.6.1 DOS ................................................................................................................. 7-12
7.6.2 DON'TS............................................................................................................ 7-12
7.7 FREQUENTLY ASKED QUESTIONS
7.7.1 SPM FAQ ......................................................................................................... 7-13
7.8 REVISION HISTORY
7.8.1 FIRMWARE...................................................................................................... 7-15
8. ACCESSORIES 8.1 VOLTAGE DIVIDER NETWORK
8.1.1 GE MULTILIN VDN ............................................................................................ 8-1
8.1.2 GE MEBANE VDN ............................................................................................. 8-2
8.2 FIELD CURRENT CALIBRATION MODULE
8.2.1 GE MULTILIN MODULE .................................................................................... 8-3
8.3 DC CURRENT TRANSFORMER
8.3.1 DESCRIPTION................................................................................................... 8-6
9. MODBUS
COMMUNICATIONS
9.1 IMPLEMENTATION
9.1.1 MODBUS PROTOCOL ...................................................................................... 9-1
9.1.2 PERFORMANCE REQUIREMENTS ................................................................. 9-1
9.1.3 SETPOINTS....................................................................................................... 9-1
9.1.4 EXECUTE OPERATION COMMAND CODES (COIL NUMBERS) ................... 9-1
9.2 MEMORY MAPPING
9.2.1 MODBUS MEMORY MAP ................................................................................. 9-2
9.2.2 FORMAT CODES .............................................................................................. 9-7
Courtesy of store.ips.us

iv SPM Synchronous Motor Protection and Control GE Multilin
TABLE OF CONTENTS
10. FUNCTIONAL TESTS 10.1 INTRODUCTION
10.1.1 DESCRIPTION .................................................................................................10-1
10.2 COLLECTOR-RING MOTOR FIELD APPLICATION TEST
10.2.1 SETUP..............................................................................................................10-2
10.2.2 RELAY PROGRAMMING .................................................................................10-2
10.2.3 TEST.................................................................................................................10-2
10.3 COLLECTOR-RING MOTOR POWER FACTOR TEST
10.3.1 SETUP..............................................................................................................10-3
10.3.2 RELAY PROGRAMMING .................................................................................10-3
10.3.3 TEST.................................................................................................................10-3
10.4 COLLECTOR-RING MOTOR POWER FACTOR TRIP TEST
10.4.1 SETUP..............................................................................................................10-4
10.4.2 RELAY PROGRAMMING .................................................................................10-4
10.4.3 TEST.................................................................................................................10-4
10.5 BRUSHLESS MOTOR FIELD APPLICATION TEST
10.5.1 SETUP..............................................................................................................10-5
10.5.2 RELAY PROGRAMMING .................................................................................10-5
10.5.3 TEST.................................................................................................................10-5
10.6 BRUSHLESS MOTOR POWER FACTOR TEST
10.6.1 SETUP..............................................................................................................10-6
10.6.2 RELAY PROGRAMMING .................................................................................10-6
10.6.3 TEST.................................................................................................................10-6
10.7 BRUSHLESS MOTOR POWER FACTOR TRIP TEST
10.7.1 SETUP..............................................................................................................10-7
10.7.2 RELAY PROGRAMMING .................................................................................10-7
10.7.3 TEST.................................................................................................................10-7
10.8 AC CURRENT METERING AND PULL-OUT TEST
10.8.1 SETUP..............................................................................................................10-8
10.8.2 RELAY PROGRAMMING .................................................................................10-8
10.8.3 TEST.................................................................................................................10-8
10.9 EXCITER / FIELD VOLTAGE METERING TEST
10.9.1 SETUP..............................................................................................................10-9
10.9.2 RELAY PROGRAMMING .................................................................................10-9
10.9.3 TEST.................................................................................................................10-9
10.10 EXCITER / FIELD CURRENT METERING TEST
10.10.1 SETUP............................................................................................................10-10
10.10.2 RELAY PROGRAMMING ...............................................................................10-10
10.10.3 TEST...............................................................................................................10-10
A. COMMISSIONING A.1 COMMISSIONING
A.1.1 COLLECTOR-RING SETTINGS........................................................................ A-1
A.1.2 BRUSHLESS SETTINGS .................................................................................. A-2
B. WARRANTY B.1 WARRANTY
B.1.1 WARRANTY ...................................................................................................... B-1
Courtesy of store.ips.us

GE Multilin SPM Synchronous Motor Protection and Control 1-1
1 INTRODUCTION 1.1 OVERVIEW
1
1 INTRODUCTION 1.1 OVERVIEW 1.1.1 GENERAL DESCRIPTION
The SPM Synchronous Motor Protection and Control relay controls starting, synchronizing, and protection of
collector-ring and brushless type synchronous motors.
The SPM control functions for starting synchronous motors include accurate sensing of motor speed and rotor
angle, allowing the unit to apply excitation at optimum speed and angle. This permits closer matching of the
motor to the load. Optimum application of excitation also reduces power system disturbance, which occurs
when the motor goes through a complete slip cycle with the field energized. In addition, the SPM can take
advantage of the extended stall time of a reduced voltage start. It also responds with the proper application of
excitation in the event that the motor synchronizes on reluctance torque.
The SPM provides the functions necessary to protect the motor during startup and in the event of asynchro-
nous operation. During startup and restarting, the SPM prevents overheating of the cage winding. To protect
against asynchronous operation, the motor power factor is monitored. Two modes of pull-out protection can trip
the motor if resynchronization does not occur after a programmed time delay. Motor run time and the number
and type of trips are recorded.
The SPM has an optional power factor regulator containing five adjustable setpoints that can be changed while
the motor is running for convenient regulator tune-up.
A backlit LCD display and keys allow user configurable setting ranges to meet many applications. The unit
comes in a compact S1 drawout case.
The SPM can be applied as part of a complete synchronous motor controller. This consists of four parts. A
main device switches the motor on and off the power system. Multifunction digital relays (such as the GE Mul-
tilin 469 Motor Management Relay) provide stator protection. DC field protection and control are provided by
the SPM. The field contactor and field discharge resistor completes the control assembly.
1.1.2 FUNCTIONAL OVERVIEW
The DC portion of the synchronous motor (rotor assembly) is protected and controlled using a drawout micro-
processor based multifunction relay. The relay is adaptable to either collector-ring or brushless type synchro-
nous motors. Protection features include all of the following:
• Cage winding and stall protection during start
• Lockout feature to protect a hot rotor after an incomplete start
• Incomplete sequence trip due to failed acceleration
• Automatic acceleration time adjustment for reduced voltage starting
• Power factor (pull-out) trip with auto resynchronizing feature
• Loss of DC field current trip
• Loss of DC field voltage trip
• Field winding overtemperature trip
After a successful start, the relay automatically applies the DC field to the rotor at a prescribed slip and slip
angle to minimize mechanical stresses to the shaft as well as minimizes possible electrical transients to the
power system. This is achieved by a dedicated output to close the DC field contactor. The relay is also capable
of reluctance torque synchronizing (collector-ring machines only).
A dedicated output is provided in the relay to enable the loading of the motor following the DC field application
and unloading of the motor following a trip and/or loss of synchronization (pole slipping).
Control of an SCR type excitation system by means of an analog output to maintain power factor (PF regula-
tion) is available as an option.
Courtesy of store.ips.us

1-2 SPM Synchronous Motor Protection and Control GE Multilin
1.1 OVERVIEW 1 INTRODUCTION
1
The man-machine interface (MMI) consists of a backlit alphanumeric display and a keypad to accommodate
relay programming as well as viewing actual motor parameters which comprise:
• AC stator current
• Power factor
• DC field current
• DC field voltage
• DC field resistance
• Running time meter (RTM)
Statistical data includes number and type of trips.
The SPM performs a complete system check prior to starting the motor.
Figure 1–1: SINGLE LINE DIAGRAM
701767A9.CDR
MOTOR
LOAD
AC BUS
CLUTCH
COUPLING
DC SUPPLY
27 26F 95
96
56
95
48
94
86
94
48
55
SPM
Stator
Protection
(469)
Calibrator
DC
CT
37
50
IAC
VDC
IDC
VAC
ANSI DEVICE NUMBERS
Fie ld o ve rte m p e ra tu re
Un d e rv o l t a g e
Und e rc urre n t o r und e rp o we r
Inc o m p le te se q ue nc e
Insta nta n e o us o ve rc urre n t
Po w e r f a c t o r
Field application
Lo c k o u t
Tripping
Re l u c t a n c e t o r q u e sy n c . / re sy n c .
Autoloading relay
26F
27
37
48
50
55
56
86
94
95
96
Courtesy of store.ips.us

GE Multilin SPM Synchronous Motor Protection and Control 1-3
1 INTRODUCTION 1.2 ORDERING
1
1.2 ORDERING 1.2.1 ORDER CODES
The SPM has all features built into the standard relay and programmable by the user to fit the specific applica-
tion. The only option in the order code is for Power Factor Regulation. Some of the standard features require
an optional external hardware package that must be ordered in addition to the relay itself. These separate
packages are explained in the following section.
1.2.2 ACCESSORIES
•PG2SPM: External hardware package for overtemperature and current loss protection up to 200 A
(includes 1-DCCT200 and 1-CM)
•PG4SPM: External hardware package for overtemperature and current loss protection up to 400 A
(includes 1-DCCT400 or DCCT500 and 1-CM)
•MSPM: Mounting panel to retrofit existing µSPM cutouts for SPM
SPM –*–*
Base Unit SPM ||
Configuration 0|Standard starting and protection relay with VDN board
PF |Power Factor regulation option. Used on motors with SCR exciter
(not recommended for brushless applications)
Harsh Environment 0Standard meter
HHarsh (chemical) environment conformal coating
Courtesy of store.ips.us

1-4 SPM Synchronous Motor Protection and Control GE Multilin
1.3 SPECIFICATIONS 1 INTRODUCTION
1
1.3 SPECIFICATIONS 1.3.1 TECHNICAL SPECIFICATIONS
PHASE CURRENT INPUTS
CT primary: 5 to 2000 A
CT secondary: 5 A
Conversion range: 0.05 to 6 ×CT
Frequency: 50 / 60 Hz
Accuracy: at <2 ×CT: ±0.5% of 2 ×CT true RMS
at ≥2 ×CT: ±1% of 6 ×CT true RMS
Current input burden: <1 VA at 5 A
FIELD CURRENT INPUTS
CT Primary: 5 to 1000 A
Conversion range: 0.05 to 1 ×CT
Accuracy: ±2%
EXCITER VOLTAGE INPUTS
Conversion: 0 to 350 V DC (prior to VDN)
Accuracy: ±1%
POWER FACTOR
Range: 0.01 to 1 to –0.01
Time Delay: 0.1 to 10 seconds
Accuracy: ±5%
SWITCH INPUTS (MX AND NX)
Type: Dry contact
Internal interrogation voltage: 85 to 265 V AC (control voltage)
PF ANALOG OUTPUT
Type: Active
Output: 0 to 10 V DC max. at RL ≥1 KW (min. load)
Accuracy: ±10% (0.1 V)
Isolation: 36 V pk
CONTROL VOLTAGE
Input: 85 to 265 V AC at 48 to 60 Hz
Power: 10 VA nominal
Holdup: 100 ms typical at 120 V AC
RELAY CONTACT
Type: FAR, TRP: Form A
FCX: Form C
Rated load: 10 A AC continuous: NEMA A300
1 A DC continuous: NEMA R300
Break: 10 A at 250 V AC or 30 V DC
Max. operating voltage: 250 V AC
ENVIRONMENT
Humidity: 0 to 95% non-condensing
Operating Temp.: –20°C to +70°C
Storage Temp.: –40°C to +85°C
TYPE TESTS
Dielectric Strength: Per IEC 255-5 and ANSI/IEEE C37.90
2.0 kV for 1 min. from relays, CTs, VTs
power supply to Safety Ground
Insulation Resistance: IEC255-5 500 VDC, from relays, CTs, VTs
power supply to Safety Ground
Transients: ANSI C37.90.1 Oscillatory (2.5kV/1MHz)*
ANSI C37.90.1 Fast Rise (5kV/10ns)*
Ontario Hydro A-28M-82
IEC255-4 Impulse/High Frequency Distur-
bance, Class III Level
Impulse Test: IEC 255-5 0.5J 5kV
EMI: C37.90.2 Electromagnetic Interference at
150 MHz and 450 MHz, 10V/m
Static: IEC801-2 Static Discharge
Vibration: Sinusoidal Vibration 8.0g for 72 hrs.
* With the use of an isolation transformer. Please contact GE
Multilin technical support for recommended products.
CERTIFICATION
UL: UL listed for the USA and Canada
PHYSICAL
Shipping Box: 12.50" ×10.50" ×9.75" (L ×H ×D)
318 mm ×267 mm ×248 mm (L ×H ×D)
Ship Weight: 14.25 lb. / 6.45 kg
It is recommended that the SPM be powered up at least once per year to prevent deterioration
of electrolytic capacitors in the power supply.
Specifications are subject to change without notice.
NOTE
Courtesy of store.ips.us

GE Multilin SPM Synchronous Motor Protection and Control 2-1
2 INSTALLATION 2.1 OVERVIEW
2
2 INSTALLATION 2.1 OVERVIEW 2.1.1 DESCRIPTION
The SPM can be incorporated in synchronous motor control equipment as a complete controller (including an
AC power-switching device for the motor starter) or as a field panel (AC power switching supplied by other
device).
2.1.2 ELEMENTS OF A SYNCHRONOUS MOTOR CONTROLLER
A complete synchronous-motor controller has the ability to switch the motor on to and off of the power system
and protect the motor from damage that can occur if the motor is running in an abnormal condition such as out-
of-synchronization.
A complete synchronous-motor controller consists of a motor starter and switching device (typically a contac-
tor) which controls the main power to the motor. In addition, protective relaying is provided for both the stator
and the rotor (such as a 469/SPM combination). Controls for starting and stopping the motor (start-stop push-
buttons) are also included. Indicating and metering devices such as line ammeters are supplied if not included
in the relays. All of these features are common with motor controllers of all types.
Figure 2–1: EXPLODED VIEW OF THE SPM
Courtesy of store.ips.us

2-2SPM Synchronous Motor Protection and Control GE Multilin
2.2 MECHANICAL INSTALLATION 2 INSTALLATION
2
2.2 MECHANICAL INSTALLATION 2.2.1 UNPACKING THE SPM
When the SPM is shipped separately, carefully unpack the module and report any observable damage or miss-
ing components to the carrier and to GE Multilin. All included parts are shown in Figure 2–1: EXPLODED VIEW
OF THE SPM on page 2–1.
2.2.2 REMOVING THE DRAWOUT RELAY
1. Remove the faceplate assembly carefully by pushing in on the quick release tabs on the front of the SPM
and pulling the faceplate assembly forward. Once the faceplate has pivoted forward, gently lower the face-
plate so that it clears the tabs on the bottom of the frame.
DO NOT let the faceplate assembly dangle from the connecting wires.
2. Carefully disconnect the ribbon cable from the cradle assembly.
3. Remove the paddle and open the top and bottom locking tabs. The relay can now be removed from the
case.
2.2.3 INSERTING THE DRAWOUT RELAY
1. Slide the relay into the case and close the top and bottom locking tabs.
2. Insert the paddle into the opening at the bottom of the relay.
3. Carefully re-connect the ribbon cable to the cradle assembly.
DO NOT shift or skew the ribbon connector.
4. Re-mount the faceplate assembly to the case from the front panel. Slide the faceplate onto the tabs on the
bottom of the frame and then pivot it up into position over the quick release tabs. The faceplate should gen-
tly snap into place.
2.2.4 MOUNTING THE SPM
Mounting the SPM requires careful attention to the following instructions.
DE-ENERGIZE ALL EXISTING EQUIPMENT BEFORE INSTALLING NEW EQUIPMENT.
1. Remove the relay from the case.
2. Prepare the mounting hole in the panel to dimensions shown in Figure 2–2: PHYSICAL DIMENSIONS.
3. Slide the case into the panel from the front.
4. Install the four mounting screws from the rear of the panel. The case is now securely mounted and ready
for panel wiring.
2.2.5 SPM MOUNTING ACCESSORIES
See Chapter 8: ACCESSORIES for physical dimensions and mounting requirements.
NOTE
NOTE
CAUTION
Courtesy of store.ips.us

2-4SPM Synchronous Motor Protection and Control GE Multilin
2.3 ELECTRICAL INSTALLATION 2 INSTALLATION
2
2.3 ELECTRICAL INSTALLATION 2.3.1 DESCRIPTION
Wire the SPM using one of the following wiring diagrams (one each for brushless, collector ring, and brushless
and collector ring). Pay particular attention to the CT and PT inputs. These inputs must be connected as shown
below for proper power factor protection.
Figure 2–3: TYPICAL WIRING DIAGRAM
USED FOR SEPARATELY
SUPPLIED POWER FACTOR
REFERENCE VOLTAGE
(OPTIONAL CONNECTION)
STOPSTART
MAIN
AUXILIARY
M
M
EXCITER
CONTACTOR
M
OL
SUPPLY
C
B
A
TYPICALCOLLECTORRINGMOTORCONNECTION
T1
PHASEC T3
T2
(+)
F1
FIELD
FIELD
DISCHARGE
RESISTOR
FIELD
CONTACTOR
FC
FC
EXCITER
V+
EXCITER
V-
CM
8
CM
7
FC
F2
(R1)
(F2)
(E+) (V+)
(E-) (V-)
+
-
VOLTAGEDIVIDER
NETWORK (VDN)
A17
A16
N+
N-
POWER
FACTOR
OUTPUT
V
1
V
2
B9
G1
B8
B10
CONTROL
POWER
REF. VOLT.
CHASSIS GROUND
FILTERGROUND
A21
A20
V+
V-
A18
A19
V+
F
F
E
E
V-
EXCITER/FIELD
VOLTAGE
FIELD
CURRENT
OPTIONAL
REF. VOLT.
A5
A4
V
V
A24
A25
I- I+
EE
1EXT
2EXT
REDUCED
VOLTAGE
DIGITALINPUTS
RS485
A11
A12
A1
MX
MX1
-
MX
MONITOR
A9
A2
NX2
+
A10
A3
NX1
COMM
GND
SYNC
MOTOR
PF ANALOG OUTPUT OR
PF REG CONTROL SIG
OUTPUT (IF PF
REGULATOR OPTION)
ON REDUCED VOLTAGE
STARTERS, REMOVE
JUMPER AND CONNECT
A NO. AUX CONTACT
FROM THE FINAL STEP
CONTACTOR HERE.
DCCT
V+
V-
RM
EXCITER
TO EXCITER
POWERSUPPLY
TO PLC
ORCOMPUTER
BRUSHLESS & COLLECTOR RING - 701756AN.CDR
COLLECTOR RING - 701751.DWG
BRUSHLESS - 701753.DWG
()
B1
I2S I2T
PHASECURRENT INPUT
B2
B4
B3
I3T
I3S
FC
FIELD
CONTACTOR
RM
MX
NOTES:
1) Relays shown with no control power applied to relay
2) Trip Relay closed during normal operation
*
FIELD CURRENT CALIBRATION MODULE
DIRECT CURRENT CT
MAIN CONTACTOR
OVERLOAD RELAY
MOTOR TERMINALS
OPTIONAL ACCESSORIES
CM
DCCT
M
OL
T1, T2, T3
NOMENCLATU RE
FIELD CURRENT
CALIBRATION
MODULE(CM)
240 VAC
120 VAC
65
2
1
4
3
8
7
FIELD CONTACTOR
TYPICALBRUSHLESS MOTORCONNECTION
T1
T3
T2
EF1
FIELD
FCFC
R
EF2
(E+) (V+)
(E-) (V-)
VOLTAGEDIVIDER
NETWORK (VDN)
SYNC
MOTOR
A18
A19
V+
F
F
V-
EXCITER/FIELD
VOLTAGE
A21
A20
V+
V-
E
E
A
B
C
B1
PHASECURRENT INPUT
B2
B4
I2T
B3
I2S
I3S
I3T
DCCT
A13
A14
A15
COM
FCX
N/C
FIELD
CONTACTORAUX.
(FCX)
A22
A23
*
TRIP
OUTPUT RELAYS
FCX
N/O
TRIP1
TRIP2
A6
A7
FIELD
APPLICATION
(FAR)
FAR1
FAR2
M
SPM
GE POWER MANAGEMENT
SPM
GE POWER MANAGEMENT
Courtesy of store.ips.us

GE Multilin SPM Synchronous Motor Protection and Control 2-5
2 INSTALLATION 2.3 ELECTRICAL INSTALLATION
2
Figure 2–4: PANEL AND TERMINAL LAYOUT
AC Amps
Power Factor
DC Amps
DC Volts
(Exciter) Field Ohms
Power Factor Trip
Power Factor Trip Delay
Power Factor Suppression
FCX Delay
Power Factor Mode
FAR Delay
DISPLAYFUNCTIONS
DISPLAYSCROLL SETPOINT SCROLL
CONTRAST
AC CT Rating
Full Load Amps
Locked Rotor Amps
Sync. Slip
Run Time
Stall Time
DC CT Primary
High (Exciter) Field Ohms
(Exciter) Field Amps
(Exciter) Field Volts
Incomplete Sequence Delay
Regulator Power Factor
Regulator Gain
Regulator Stability
Regulator Output
Regulator Floor Volts
Items in and white come standard.green
Items in green are motor type dependent.
Items in yellow are optional.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
FRONT VIEW
REAR VIEW
701750AF.CDR
Used to remove display for easy
access to drawout.
Lightens or darkens display.
Hides menu when not in use.
CONTRASTDIAL
PULLDOWNDOOR
85 to 265VAC.
CONTROLPOWER
A wire lead seal can be used to
prevent unauthorized removal
of relay.
LOCKINGPROVISION
Menu of all accessible setpoints
and actual values for easy reference.
Compact S1 rugged metal/bakelite
case. Fits standard cutout.
2 Phase current inputs.
Accept #8 wire.
DISPLAYFUNCTION MENU
S1 CASE
MOTORLINE CURRENT
QUICKRELEASETABS
A
B
A
1
1 2 3 4 5678910
I2S I2T I3S I3T
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
RS485-
RS485+
RS485 GND
NX2
NX1
MX1
N-
N+
V+
F
V-
F
V-
E
V+
E
I-
E
NC
NC
NC
I+
E
NC
SPM Sync. Protection/Control
SCROLL
ENTER
TRIP: Normally open,
failsafe trip relay.
FAR: Field application
relay.
FCX: Autoloading of the
motor.
EXCITER: Exciter voltage
inputs. Connected via
DCCT and CM.
REDUCED VOLTAGE:
Contact input for
reduced voltage starting.
Motor "ON" input.
Exciter current input.
Power Factor reference
voltage (for seperately
powered option).
POWER FACTOR:
0-10VDC analog signal.
FIELD: DC field voltage
input.
RELAYS
INPUTS
OUTPUTS
TERMINALBLOCKA
Used to enter or exit the different
modes of the SPM. These are
Standby, Test, Statistics and
Programming modes.
GEKEY
Used to make a selection or acts
as an enter key.
ENTERKEY
Used to scroll through the various
menus and change setpoint
parameter values.
SCROLL KEYS
Back lit 32 character display for
setpoints, actual values and status.
Programmable auto scan sequence
for unattended operation.
LCD DISPLAY
V
1
FILTER
GND
V
2
V
2EXT
V
1EXT
FAR2
FAR1
MX
FCX N/O
FCX COM
FCX N/C
TRP2
TRP1
Motor Hours
ISP Trip Ctr
FLP Trip Ctr
PO Trip Ctr
Resync Ctr
NOVTrpCtr
Exc Trip Ctr
PF Trip Ctr
SCP Trip Ctr
FOT Trip Ctr
STAT SCROLL
Courtesy of store.ips.us

2-6SPM Synchronous Motor Protection and Control GE Multilin
2.3 ELECTRICAL INSTALLATION 2 INSTALLATION
2
2.3.2 GROUNDING
The SPM relay must be solidly grounded to a suitable system ground. Extensive filtering and transient protec-
tion has been built into the SPM to ensure proper and reliable operation in harsh industrial environments.
Proper grounding of the chassis ground terminal is critical to en-sure safety and filtering.
2.3.3 FIELD AND EXCITER VOLTAGE INPUTS
The field voltage inputs (VF+ and VF–) and exciter voltage inputs (VE+ and VE–) are connected to the relay
via the supplied voltage divider network (VDN).
DO NOT ATTEMPT TO START THE MOTOR WITHOUT THE EXTERNAL RESISTOR ASSEMBLY
WIRED. SEVERE DAMAGE TO THE SPM MAY RESULT IF THE EXTERNAL RESISTOR ASSEM-
BLY IS NOT PROPERLY CONNECTED.
2.3.4 RELAY OUTPUTS
The following is a description of the relay outputs.
1. TRIP: Trip Relay. This relay is normally energized and drops out on loss of power or when the module
senses an abnormal condition.
2. FAR: Field Application Relay. This relay picks up at the proper time to apply DC to the motor field.
3. FCX: Loading Relay. This relay picks up when the motor is fully synchronized and ready to be loaded. It is
controlled by the "FCX Delay" programmable setpoint.
2.3.5 CURRENT TRANSFORMER INPUT
The SPM is designed to work from a five ampere (5 A) current transformer (CT) secondary. The current trans-
former must be connected in the proper motor phase. See Figure 2–3: TYPICAL WIRING DIAGRAM on page
2–4 to determine proper phase. For brushless applications, the SPM requires inputs from two motor phases.
2.3.6 POWER FACTOR OUTPUT
This output is a 0 to 10 V DC signal that corresponds linearly to phase shift, and sinusoidal to motor power fac-
tor. 0 V is zero lagging power factor, 5 V is unity power factor, and 10 V is zero leading power factor.
Calibration: 1 volt change corresponds to an 18° phase shift (not available with power factor regulation). Do not
connect less than 1000 Ωto this output.
2.3.7 DC FIELD CURRENT INPUT
DC field input must be sensed from a separately purchased DCCT (Direct Current, Current Transformer) and
CM (Calibration Module).
2.3.8 EXCITER VOLTAGE OUTPUT MONITOR
The output of the field exciter must be connected to the SPM through a separate resistor when exciter voltage
failure protection and/or exciter voltage display is required.
CAUTION
Courtesy of store.ips.us

GE Multilin SPM Synchronous Motor Protection and Control 2-7
2 INSTALLATION 2.3 ELECTRICAL INSTALLATION
2
2.3.9 POWER FACTOR REGULATION OUTPUT
This optional output replaces the power factor analog signal output. It consists of a 0 to 10 V DC control signal
which is used to control an SCR Variable Exciter output to obtain motor power factor regulation.
2.3.10 CONTROL VOLTAGE
If control voltage excursions occur outside the range of 85 to 265 V AC, a provision is available that will allow
the user to connect an external stabilizing transformer for operation with severe control power voltage dips.
The SPM has separate inputs for control power and power factor reference voltage. This allows connection for
control power from a stabilized voltage source of 115 V AC or 230 V AC. Terminal points "V1EXT" and "V2EXT"
have been added to accommodate the separate PF reference voltage.
2.3.11 EXTERNAL VOLTAGE PF REFERENCE
When terminal points "V1EXT" and "V2EXT" are used to accommodate a separate PF reference voltage, as
described above, a standard protective function will alert the user should this external voltage drop below the
acceptable limits for the SPM power supply. This protection will not allow the motor to start while the external
voltage is missing, but the SPM will not require a reset before the motor can be restarted. If the external refer-
ence voltage is lost while the motor is running, the SPM will trip the motor and will require a reset before the
motor can be restarted. "MISSING VOLTAGE!" will be displayed until reset.
Figure 2–5: REFERENCE VOLTAGE INPUT CONNECTIONS
Courtesy of store.ips.us

2-8SPM Synchronous Motor Protection and Control GE Multilin
2.3 ELECTRICAL INSTALLATION 2 INSTALLATION
2
2.3.12 RS485 COMMUNICATIONS PORT
One two-wire RS485 port is provided. Up to 32 SPMs can be daisy-chained together on a communication
channel without exceeding the driver capability. For larger systems, additional serial channels must be added.
It is also possible to use commercially available repeaters to increase the number of relays on a single channel
to more than 32. Suitable cable should have characteristic impedance of 120 Ω(e.g. Belden #9841) and total
wire length should not exceed 4000 ft. Commercially available repeaters will allow for transmission distances
greater than 4000 ft.
Voltage differences between remote ends of the communication link are not uncommon. For this reason, surge
protection devices are internally installed across all RS485 terminals. Internally an isolated power supply is
used to prevent noise coupling. To ensure that all devices in a daisy-chain are at the same potential, it is imper-
ative that the common terminals of each RS485 port are tied together and grounded only once, at the master.
Failure to do so may result in intermittent or failed communications. The source computer/PLC/SCADA system
should have similar transient protection devices installed, either internally or externally, to ensure maximum
reliability. To avoid ground loops, ground the shield at one point only as shown below.
Correct polarity is also essential. SPMs must be wired with all '+' terminals connected together, and all '–' termi-
nals connected together. Each relay must be daisy-chained to the next one. Avoid star or stub connected con-
figurations. The last device at each end of the daisy chain should be terminated with a 120 Ω, ¼ watt resistor in
series with a 1 nF capacitor across the '+' and '–' terminals. Observing these guidelines will result in a reliable
communication system immune to system transients.
Figure 2–6: RS485 WIRING
Courtesy of store.ips.us

GE Multilin SPM Synchronous Motor Protection and Control 3-1
3 SYNCHRONOUS MOTOR APPLICATIONS 3.1 OVERVIEW
3
3 SYNCHRONOUS MOTOR APPLICATIONS 3.1 OVERVIEW 3.1.1 GENERAL
The most attractive and widely applied method of starting a synchronous motor is to utilize squirrel cage wind-
ings in the pole faces of the synchronous motor rotor. The presence of these windings allows for a reaction (or
acceleration) torque to be developed in the rotor as the AC excited stator windings induce current into the
squirrel cage windings. Thus, the synchronous motor starts as an induction motor. These rotor windings are
frequently referred to as damper or amortisseur windings. The other major function of these windings is to
dampen power angle oscillations after the motor has synchronized. Unlike induction motors, no continuous
squirrel cage torque is developed at normal running speeds. Examine the figure below:
Figure 3–1: SALIENT POLE SYNCHRONOUS MOTOR
When the motor accelerates to near synchronizing speed (about 95% synchronous speed), DC current is intro-
duced into the rotor field windings. This current creates constant polarity poles in the rotor, causing the motor to
operate at synchronous speed as the rotor poles "lock" onto the rotating AC stator poles.
Torque at synchronous speed is derived from the magnetic field produced by the DC field coils on the rotor link-
ing the rotating field produced by the AC currents in the armature windings on the stator.
Magnetic polarization of the rotor iron is due to the rotor’s physical shape and arrangement and the constant
potential DC in coils looped around the circumference of the rotor.
Synchronous motors possess two general categories of torque characteristics. One characteristic is deter-
mined by the squirrel-cage design, which produces a torque in relation to "slip" (some speed other than syn-
chronous speed). The other characteristic is determined by the flux in the salient field poles on the rotor as it
runs at synchronous speed. The first characteristic is referred to as starting torque, while the second character-
istic is usually referred to as synchronous torque.
In starting mode, the synchronous motor salient poles are not excited by their external DC source. Attempting
to start the motor with DC applied to the field does not allow the motor to accelerate. In addition, there is a very
large oscillating torque component at slip frequency, produced by field excitation, which could result in motor
damage if full field current is applied during the entire starting sequence. Therefore, application of DC to the
field is usually delayed until the motor reaches a speed where it can be pulled into synchronism without slip.
At synchronous speed, the ferro-magnetic rotor poles become magnetized, resulting in a small torque (reluc-
tance torque) which enables the motor to run at very light loads in synchronism without external excitation.
Reluctance torque can also pull the motor into step if it is lightly loaded and coupled to low inertia.
It is convenient to make an analogy of a synchronous motor to a current transformer for the purpose of demon-
strating angular relationship of field current and flux with rotor position.
Courtesy of store.ips.us

3-2SPM Synchronous Motor Protection and Control GE Multilin
3.1 OVERVIEW 3 SYNCHRONOUS MOTOR APPLICATIONS
3
If I1is an equivalent current in the stator causing the transformer action, then I1will be about 180° from I2(or
IFD), and the flux will be 90° behind IFD. Very significantly, then, the point of maximum-induced flux (Ø) occurs
as the induced field current IFD passes through zero from negative to positive; maximum rate of change of cur-
rent. See the figure below.
Figure 3–2: TYPICAL TRANSFORMER ROTOR FLUX AND CURRENT (CONSTANT SLIP)
The rotor angle at which I1and I2go through zero depends upon the reactance-to-resistance ratio in the field
circuit. A very high value of reactance-to-resistance shifts the angle toward –90°. Reactance is high at low
speed (high frequency). At high speed (low slip, low frequency), reactance decreases and the angle shifts
toward 0° if the circuit includes a high value of resistance. As the stator goes beyond –45°, the torque
increases (due to increased stator flux). At this point, IFD yields a convenient indicator of maximum flux and
increasing torque from which excitation is applied for maximum effectiveness.
If the field discharge loop is opened at the point of maximum flux, this flux is "trapped." Applying external exci-
tation in correct polarity to increase this trapped flux at this instant makes maximum use of its existence. At this
point the stator pole has just moved by and is in position to pull the rotor forward into synchronous alignment.
See the figure below.
Figure 3–3: TYPICAL ROTOR FLUX AND CURRENT AT PULL-IN
Courtesy of store.ips.us
This manual suits for next models
1
Table of contents
Other GE Controllers manuals

GE
GE IC3645SH7R354D1 User manual

GE
GE D.20 RIO Instructions for use

GE
GE PACSystems* RX3i User manual

GE
GE Mooney Flowgrid User manual

GE
GE IC3645SR7A353T4 User manual

GE
GE ACT17CWA User manual

GE
GE IC3645SR4R333AS2 User manual

GE
GE Multilin GEK-113000T User manual

GE
GE EV100 LX User manual

GE
GE VAT2000 Series User manual
Popular Controllers manuals by other brands

Emerson
Emerson Bettis Multiport Installation, operation and maintenance manual

HORA
HORA MC250/24 operating manual

Delta Electronics
Delta Electronics AC Motor Drive VFD-VE Series user manual

Woodward
Woodward 505 Installation and operation manual

EverFocus
EverFocus EFC304 user manual

Dynasty Spas
Dynasty Spas excalibur Series owner's manual